
A New Rule-weight Learning Method based on
Gradient Descent

S.M. Fakhrahmad and M. Zolghadri Jahromi

Abstract— In this paper, we propose a simple and efficient
method to construct an accurate fuzzy classification system. In
order to optimize the generalization accuracy, we use rule-
weight as a simple mechanism to tune the classifier and
propose a new learning method to iteratively adjust the weight
of fuzzy rules. The rule-weights in the proposed method are
derived by solving the minimization problem through gradient
descent. Through computer simulations on some data sets from
UCI repository, the proposed scheme shows a uniformly good
behavior and achieves results which are comparable or better
than other fuzzy and non-fuzzy classification systems, proposed
in the past.

Index Terms— Fuzzy systems, Classification, Rule-weight,

Distance, Generalization accuracy, Gradient Descent

I. INTRODUCTION
 Fuzzy rule-based systems have recently been used to solve
classification problems. A Fuzzy Rule-Based Classification
System (FRBCS) is a special case of fuzzy modeling where
the output of the system is crisp and discrete. Different
approaches used to design these classifiers can be grouped
into two main categories: descriptive and accurate. In the
descriptive approach, the emphasis is placed on the
interpretability of the constructed classifier. In this
approach, the classifier is usually represented by a compact
set of short (i.e., with a few number of antecedent
conditions) fuzzy rules. Using linguistic values to specify
the antecedent conditions of fuzzy rules makes it a suitable
tool for knowledge representation. However, the main
objective in designing accurate FRBCSs is to maximize the
generalization accuracy of the classifier. No attempt is made
to improve the understandability of the classifier in this
approach.

Rule-weight has often been used as a simple mechanism
to tune a FRBCS. Fuzzy rules of the following form are
commonly used in these systems.

Rule Rj: If x1 is Aj1 and … and xn is Ajn then class h with CFj
(1)

where, X=[x1, x2, …, xn] is the input feature vector, h∈ [C1,
C2 …, CM] is the label of the consequent class, Ajk is the
fuzzy set associated to xk , CFj is the certainty grade (i.e.
rule-weight) of rule Rj.

 S. M. Fakhrahmad is Faculty member in the department of computer
engineering, Islamic Azad University of Shiraz, Iran; e-mail:
mfakhrahmad@ cse.shirazu.ac.ir.
 M. Zolghadri Jahromi is Associate Professor in the department of
computer science and engineering, Shiraz University, Iran; e-mail:
zjahromi@ shirazu.ac.ir.

Many heuristic [1, 2] and learning methods [3] have
already been proposed to specify the weights of fuzzy rules
in a FRBCS. The purpose of rule weighting is to use the
information from the training data to improve the
generalization ability of the classifier.

In this paper, we propose a simple and efficient method of
constructing accurate fuzzy classification systems. Using a
specified number of triangular fuzzy sets to partition the
domain interval of each feature, we propose a rule
generation scheme that limits the number of generated fuzzy
rules to the number of training examples. Each rule uses all
features of the problem in the antecedent to specify a fuzzy
subspace in feature space. We use rule weight as a simple
mechanism to tune the constructed rule-base and propose an
efficient rule-weight specification method.

The rest of this paper is organized as follows. In Section
2, FRBCSs are briefly introduced. In Section 3, two
different methods of rule-base construction is given. In
Section 4, the proposed method of rule-weight learning is
discussed. Experimental results are presented in Section 5.
Finally, Section 6 concludes the paper.

II. FUZZY RULE-BASED CLASSIFICATION SYSTEMS

 A FRBCS is composed of three main conceptual
components: database, rule-base and reasoning method. The
database describes the semantics of fuzzy sets associated to
linguistic labels. Each rule in the rule-base specifies a
subspace of pattern space using the fuzzy sets in the
antecedent part of the rule. The reasoning method provides
the mechanism to classify a pattern using the information
from the rule-base and database. Different rule types have
been used for pattern classification problems [4].
 For an n-dimensional problem, suppose that a rule-base
consisting of N fuzzy classification rules of form (1) is
available. In order to classify an input pattern Xt = [xt1, xt2,
…, xtn], the degree of compatibility of the pattern with each
rule is calculated (i.e., using a T-norm to model the “and”
connectives in the rule antecedent). In case of using the
product as T-norm, the compatibility grade of rule Rj with
the input pattern Xt can be calculated as:

