Moulding Parameter Optimisation for the Best Sintered Density

Khairur Rijal Jamaludin, Norhamidi Muhamad, Mohd Nizam Ab. Rahman, Sri Yulis M. Amin, Sufizar Ahmad, Mohd Halim Irwan Ibrahim, Murtadhahadi, Nor Hafiez Mohamad Nor

Abstract— Injection moulding parameters that simultaneously satisfy green part qualities (green defect, green strength and green density) have been optimised using L₂₇ (3¹³) Taguchi orthogonal array. Moulding variables involved in the optimisation are the moulding pressure, moulding temperature, mould temperature, holding pressure, moulding rate, holding time and cooling time. The analysis of variance (ANOVA) is employed to determine the significant levels (α) and contributions of the variables to the green qualities. Results show that the mould temperature and holding time is highly significant simultaneously to the green qualities, while the holding pressure and cooling time does not show any significance. Besides that, densification of the compact moulded with the optimised moulding parameter is presented in this paper. With sintering temperature ranging from 1340 to 1400 °C while heating rate and dwell time remains at 10 °C/min and 4 hours respectively demonstrates that the optimised moulding parameter is enabled to produce a sintered part with a density which is very close to the solid density of SS316L.

Index Terms— SS316L, Taguchi method, analysis of variance, simultaneous optimisation, sintering

I. INTRODUCTION

Metal injection moulding (MIM) has acquired an increasing importance as a production technique for small, complex stainless steel components [1; 2]. The technique involves mixing of the metal powder with a binder, injection of the mixture into the mould, removal of the binder and then sintering the end product to consolidate it to its final density [3]. Optimisation of each of these process procedures and appropriate selection of the starting materials, i.e. the powder and binder are considered critically important to the overall success of the process.

Manuscript received February 4, 2009. This work was supported by Fundamental Research Grant Scheme, Ministry of High Education, Malaysia (UKM-KK-02-FRGS0013-2006).

Khairur Rijal Jamaludin is with College of Science & Technology Universiti Teknologi Malaysia, International Campus, 54100 Kuala Lumpur. However, he did the research at the Faculty of Engineering and Architecture, National University of Malaysia, 43600 Bangi, Selangor (phone: 60193862305; email: khairur@citycampus.utm.my).

Norhamidi Muhamad, Mohd Nizam Ab. Rahman and Murtadhahadi are from a Faculty of Engineering and Architecture, National University of Malaysia, 43600 Bangi, Selangor.

Sri Yulis M. Amin, Sufizar Ahmad and Mohd Halim Irwan Ibrahim are from a Department of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia.

Nor Hafiez Mohamad Nor Centre for Advanced Materials Research, Faculty of Mechanical Engineering, Mara University of Technology, 40450 Shah Alam, Selangor Darul Ehsan. Malaysia

The determination and optimisation of the process parameters have triggered numerous research works, as they need to grasp the in depth knowledge of different processes and accurate modelling techniques for each stage. The traditional approach was where the experimental work had to verify one factor at a time, holding all other factors as fixed. This method did not produce satisfactory results even in a wide range of experimental settings. Authors of literature [4; 5; 6; 7] have been using classical Design of Experiment (DOE) technique to study the effects of moulding parameters on the green part quality such as green density, green strength and green defects. In order to obtain high efficiency in the planning and analysis of experimental data, the Taguchi parameter design is applied to investigate and optimise moulding parameters to produce stronger green parts and higher green density with fewer defects. This is because, from other experiments and in other areas of study such as plastic moulding, metal removal processes, the Taguchi method is recognised as a systematic application of design and analysis of experiments for the purpose of designing and improving product quality [8]. In recent years, the Taguchi method has become a powerful tool for improving productivity during research and development [9] so that high quality products can be produced in a short period of time and at low cost.

The objective of this paper is to optimise the moulding parameters that simultaneously satisfy a green part quality required for the MIM compact before it undergoes a sintering process to attain its mechanical properties. Less defects, high green strength and green density have been identified as the green part quality or as an output for this study [5]. An analysis of variance (ANOVA) is utilized to identify the significant level of each variable. The paper examines and discusses interactions of major moulding variables, such as moulding temperature, moulding pressure and mould temperature which influences the green part quality. quality Simultaneous optimisation for the entire characteristics is presented in the later part of the paper. The simultaneous optimisation is vital, as manufacturers prefer only a single moulding parameter that best fits both quality characteristics instead of using different sets of moulding parameters. Furthermore, as sintering is critical for determining the final quality of the parts produced, this paper presents a densification of the compacts moulded using the optimised parameter obtained in the optimisation process.

