
 
 

 

  
Abstract— We propose a new modified algorithm for the 
Branch and Bound method.  This method is based on 
integration of orthogonal arrays and enumeration based 
techniques.  Several observations are given supplemented with 
simple model solutions to verify our assumptions.  The modified 
algorithm is valid for higher dimensional problems.  The 
algorithm employs several 2-levels orthogonal arrays and the 

complexity of solutions is always of the order
n2 .   For low to 

medium size problems, full factorial orthogonal arrays are 
employed.  For higher size problems, the user uses fractional 
orthogonal arrays and the complexity of solution is always of 

the order ,kn2 − .nk ≤   Results show that full size arrays 
yield optimum solution consistently.  When fractional arrays 
are used, the solution is always incumbent.  The number of 
function evaluations is always low.  We show that this 
conclusion, though true, is rare as the number of continuous 
solutions resulting from relaxations is always tractable with full 
size arrays.  This method utilizes the fact that the number of 
continuous solutions from relaxations is lesser than the original 
problem size.  Numerical results show that the proposed hybrid 
algorithm is able to save 20% ~ 96% of the original 
computations.  Fractional arrays allow fractionation and 
consequent deviation from the best solution.   
 

Index Terms— Approximation, B. & B. Algorithms, 
optimization,  hybrid techniques.  
 
 
 

I. INTRODUCTION 
  Standard optimization methods such as Branch and Bound 
(B. & B.) are used to deal with problems that are 0-1 binary 
programming, mixed integer programming (MIP) and 
general integer programming (IP).  B. & B. method is 
efficient but size dependent.  Engineering problem synthesis, 
analysis and improvements are becoming crucial nowadays.  
As knowledge advances, problem analysis and synthesis 
increase in complexity.  Accordingly, the synthesis tool 
should develop at the same pace.   
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Most realistic problems are complex to solve with existing 
optimization techniques.  We admit that there are complex 
realistic engineering problems, commonly known as 
NP-hard.  This hardship is due to the problem size, 
combinatorial nature, storage capacity, etc.  Part of hardship, 
of course, is due to the synthesis phase “how to model the 
optimization problem?”  An algorithm is developed that 
integrates the B. & B. method with orthogonal arrays and 
enumeration techniques.  The search domain is modeled 
using orthogonal arrays (full or fractional) and enumeration 
techniques.  We show that there is equivalence between both 
the space used and the resulting problem solution.  The 
proposed algorithm can determine the search size and 
accordingly the cost of solution.  For the first time, the 
algorithm gives the user the flexibility to choose the solution 
quality and corresponding cost.  In case a high quality 
solution is required, the modeller should be ready to 
compromise time and effort.  Several situations do not 
require quality solutions; accordingly, the user can resort to 
fractional  arrays to model the problem.  Integration of B. and 
B. algorithm, orthogonal arrays and enumeration techniques 
is novel to our knowledge and the engineering community 
should welcome such means of hybridization as long as they 
offer solution to hard to solve problems.   
 
Realistic engineering applications are size dependent.  The 
engineering community is either considering the option of 
over simplification of the original problem or resort to hybrid 
methods.  Over simplification yields trivial solutions.  The 
B.& B. algorithm is the search engine, the orthogonal arrays 
are the search domains and enumeration techniques are the 
possibilities of all model formulations.  Due to space 
limitation, past studies are not included.        
 

II. NOMENCLATURE  

n2  2 levels factorial design, n=# of variables. 
OA4L  4 experiments, 2-levels orthogonal arrays. 

ijX  Decision variables from i to j. 
f  Objective function. 

cX  Continuous form of decision variable X . 
OA64L  64 experiments, 2-levels orthogonal arrays. 

64P,,1P …  64 sub-models. 

minf  Minimum objective value. 

maxf  Maximum objective value. 

11P  A diverse of sub-model  1P  

12P  Another diverse of sub-model  1P  
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ijY  Decision variables from i to j. 
OA2L  2-levels orthogonal array (single variable). 

121P  A diverse of sub-model  12P  

122P  Another diverse of sub-model  12P  

oP  Original model (after relaxation). 
OA16L  16 experiments, 2-levels orthogonal arrays. 
OA32L  32 experiments, 2-levels orthogonal arrays. 

1kk
2  Fractional factorial, 2 levels arrays )1K≥K( . 

*X  Optimum solution of decision variable. 
OA536,65L  65,536 exp., 2-levels orthogonal arrays. 