1

() ()
ji

n

j t tiA
i

X xμ μ
=

=∏ (2)

In the case of using single winner reasoning method, the

pattern is classified according to the consequent class of the
winner rule Rw. With the rules of form (1), the winner rule is
specified using:

arg max{ () , 1,..., }j t jw X CF j Nμ= = (3)

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Note that the classification of a pattern not covered by any
rule in the rule-base is rejected. The classification of a
pattern Xt is also rejected if two rules with different
consequent classes have the same value of µ(Xt).CF in
equation (2).

III. RULE-BASE CONSTRUCTION

 For an M-class problem in an n-dimensional feature space,
assume that m labeled patterns Xp=[xp1, xp2, …, xpn], p=1, 2,
…, m from M classes are given. A simple approach for
generating fuzzy rules is to partition the feature space by
specifying a number of fuzzy sets (i.e., k) on the domain
interval of each input attribute. Some examples of this
partitioning (using triangular membership functions) are
shown in Fig. 1.

Given a partitioning of pattern space, one approach is to
consider all possible combinations of antecedents for
generating the fuzzy rules. The selection of the consequent
class for an antecedent combination (i.e. a fuzzy rule) can be
easily expressed in terms of confidence of an association
rule from the field of data mining [5]. A fuzzy classification
rule can be viewed as an association rule of the
form jj CclassA ⇒ , where, Aj is a multi-dimensional
fuzzy set representing the antecedent conditions and Cj is a
class label. Confidence (denoted by C) of this fuzzy
association rule is defined as [6]:

1

()
()

()

p j

j p
X class C

j j m

j p
p

X
C A class C

X

μ

μ

∈

=

⇒ =
∑

∑
 (4)

Where, µj(Xp) is the compatibility grade of pattern Xp with
the antecedent of the rule and m is the number of training
patterns. The consequent class Cq of an antecedent
combination Aj is specified by finding the class with
maximum confidence. This can be expressed as:

{ }arg max (| 1, 2,...,jq C A class h h M= ⇒ = (5)

Note that, when the consequent class Cq can not be uniquely
determined, the fuzzy rule is not generated.

The problem with grid partitioning is that for an n-
dimensional problem, kn antecedent combinations should be
considered. It is impractical to consider such a huge number
of antecedent combinations when dealing with high
dimensional problems.

In this paper, we use two different solutions to tackle
the above problem. We had introduced them in [7], [8], as
two different methods for efficient rule generation in high
dimensional problems. Our goal is to assess the effect of the
new rule-weight learning method, proposed in this paper, on
both of the systems.

A. The 1st Approach to Rule Generation

The goal of this method is to propose a solution that
enables us to generate fuzzy rules with any number of
antecedents, i.e., there would be no restriction on the
number of antecedents especially for high dimensional data
sets (the problem which originates from the exponential
growth of rule-base by increasing the number of features).
For this purpose, we consider the well-known evaluation
measure, Support as the primary factor for rule filtering. In
equation (6), a simple definition for the fuzzy aspect of the
Support measure is presented.

s(Aj ⇒ Class h) = ()∑

∈ h Class
p

x Am
1

p
j
xμ (6)