II. METHODOLOGY

A MPIF 50 standard tensile bar is used as a specimen. A 316L stainless steel water-atomised powder with pycnometer density of 7.90 g/cm³ is mixed with 73 % PEG weight of

polyethylene glycol (PEG) and 25 % weight of Polymethyl Methacrylate (PMMA). About 2 % weight of stearic acid (SA) is used as a surfactant.

Prior to the moulding, compositions are mixed in a sigma blade mixer for 95 minutes at a temperature of 70°C. Battenfeld, BA 250 CDC injection moulding machine is used to prepare the greens while the high vacuum furnace Korea VAC-TEC, VTC 500HTSF with vacuum pressure up to 9.5×10^{-6} mbar is used for sintering.

III. DESIGN OF EXPERIMENT

There are many moulding parameters that have some effects on the properties of the green part quality. Therefore, a design of experiment (DOE) methods is necessary for the experimental work involving several inputs. The most frequently used methods are partial or full factorial design and the Taguchi approach. With an appropriate DOE, one can quickly and with fewer number of trials, find out whether the variables have an effect on the output quality. The Taguchi approach is mostly used in the industrial environment, but it can also be used for scientific research. The method is based on balanced orthogonal arrays [10]. In this paper, L_{27} (3¹³) orthogonal array consisting of 27 experiment trials and 13 columns are used to obtain the signal to the noise ratio (S/N) of every green part quality. Consequently, the S/N ratio is analysed in ANOVA form to determine the significant level and contribution of each variable to the green part quality.

Considering the interaction between the main factors that influence the quality of the green part, three interactions have been identified from previous work [5, 6, and 7]. The main variables involved in this study are as shown in Table 1. Three levels for each variable refer to the maximum and minimum limits that may influence the quality of the green part.

Table 1 Factor level (variables) in the experiment

Level	Moulding Pressure, A (bar)	Moulding Temperature, B (°C)	Mould Temperature C (°C)	Holding Pressure, D (bar)	Moulding rate, E (ccm/s)	Holding time, F (s)	Cooling time, G (s)
0	550	150	50	800	5	5	2
1	650	155	55	1000	10	10	6
2	750	160	60	1200	15	15	10

IV. RESULTS AND DISCUSSION

The analysis of variance (ANOVA) of the S/N ratio is shown in Table 2. Factors with low variance, v_n are pooled together as error, e and only those with a significant level less than $\alpha = 0.1$ are accounted in the ANOVA. The ANOVA table for minimising green defects is shown in Table 2 (a). The holding time is found to be highly significant at $\alpha =$ 0.025 for minimising the green defects followed by the mould temperature at $\alpha = 0.05$ and the moulding rate which is at the lowest significant level ($\alpha = 0.1$). The interactions between moulding pressure and moulding temperature have shown a low significant level at $\alpha = 0.1$ with a contribution to minimise the green defects to only 11.18 % compared to the holding time at 18.86 %.

Moreover, the ANOVA table for maximising the green density, as shown in Table 2 (b), demonstrates that only moulding pressure and moulding temperature are significant to the green density. Moulding pressure demonstrates the utmost significant level ($\alpha = 0.01$) while moulding temperature is only significant at $\alpha = 0.1$. In addition, ANOVA for maximising the green strength as shown in Table 2(c) shows both mould temperature and holding time are highly significant ($\alpha = 0.01$) for the green strength. These variables contribute about 35.01 % and 17.93 % respectively to the green strength.

By considering only factors with high significance levels, the simultaneous optimal parameter for this moulding process is summarised in Table 3. As shown in Table 3, the optimum factor level that satisfies the green part quality is $A_2B_1C_0E_1F_2$ and the optimal moulding parameters is as follows: Moulding pressure: 750 bar; moulding temperature: 155 °C; mould temperature: 50 °C; moulding rate: 10 ccm/s; and holding time: 15 second. However, holding pressure and cooling time are not significant for the quality of the green part.

Figure 1 demonstrates that the sintered density of the specimens moulded using the optimal moulding parameters that are presented in this paper. The sintered density increases gradually when the sintering temperature increases. In this study, the heating rate remains at 10 °C/minute. This is based on an earlier study published by author [5] and [11] that such heating rate is sufficient for sintering a SS316L compact. Prior to reaching the sintering temperature; pre-sintering is performed at 600 °C in 20 minutes under the same atmosphere to decompose remaining binders left by the thermal pyrolysis [12].