OA2048L  2048 experiments, 2-levels orthogonal arrays. 

OA∞L  Very huge, 2-levels orthogonal arrays ( 442 ). 
 

III. METHODOLOGY 

Table 1 shows the array sizes used for different number  of 
variables.  The full and fractional arrays are given with the 
probability of finding the best solution (optimum).  For 
instance, an L4OA is used to model 2 variables with a 
probability of 100% to find the optimum.  As the number of 
variables increase  to 3, the array size changes  from L4OA to 
L8OA.  The analyst has an option of using :  a)  an L8OA and 
100% probability of getting the best solution or b) an L4OA 
and 50% probability of getting the best solution.  
Equivalently, L16OA is used to model 4 variables with a   
probability of 100% to find the best solution.  Similarly, the 
analyst may decide to fractionate by using L8OA (and 
L4OA).  In this case, the probability of finding the best 
solution is 50% for L8OA.  As the number of variables 
increase to 9, the array size becomes L512OA (for the full 

array), L256OA (for half of the array), L128OA (for the 
quarter of array), L64OA (for the 1/8 of array)  and L32OA 
(for the 1/16 of array) respectively. When the user uses the 
full size array, the probability of getting the best solution is 
100%.  Once he decides to fractionate, the probability of 
getting the best solution is equivalent to the fraction value.  
For instance, when L256OA is used to model a 9-variable 
problem, the probability becomes 25%.  Ideally the modeller 
will try to employ the full size arrays to enjoy the best 
solutions.  Full size arrays are tractable, easy to code and 
understand for low size problems ( 6~5≤n  variables).  

For a medium size problem with 15≥n variables, the size 

becomes 768,32=152 and  only then, the modeller will 
start to realize the benefit of fractionation.   
 
Different search graphs assign continuous variables resulting 
from constraint relaxation to different arrays columns.  
Figure 1 gives different search graphs for L8OA, L16OA and 
L32OA respectively.  For instance, when L8OA is used, 
variables can be assigned to columns 1, 2 and 4 (for a full 
array) or 1, 2, 4 and 7 (for a half array).  Similarly, when 
L16OA is used, variables can be assigned to columns 1, 2, 4 
and 8 (for a full array) or 1,2,4,8 and 15 (for a half array) or 
1,2,4,8,15 and 12 (for a quarter array) respectively.  Similar 
assignments can be followed once L32OA is used. 
 
 
 
 
 
 
 

 
 

Table 1:  Array Types, Maximum Number of Modeled Variables for Full & Fractional Arrays. 
Probability of 

finding 
optimum = 

100%  

Probability of finding optimum < 100%  
 

Fraction-al 
factorial Arrays 

Array Size/ 
Type 

# of possible 
variables 

 

# of possible variables as fractional size array  

L4OA 2 -  
L8OA 3 FFE -1/2≡4 , FFE - 1/4≡5   

L16OA 4 FFE-/21≡5 , FFE-1/4≡6  
L32OA 5 FFE-1/2≡6 , FFE-1/4≡7 , FFE-1/8≡8  
L64OA 6 FFE-1/2≡7 , FFE-1/4≡8 , FFE-1/8≡9  
L128OA 7 FFE-1/2≡8 , FFE-1/4≡9 , FFE-1/8≡10  
L256OA 8 FFE-1/2≡9 , FFE-1/4≡10 , FFE-1/8≡11  

 
 
 
 
 
 
 
 
 
 

Full 
factorial 
Arrays 

L512OA 9 FFE-1/2≡10 , FFE-1/4≡11 , FFE-1/8≡12  
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L8OA  search graph 
 

 
L16OA  search graph 
    

 
L32OA search graph 
 
Fig. 1:  L8OA, L16OA and L32OA and corresponding 
search graphs. 