, where µj(Xp) is the compatibility degree of Xp with the
antecedent part of the rule Rj, m is the number of training
patterns and h is a class label. After determining a minimum
support threshold (denoted by MinSupp), a set of 1-
dimensional rules (containing one antecedent), is generated.
This set is then filtered by selecting only rules having a
support value above the MinSupp. Combining the rules
within this set in the next step, results in the set of 2-
dimensional candidate rules. The 1-dimensional rules which
are pruned through the first step because of their bad
supports, can not absolutely lead to 2-dimensional rules with
good supports and thus there is no need to consider them.
Another key point in combination of a pair of 1-dimensional
rules is the conditions under which the rules can be
combined:
1) The rules must not contain similar antecedents on their
left-hand sides. 2) The consequent classes of the two rules
must be identical. Similarly, the resulting rule set is filtered
with respect to the MinSupp value. However, note that the
rules being selected according to their higher support values
are just candidate rules and may be rejected in the next step.
The rule selection metric will be discussed later.
 In order to generate rules containing more than two
antecedents, a similar procedure is followed. Generating 3-
dimensional rules is accomplished using the 1 and 2-
dimensional candidate rules. Any possible combination of
the rules from these two sets, having the same consequent
and not containing common antecedents would be a 3-
dimensional candidate rule. Of course, some principles are
considered in order to avoid the time-consuming evaluation
of some useless rules (which can not have high support
values).
 Following the above process, it will also be possible to
generate rules having 4 and more antecedents, for any data
set having arbitrary number of features.
Although the set of rules is pruned to some extent, in some
cases the number of rules is still large. This problem gets
more sensible as we increase the number of antecedents. In
order to obtain a more concise data set, we divide the set of
candidate rules into M distinct groups, according to their
consequents (M is the number of classes). The rules in each
group are sorted by an appropriate evaluation factor and the
final rule-base is constructed by selecting p rules from each
class, i.e., in total, M.p rules are selected. Many evaluation
measures have already been proposed [9]. In this work, we
use the measure proposed in [10] as the rule selection
metric, which evaluates the rule jj CclassA ⇒ through
the following equation:

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

q q

p p

A p A p
X Class X Class

() = () ()
j j

j
C C

e R μ μ
∈ ∉

−∑ ∑x x (7)

This method of rule generation is illustrated and
discussed in more details in [7].

B. The 2nd Approach to Rule Generation

 Unlike the first approach, in this method, all of the
generated rules are equi-length. Every rule's premise
includes all the features of the dataset under investigation.
The main idea in this method is to generate a fuzzy rule only
if it has at least one training pattern in its decision area.
Using fuzzy sets of Fig.1, to partition each attribute of a
problem, a pattern is in the decision area of a rule only if
each attribute value of the pattern has a membership greater
than 0.5 in the corresponding antecedent condition of that
rule.

Fig. 1. Different partitioning of each feature axis

As an example, for a 2-feature problem with four fuzzy

sets on each feature, the decision areas of 16 fuzzy rules are
shown in Fig. 2. Note that, although the covering areas of
different rules are overlapped, their decision areas are not.
As we only generate a rule if it has at least one training
pattern in its decision area, the number of rules generated
will be at most equal to the number of training patterns.
Making use of this key issue, the time complexity of the rule
generation process in high dimensional problems is reduced
to O(m), where m is the number of training patterns (i.e.,
compared to O(kn)).

Fig. 2. Decision areas of 16 fuzzy rules.

IV. THE PROPOSED METHOD OF RULE WEIGHTING (GDW1)
 For a specific problem, assume that the method of
previous section is used to generate a set of N fuzzy rules.
Initially, all rules are assumed to have a weight of one (i.e.
CFk=1, k=1,2,...,N). In this section we propose an algorithm
that assigns a weight in the interval [0,∞] to each rule.
Our objective is to minimize the following index that
represents the leave-one-out misclassification rate of the
classifier:

1 . ()()
. ()x

w xJ Step
n w x

μ
μ

≠ ≠

= == ∑ (8)

Where, the step function is defined as:

1 1()
0 1

ifStep
if

⎧⎪
⎨
⎪⎩

τ ≤
τ =

τ >

In above formulas, the pairs (w = , ()xμ=) and

(w ≠
, ()xμ≠

) represent the weights and the compatibility
grades associated to the rules of the same-class and the
different-class that are most compatible with pattern x,
respectively.
In order to minimize J using gradient descent, we need the

derivative of J with respect to weights (i.e., w = and w ≠).
For this purpose, we approximate the step function by the
sigmoid function:

(1)

1() =
(1)e β −τΦ τ
+

 (9)

Replacing the step function in (8), we have:

1 . ()()
. ()x

w xJ
n w x

μ
μ

≠ ≠

= == Φ∑ (10)

To simplify (10), we define r(x) as:

. ()()