Figure 1 Compact sintered density. Heating rate and cooling rate: 10 °C/minit; thermal pyrolysis: 600 °C for 20 minutes; dwell time: 4 hour

The minimum limit shown in Figure 1 refers to the minimum MIM compact density suggested by [3]. As shown in Figure 1, sintering temperature at 1340 °C is unable to provide a better sintered density to the compact. This is due to the fact that the irregular shape of the water-atomised powder particles provides more pores to the compact besides limiting the production of the green part at a higher powder loading with this irregular shaped fine powder. As reported in

literature [13], the optimum powder loading of this powder is at a low volume of 62.5 %. Besides that, more inter-particle friction occurs on the water-atomised powder as the surface area of the fine water-atomised powder is larger than the gas-atomised powder, contributing to a low critical powder loading and thus limiting the optimal powder loading to a volume of 62.5 %. At the mean time, Figure 1 shows that bimodal water-atomised compact dominates the sintered density as compared to the monomodal compacts. Bimodal compacts attain the highest sintered density at sintering temperatures of 1340 °C, 1360 °C and 1380 °C. However, a reversed situation occurs at 1400 °C. Sintered density of a fine powder compact plummets from 96.96 % to 94.21 % of the theoretical density while sintered density of water-atomised bimodal compact also slumps from 98.81 % to 97.44 % of the theoretical density when sintering temperature rises to 1400 °C. Nevertheless, sintered density of the coarse powder compact remains high at 99.14 % of the theoretical density.

Reduction of sintered density occurs due to excessive liquid phase in the powder matrix during sintering at 1400 °C, especially when the powder loading is too low in the fine

water-atomised powder compact. Liquid phase is expected to exist in SS316L when the sintering temperature reaches 1350 °C and 1390 °C [12]. Melting temperature of SS316L is 1375 °C [14]. However, liquid phase in solids will enhance the densification process, but too much liquid will reduce sintered density due to micro structure coarsening [15]. Particle melting occurs during liquid phase sintering, resulting in a solid-liquid mixture during the thermal cycle. The liquid phase provides bonding, contributes a capillary force, and usually enhances the rate of mass transport as compared to solid-state process. Furthermore, coarse powder compact sintered at 1400 °C improves its density to 99.14 % of theoretical density. This is due to the small surface area that eliminates liquid phase in the compact. A small surface area of powder particles delays the liquid phase formation although the sintering temperature is already exceeding the melting temperature of the materials. This occurs due to the fact that less inter-particle contact takes place as the small surface area delays surface energy reduction.

a. Minimising green defects						
Factor	Degree of freedom f	Sum	Pure Sum	Variance,	Variance ratio <i>F</i>	Contribution, P _n
	ficedoffi, J _n	squarea, <i>S</i> _n	squared, B_n	v n	1000, 1 n	
А	2	6.516		po	poled	
В	2	2.852		po	ooled	
С	2	28.044	21.66287	14.022	4.394836**	12.73
D	2	4.202		po	ooled	
Е	2	20.811	14.42987	10.4055	3.261337^{\pm}	8.48
F	2	38.468	32.08687	19.234	6.028403^{*}	18.86
G	2	3.135		po	ooled	
A X B	4	31.792	19.02975	7.948	2.491096^{\pm}	11.18
A X C	4	17.829		po	ooled	
B X C	4	16.515		po	ooled	
Error, e	16	51.049		3.190563		48.75
Total:	26	170.164				100

Table 2 ANOVA table for the S/N ratio

Degree of freedom, f_n	Sum squared, <i>S_n</i>	Pure Sum squared, S'_n	Variance, <i>v_n</i>	Variance ratio, F_n	Contribution, P _r
2	0.043958	0.0368368	0.021979	6.172836039 [‡]	26.02
2	0.019293	0.0121718	0.009646	2.709093973^{\pm}	8.60
2	0.014874	pooled			
2	0.010905	pooled			
2	0.001711	pooled			
2	0.011314	pooled			
2	0.002385	pooled			

b. Maximising the green density

Factor

A B C D E F G

c. Maximising the green strength						
Factor	Degree of	Sum	Pure Sum	Variance,	Variance	Contribution,
	freedom, f_n	squared, S_n	squared,	v_n	ratio, F_n	P _n
			S'_n			
А	2	0.2663	Pooled			
В	2	1.2845	Pooled			
С	2	9.1054	8.252355	4.5527	10.67399 [‡]	35.01
D	2	0.3963	Pooled			
Е	2	1.723	Pooled			
F	2	5.0799	4.226855	2.53995	5.955017 [‡]	17.93
G	2	0.9184	Pooled			
A X B	4	1.3555	Pooled			
A X C	4	1.6689	Pooled			
B X C	4	1.7706	Pooled			
Error, e	22	9.3835		0.426523		47.05
Total:	26	23.5689				100

 $\therefore \alpha = 0.01; *: \alpha = 0.025; **: \alpha = 0.05; \pm: \alpha = 0.1$

Table 3 Significant	level of the	simultaneous	optimisation
U			1

	Variables	Factor level	Significant level, α
А	Moulding pressure	A2	0.025
В	Moulding temperature	B1	0.1
С	Mould temperature	C0	0.01
D	Holding Pressure	Not significant	
Е	Moulding rate	E1	0.1
F	Holding time	F2	0.01
G	Cooling time	Not significant	
$\mathbf{A} \times \mathbf{B}$		A2 B2	0.1
$\mathbf{A} \times \mathbf{C}$			
$\mathbf{B} \times \mathbf{C}$			

V.CONCLUSION

The Taguchi and ANOVA methods are very helpful in determining the importance of variables when optimising a quality characteristic including, in this case, the green defects, green strength and green density of a MIM compact. Based on the investigation, the following conclusions can be made regarding the green part quality and the compact densification.