 
Case Study 1:  MIMCK Problem [5]. 
This is a model with 21 continuous and 9 binary 0,1 
variables and linear objective and 4 inequality constraints.  
The model is given as: 
Maximize  

33Y532Y331Y423Y622Y721Y13Y3
12Y611Y337X936X535X334X8

33X432X431X227X726X625X3
24X623X422X621X217X716X6

15X514X613X812X511X3f

++++++

++++++
+++++++

+++++

+++++=

 

s.t.:   

1g :  

40≤33Y32Y631Y723Y422Y6
21Y213Y412Y511Y737X3
36X35X634X233X432X2
31X527X326X525X624X3

23X22X221X517X416X5
15X614X313X412X211X

++++
+++++

+++++
+++++

+++++
+++++

 

2g : 117X
16X15X14X13X12X11X

≤
++++++

; 

3g : 1≤27X26X
25X24X23X22X21X

+
+++++

; 

4g : 1≤37X36X
35X34X33X32X31X

+
+++++

; 

5g : 7,,2,1i,3,2,1k,0kiX "==≥  

6g :   3,2,1j,3,2,1k},1,0{kjY ==∈  
When the model is synthesized as continuous, the best 
maximum reached is $56.50. 

)1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0(cX =  and 

)1,5.0,1,1,1,0,1,1,0(cY = and 50.56maxf = .  Two 
sub-models are formulated and shown in Table 2. 
 

Table 2:  Different Sub-models, corresponding Y conditions and maxf values. 
Prob 32Y  maxf  Solution 

111P : 011Y ≤ , 

maxf =56, optimum 

11P  0≤  56.43 14.011Y =  

112P : 111Y ≥ , 

maxf =55.71 

121P : 031Y ≤ , 

maxf =55.86 

12P  1≥  56.29 57.031Y =  

122P : 131Y ≥ , 

maxf =55.75 

The 2 sub-models are given below: 

11P :  Maximize f Subject to:  1g , " 4g ; 
1≤33Y12Y,11Y≤0 … ; 0≤32Y  

11P  yields maxf =56.43 and 14.0=11Y .  11P will 

produce 2 further sub-models: 112P&111P  
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111P :  Maximize f Subject to:  1g , " 4g ; 

1≤33Y12Y,11Y≤0 … ; 0≤32Y , 0≤11Y  

111P  yields maxf =56 and  this is the optimum value. 

112P :  Maximize f Subject to:  1g , " 4g ; 

1≤33Y12Y,11Y≤0 … ; 0≤32Y , 1≥11Y  

112P  yields maxf =55.71. 

12P :  Maximize f Subject to:  1g , " 4g  

1≤33Y12Y,11Y≤0 … ; 1≥32Y  

12P yields maxf =56.29 and 57.0=31Y .  12P  will 
produce 2 further sub-models: 122P&121P  

121P :  Maximize f Subject to:  1g , " 4g ; 

1≤33Y12Y,11Y≤0 … ; 1≥32Y , 0≤31Y  

121P  yields maxf =55.86. 

122P :  Maximize f Subject to:  1g , " 4g ; 

1≤33Y12Y,11Y≤0 … ; 1≥32Y , 1≥31Y  

122P  yields maxf =55.75. 
 

Case Study 2:  Limitations  to  Fractional Based Search 
We present a case study with 30 binary integer program.  
We show how the fractional search fails to obtain the best 
solution because of problem size.  This model is known as 
Maximum Coverage EMS Model [17] and is given by:   
Minimize  

20Y9.919Y9.718Y3.5
17Y1116Y6.2515Y5.1514Y3.913Y12

12Y9.3011Y4.3010Y3.209Y6.78Y2.127Y10
6Y7.55Y1.64Y0.93Y1.72Y4.41Y2.5f

++
++++++

++++++
+++++=

s.t.:  1g : 11Y2X ≥+  2g : 1≥2Y2X1X ++ ; 

3g : 1≥3Y3X1X ++ ; 4g : 1≥4Y3X + ;  

5g : 1≥5Y3X + ; 6g : 1≥6Y2X + ; 

7g : 1≥7Y4X2X ++ ; 8g : 1≥8Y4X3X ++  ; 

9g : 1≥9Y8X +  ; 10g : 1≥10Y6X4X ++ ; 

11g : 1≥11Y5X4X ++ ; 

12g : 1≥12Y6X5X4X +++  ; 

13g : 1≥13Y7X5X4X +++  ; 

14g : 1≥14Y9X8X ++  ; 

15g : 1≥15Y9X6X ++  ; 

16g : 1≥16Y6X5X ++  ; 

17g : 1≥17Y10X7X5X +++  ; 

18g : 1≥18Y9X8X ++  ; 19g :
 1≥19Y10X9X ++  ; 

20g : 1≥20Y10X +  ; 21g :

 4jX
10

1j
≤∑

=
; 1,020Y1Y

1,010X1X
=

=

"
"

 