. ()
w xr x
w x

μ
μ

≠ ≠

= ==

Using this, equation (10) can be re-written as:

1 (())
x

J r x
n

= Φ∑ (11)

To derive the gradient descent update equations, we need to
use Φ'(τ), which is given as:

2

()()
(1)

e
e

β(1−τ)

β(1−τ)

∂Φ β
Φ′ τ = =

∂τ +
 (12)

1 Gradient-Descent-based Weighting

 0.0 1.0 0.0 1.0

 0.0 1.0 0.0 1.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

0.0

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Φ'(τ) is a function whose maximum value occurs in τ =1 and
vanishes for |τ −1|>>0. This function approaches the Dirac
delta function for large values of β. For small values of β, it
is approximately constant in a wide range of its domain.
Regarding the mentioned equations, the following gradient
descent equation is obtained to be used for updating the rule
weights.

2

* *

. ()())*
() . ()x

J J r
w r w

w xr x
w x

μ
μ

= =

≠ ≠

= =

∂ ∂ ∂Φ ∂
=

∂ ∂Φ ∂ ∂
−

= Φ′(∑
 (13)

Similarly,

* *

()())*
. ()x

J J r
w r w

xr x
w x
μ
μ

≠ ≠

≠

= =

∂ ∂ ∂Φ ∂
=

∂ ∂Φ ∂ ∂

= Φ′(∑
 (14)

To adjust the weights of the rules, the algorithm starts by
visiting each training example (i.e., x) and updates the
weights of two rules (i.e. the same-class and different-class
rules that are most compatible with pattern x). The
optimization process can terminate after a specified number
of passes over the training data or when no significant
improvement of the performance index J was observed over
previous pass. The weight update law can be expressed as:

2
. (). ())*

() . ()new old
x

w xr x
w x

w w μη
μ

≠ ≠
= =

= =
Φ′(= + ∑ (15)

(). ())*
. ()new old

x

xr x
w x

w w μη
μ

≠
≠ ≠

= =
Φ′(= − ∑ (16)

where η is a small positive real number that represents the
learning factor of the algorithm.
The rule-weight learning algorithm is given in Fig. 3.

 One of the parameters needed by the algorithm is υ. It can
take just a fixed value for i or may vary among different
rules using some heuristics; for example, it may be
proportional to the no. of right-class patterns existing in the
decision area of a rule. Moreover, for smoother (but slower)
convergence, we had better decrease this factor value along
the successive iterations of the algorithm's loop. In general,
the value of this factor may have a significant impact on the
learning speed but, as long as it is not too large, it should not
have an important influence on the learning results. A
generally suitable value for the learn step factor to be used
for any data can not be found since it depends on the nature
and characteristics of the training data.
 The effect of the update equation in the learning algorithm
is obvious. The rule-weight learning mechanism is much
related to the Reward-And-Punishment approach used in
some well-known methods in the literature, such as LVQ1,
LVQ2 [11, 12] and DSM [13]. In an iterative manner, each
training pattern, x, rewards its nearest rule that classifies it
correctly (by increasing the associated weight). Meanwhile,
it punishes another rule, having the maximum compatibility
to x, which misclassifies it (by decreasing the associated
weight). During this learning process, the decision areas of
the rules covering many compatible patterns and few
incompatible ones grow more significantly.

5. Experimental results

To measure the effectiveness of the proposed rule-
weighting scheme in improving the generalization ability of
the constructed rule-base, we used the data sets of Table I
available from UCI ML repository. To construct an initial
rule-base for a specific data set, each feature was first
normalized to interval [0,1]. For rule-base construction, we
followed both of the methods given in section 3, in turn.
When applying the second method, we used five triangular
fuzzy sets to partition the domain interval of each feature.
To assess the generalization ability of various schemes, we
used ten-fold cross validation scheme [14].