- Mould temperature and holding time is the most significant variables to attain best green part quality.
- Optimised moulding parameter enables to improve the green part quality and thus improves the sintered density.
- Bimodal gas-atomised particle size distribution compacts attain better densification than reported by literature [5] and [16].

- Bimodal water-atomised compacts dominate the sintered density compared to the monomodal compacts except at sintering temperature of 1400 °C.
- Sintered density of a fine and bimodal water-atomised powder compacts plummet when sintered at 1400 °C.

References

- D.F Heaney, "Qualification Method for Powder Injection Moulded Components," *P/M Science & Technology Briefs*, vol. 3, 2004, pp. 21-27.
- [2] D.F Heaney, T. Mueller, and P. Davies, "Mechanical Properties of Metal Injection Moulded 316L Stainless Steel Using Both Prealloy and Master Alloy techniques," *Journal of Powder Metallurgy*, vol. 47, num 4, 2004, pp 367-373.
- [3] R.M. German and A. Bose, "Injection Moulding of Metals and Ceramics," New Jersey: Metal Powder Industries Federation, Princeton, 1997.
- [4] T. Barriere, B. Liu and J.C. Gelin, "Determination of the optimal process parameters in metal injection molding from experiment and numerical modeling," *Journal of Materials Processing Technology*, vol. 143-144, 2003, pp 636-644.
- [5] M.A. Omar, "Injection moulding of 316L stainless steel and NiCrSiB alloy powders using a PEG/PMMA binder," Ph.D. Thesis University of Sheffield, UK, 1999.
- [6] M.H. Ismail, "Kesan pembebanan serbuk logam terhadap fenomena pemprosesan dalam pengacuan suntikan logam (Powder loading influence to the processing phenomena in metal injection molding)," M.Sc. Thesis National University of Malaysia, 2002.
- [7] I. Murtadhahadi, "Parameter penyuntikan bagi proses pengacuan suntikan logam bagi bahan suapan daripada SS 316L, PEG, PMMA dan AS (Injection parameter for Metal Injection Molding of the feedstock from SS316L, PEG, PMMA and stearic acid)," M.Sc. Thesis National University of Malaysia, 2006.
- [8] S.C. Juang and Y.S Tarng, "Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel," *Journal of Materials Processing Technology*, vol. 122, 2002, pp 33-37.
- [9] A. Bendell, J. Disney and W.A. Pridmore, "Taguchi Methods: Applications in World Industry," UK: IFS Publications, 1989.

- [10] R.K. Roy, "Design of Experiments Using the Taguchi Approach," New York: John Willey & Sons, 2001.
- [11] P. Suri, R.P. Koseski and R.M. German, "Microstructural evolution of injection moulded gas- and water-atomized 316L stainless steel powder during sintering," *Materials Science and Engineering A*, vol. 402, 2005, pp 341–348.
- [12] S. Li, B. Huang, D. Li, Y. Li, S. Liang and H. Zhou, "Influence of sintering atmosphere on densification process of injection moulded gas atomized 316L stainless steel," *Powder Metallurgy*, vol. 46, num 3, 2003, pp 241-245.
- [13] K.R. Jamaludin, N. Muhamad, M.N. Ab. Rahman, Murtadhahadi, S.Y.M. Amin, S. Ahmad, M.H.I. Ibrahim, N.H.M. Nor, "Rheological investigation of water atomised metal injection molding (MIM) feedstock for processibility prediction," *Proceeding of Advances in Materials and Processing Technologies*, Bahrain, 3-5 Nov 2008.
- [14] R.M. German, "Sintering Theory and practice," USA: Wiley-Interscience Publication, 1996.
- [15] C.H. Ji, N.H. Loh, K.A. Khor, and S.B. Tor, "Sintering study of 316L stainless steel metal injection moulding parts using Taguchi method: final density," *Materials Science and Engineering A*, vol. 311, 2001, pp 74–82.
- [16] R.M. German, "Prediction of sintered density for bimodal powder mixtures," *Metallurgical Transactions A*, vol. 23A, 1992, pp 1455-1465.