Relaxation of 0P model yields 
5.020Y9Y6Y5Y4Y3Y2Y1Y ======== and 

5.010X9X8X6X5X4X3X2X ======== This 
means that the continuous branching variables = 16 (out of 
30 original variable).  The array size becomes 

OA536,65L⇔536,65=162 .  Certainly this is very 
prohibitive array size.  The full size array is very hard to 
develop and the assignment of variables to OA536,65L  
is cumbersome.  This means that full size arrays, search 
graphs, quality and cost of solution are very restrictive.  
Fractional arrays and corresponding approximate 
solutions are considered.  Accordingly, an L32OA is used 
to model the 16 branching variables.  We could not use 
L16OA as it has 15 degrees of freedom (can host only 15 
variables).  This model is made of 30 variables and 21 
constraints.  Constraints are of equality/ inequality nature.  
Pure enumeration method yields a hard-to-solve problem.  
With the L32OA, 32 sub-models are formulated and  
solutions are recorded.  Only 5 solution results and 27 
models returned “a no-feasible solution”.  The solutions 
are summarized in Table 3 for brevity.  For instance, Trial 
# 14 has  2=2X=20Y=3Y=2Y , (2nd level, =1) and 

1=4X=6Y , (1st level, = 0).  In other words, six further 
variables can be fixed and the 16 variable relaxed model 
becomes 10 instead of 16.  Further insight reveals no 
function value difference between Trial 14 and 32.  Hence, 
setting 9X,8X,5X,5Y,4Y,1Y at 1st level or 2nd level 
has no impact on the objective function.  The same can be 
stated for 10X,6X,3X,9Y respectively.  Another look 
at trials # 4 and # 25 would conclude that different variable 
settings would result in almost similar function values 

3.67fmin =  for trial # 4 vs. 7.68=minf  for trial # 
25.  9X,6X,4Y,3Y can be set at the 1st level and 

5X,3X,9Y,6Y can be set at the high level.  This means 
the 16 variable model can be reduced to an 8 variable 
model.  Besides, 10X,8X,2Y,1Y set at either the low or 
high levels would not affect the objective function.  A 
similar conclusion can be stated for 4X,2X,20Y,5Y  
respectively.  Four sets of experiments are given next. 
Experiment 1:  Effect of  2Y,1Y on solution  

2Y,1Y are modelled using L4OA.  4 sub-models are 
formulated and solved.  All sub-models yielded 
“no-feasible solution”.   
Experiment 2:  Effect of  4Y,3Y,2Y,1Y on solution  

4Y,3Y are modelled using L4OA with 0≤2Y,1Y .  4 
sub-models are formulated and solved.  All sub-models 
yielded “no-feasible solution”.  
Experiment 3:  Effect of  6Y,5Y,4Y,3Y,2Y,1Y on 
solution  

6Y,5Y are modelled using L4OA with 
.0≤4Y,3Y,0≤2Y,1Y   4 sub-models are formulated and 

solved.  All sub-models yielded “no-feasible solution”.  
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Table 3:  Maximum Coverage Problem using L32OA 

 
 
 

 
Trial 1Y  2Y  3Y  4Y  5Y  6Y  9Y  20Y  2X  3X  4X  5X  6X  8X  9X  10X  minf  

4 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 3.67minf =  
8 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 6.152=minf  

14 1 2 2 1 1 1 2 2 2 2 1 1 2 1 1 2 74=minf  
25 2 2 1 1 1 2 2 1 1 2 1 2 1 2 1 2 7.68=minf  
32 2 2 2 2 2 1 1 2 2 1 1 2 1 2 2 1 2.74minf =  

 0≤≡1 , 1≥≡2  
 

 
Experiment 4:  Effect of  

20Y,9Y,6Y,5Y,4Y,3Y,2Y,1Y on solution  

20Y,9Y are modelled using L4OA with 
.0≤20Y,9Y,0≤4Y,3Y,0≤2Y,1Y   4 sub-models are 

formulated and solved.  All sub-models yielded 
“no-feasible solution”.  
With these preliminary results, we can assert that L32OA 
is not enough to model the problem and other larger size 
array has to be used.  Besides, we can conclude that the 
model has no feasible solution with 

.0≤20Y,9Y,6Y,5Y,4Y,3Y,2Y,1Y  
Case Study 3:  Minimum Coverage Problem [17].   
This is a problem with 10 binary 0,1 variables and linear 
objective and constraints.  The model is given as: 
 
 
 
 
 

Table 4:  Different Fractional Arrays & model 
solutions. 

Minimize  jX∑
10

1j
f

=
=  

s.t.: 1g : 1≥2X ; 2g : 1≥2X1X + ; 

3g : 1≥3X1X + ; 4g : 1≥3X ; 5g : 1≥2X ; 

6g : 1≥4X+2X ; 7g : 1≥4X+3X ; 8g :

 1≥2X ; 9g : 1≥4X6X + ; 10g :

 1≥5X4X + ; 11g : 1≥6X5X4X ++ ; 12g :

 1≥7X5X4X ++ ; 13g : 1≥9X8X + ; 14g :

 1≥9X6X + ; 15g : 1≥5X6X + ; 16g :

 1≥5X4X + ; 17g : 1≥10X5X7X ++ ; 18g :

 1≥9X+8X ; 19g : 1≥9X+10X ; 20g :

 1≥10X ;   1,0ijX = ; 
The model is synthesized  as 0-1.  The best minimum 
reached is 6.  Four idealizations are given in Table 4  using  

,OA16L,OA12L OA36L,OA32L respectively. 
 

Array Employed L12OA L16OA L32OA L36OA 
% of  fractionation 1.1718% 1.5625% 3.125% 3.5156% 
Min. Objective 6 9 6 
Max. Objective No Feasible Solutions 

No Feasible Solution 
No Feasible Solutions No Feasible Solutions 

Optimum settings {0,1,1,0,1,1,0,1,0,1} N/A {1,1,1,1,0,1,1,1,1,1} {0,1,1,0,1,1,0,1,0,1} 
Non Standard Array √ √ √ √ 

 

 
 

 

IV RESULTS & DISCUSSION 

Table 5 gives a summary of all problems examined.  The 
original model is described in terms of # of variables, # of 
constraints, nature of problems and solution obtained.  The 
maximum number of continuous variables is also given.  
The maximum number of continuous variables is 16 (out 
of 30) for the Max_MCEMS_1.  This is the only exception 
out of the problems tested.  In the reduced model, the sizes 
of different arrays used to model the resulting space range 
from L2OA ~ L64OA.  The employed orthogonal array 
sizes are 2-levels arrays of acceptable sizes and the cost is  

 
 
 
 
 
 
 
 

always .n2   The cost of the method employed is always 
affordable.  Compared with the regular B. and B.  
algorithm, the proposed method has a positive effect in 
reducing the initial problem size by 20% ~ 96.6%.  Figure 
2 gives a summary of tested cases in terms of  # of 
variables (initially and after application of  hybrid 
algorithm) and the % of size reduction achieved. 
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Fig. 2:  Summary of test cases. 
 
 
 
Table 6 gives description of different arrays.  Only 2-level 
arrays are used, some are standard such as L4OA, L8OA, 
L16OA, L32OA and L64OA.  Others are not standard 
such as L128OA, L256OA, L512OA, L1024OA and 
L2048OA.  The development of search graphs for non 
standard arrays and high number of variables is a novel 
area of research.  This research only utilizes existing 
search graphs for standard low size arrays.  The 
knowledge of search graphs limits the use of non standard 
arrays, although can be used.  These standard and non 
standard arrays can model 1~11 variables (for standard 
arrays) and 3~15 (for non standard arrays).  Low size 
arrays are less expensive than large size arrays.  The full 
size arrays require expensive # of function evaluations and 
CPU time.  The results obtained are high quality unique 
solutions.  When fractional arrays are used, certainly more 
variables can be modelled at the expense of non-unique 
solutions.   The solution expense increases with the 
number of variables and size of array.  The algorithm 
developed is given in figure 3. 
 

Start

Input Model with 
obj. fn.,

constraints, DV

Is DV 0,1

Yes

No

1

Construct 2^n 
Array

Obj. fn and 
Constraint fn. 

calculation

Check feasibility

Best Feasible 
solution

Exit

1 2

2

Is DV 
continuous, 

Integer ?

Activate 
relaxation tech.

Solve LP, Po
How many 

Continuous Var.

3

 

Yes

Establish 
Different Models

Solve 
Respective 

Models

Enumerate 
To obtain 

best solution 
for Maximization

Exit

Construct Half 
Array (1/2 FFE)

Construct Full 
Array (FFE)

4
Random 

Assignment 
of Var.

3

Fig.  3:  B. & B. Algorithm via Orthogonal Array Based 
Enumeration Techniques 

 
 

V.  CONCLUSIONS 
•  NP-hard problems can be solved via the proposed 
method in a cost effective manner. 
• The method proved applicable to LP problems.  
Extension to quadratic and nonlinear problems requires 
linearization techniques about a point.   

• Orthogonal arrays used, so far, are k2  of acceptable 
size.  Further larger size problems need to check the 
solution expense of arrays employed.   
• The proposed method needs a comparative analysis with 
other methods vs. the size of different problems.  This will 
help place our method relative to others with respect to 
problem nature, size, complexity, applicability and 
objective/ constraint types. 
• The  method requires knowledge of orthogonal arrays 
(and their fractional arrays) and search graph techniques.  
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Table 5:  Description of Different Models Tested.   ♣  Standard OAs. ♠  Non-standard OAs. 

#-o-V: # of Variables, #-o-C:  # of Constraints, N-o-C: Nature of Constraints, Ineq = Inequality, Eq = Equality Constraints, Pr-N:  Problem Nature 
Size of Array Used  Original Model B. & B. 

Algorithm 
Reduced 
Model 

Problem #-o-V #-o-C N-o-C  Solution Pr- N # of 
Continuous 
Variables 

# of 
Sub-models 

Before 
relaxation 

After 
relaxation 

% of Size 
reduction 

SSWFC_1 [17] 11 17  Best MIP 2 L4OA L2048♠ L4 OA♣ 81.8% 
MIMCK_1[5] 30 6  Best MIP 1 L2OA L1,073 

E+09 
L2 OA 96.6% 

Max_MCEMS_1 
[17] 

30 21 

Ineq 

 Best 0-1 16 L65,536 L1,073 
E +09 

L65,536 
OA 
♠ 

46.67% 

NASA_1[17] 14 13  Good 
Enough 

0-1 6 No 
relaxations 

L16,384♠ L64 OA♣ 57.14% 

AACS_1[17] 15 12 

Eq 
 

 Best 0-1 0 - L32,768 - - 
CDOT_1[17] 18 9 Eq/ 

Ineq 
 Best 0-1 6 L64 OA – 

L32 OA -   
L16OA   

L262,144♠ L64 OA♣ 66.67% 

Min_MCEMS_1 
[17] 

10 20 Ineq  Best 0-1 0 - L1024 - - 

Cam- 
Assignment_1 
[17] 

44 20 Eq  Best 0-1 0 - L∞ ♠ - - 

Mitch_1[13] 2 2 Ineq  Best General 
Integer 

2 L4OA L4OA L4OA♣ 0.0% 

Waste_1[17] 30 24 Eq/ 
Ineq 

 Best MIP 6 L64 OA –  
L32 OA 
L16OA  
L8OA  

L∞ L64OA♣ 20% 

 
 

Table 6:  Illustrative description of different arrays used & their relative cost. 
2-Levels 
Arrays 

Full Array Fractional Array Nature of 
Array 

Knowledge of Search 
Graph 

Array Size # of variables Type of Array # of variables 
(Fractional Array) 

Non-standard √ L2OA 1  
√ L4OA 2 3 
√ L8OA 3 4 
√ L16OA 4 5,6   (1/2, ¼) 
√ L32OA 5 6,7,8,9 (1/2, ¼, 1/8, 1/16) 

 
 
Standard 

√ L64OA 6 7,8,9,10,11 
(1/2, ¼, 1/8, 1/16, 1/32) 

× L128OA 7 8, 9, 10, 11, 12 
(1/2, ¼, 1/8, 1/16, 1/32) 

× L256OA 8 9, 10, 11, 12, 13, 14 
(1/2, ¼, 1/8, 1/16, 1/32, 1/64) 

× L512OA 9 11, 12, 13, 14, 15 
× L1024OA 10 12, 13, 14, 15 (1/2, ¼, 1/8, 

1/16) 

 
 
 
Non-standard 

× L2048OA 11 

 
Low Expense 
 

 
 
Full Factorial 

 
High Expense 

 
Quality of Solutions Obtained 
Full Size Arrays Fractional Size Arrays 
1.  High quality solution. 1.  Low to moderate quality 

solution 
 

2.  Unique (best solution). 2.  Non-unique solution. 

√:  available 
×:  not available 

3. May be expensive for larger size 
problems. 

3.  Less expensive for larger 
size problems 
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