For a given training subset, a rule-base was generated
using one the methods of Section 3 and the method of
Section 4 was then used to specify the weight of each fuzzy
rule. Five trials of ten-fold cross validation were performed
to calculate the average error-rate of the classifier on test
data. First of all, in order to evaluate the effect of the
weighting method on the generalization ability, the accuracy
of each of the two classifiers presented in Section 3 was
monitored before and after rule-weigh specification. In Fig.
6, we report on generalization error-rate of the rule-base
before and after rule weighting for various data sets.
In Table II, we report on ten-fold generalization ability of
the system using both methods of rule generation, in turn.
GDW(1) and GDW(2) stand for the proposed scheme when
using the first and the second approaches of rule generation,
respectively. The proposed scheme is compared with
different weighting methods on fuzzy classifiers defined by
Ishibuchi in [15]. The results are also compared with two
other fuzzy classifier given in [3], [8], respectively. The first
classifier uses a method of rule weight learning based on
ROC analysis, while the second follows a heuristic
weighting method. The competitive results for these fuzzy
rule-based classifiers are given in Table II. In all schemes,
the rule selection is performed using the single winner
reasoning method.

Algorithm GDW(D, R, W, β, η, ε)
{
 // D: training data set; R,W: initial rule-base and weights;
 // β: sigmoid slope; η: learning factor; ε: a small constant number

 λ' = ∞; λ = J(R,W); P' = P; W' = W
 while (|λ' - λ|> ε)
 {
 λ' = λ
 for each x in D
 {
 rule= = NearestRule_SameClass(R,W,x)
 rule≠ = NearestRule_DiffClass(R,W,x)
 i = index(rule=)
 k = index(rule≠)
 z1 = Φ'(r(x), β) * (W[k] / (W[i])2) * ((μk(x)) / (μi(x))) ;
 z2 = Φ'(r(x), β) * ((μk(x)) / (W[i]*μi(x))) ;
 W'[i] = W'[i] + η * z1
 W'[k] = W'[k] - η * z2
 }
 P = P'; W = W'; λ = J(R,W)
 }
 return W
}

Fig. 3. Rule-weight Learning algorithm.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Fig. 6. The effect of rule-weight learning scheme on reducing the error rates of the classifier for benchmark datasets: (a) using the
1st method of rule generation, (b) using the 2nd method of rule generation

0

5

10

15

20

25

30

35

40

45

Iris Wine Pima Bupa Thyroid Glass Sonar

Datasets

Er
ro

r r
at

es
 (%

)

Without rule-weights
With rule-weights

(b)

0

5

10

15

20

25

30

35

40

45

50

Iris Wine Pima Bupa Thyroid Glass Sonar

Datasets

Er
ro

r r
at

es
 (%

)

Without rule-weights
With rule-weights

(a)

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Table I. Some statistics of the data sets used in our computer simulations.

Data set
Number of
attributes

Number of
patterns

Number of
Classes

Iris 4 150 3
Wine 13 178 3
Pima 8 768 2

Australian 14 690 2
German 20 1000 2
Heart 13 270 2
Bupa 6 345 2

Landsat 36 6435 6
Balance Scale 4 625 3

Thyroid 5 215 3
Voting 16 435 2
Liver 7 345 2
Glass 9 214 6
Letter 6 20000 2
Sonar 60 208 2

Vehicle 18 946 4

Table II. Classification Error rates of the new classifier (GDW) using two different methods of rule generation ((1), (2)), in

comparison with other fuzzy rule-based classifiers: Non-weighted fuzzy classifier, Ishibuchi weighting methods (4 methods) and
the heuristic weighting method of [8]

 Error Rates (%)

Ishibuchi GDW
Data sets No. Weight

(1) (2) (3) (4)
ROC-based

method
Heuristic
method (1) (2)

Iris 5.0 4.2 4.4 4.6 4.2 4.9 3.6 2.9 1.7
Wine 6.1 6.7 5.6 8.4 8.4 3.7 5.1 4.7 5.0
Pima 27.8 26.5 27.8 26.5 26.3 24.6 24.3 21.6 21.4
Bupa 39.0 38.8 38.8 38.4 39 34.5 37.8 34.3 37.3

Thyroid 8.5 6.1 6.3 5.8 6.7 4.2 4.1 4.2 3.8
Glass 35.0 44.4 40.6 40.2 41.1 38.2 33.3 29.9 31.4
Sonar 11.2 10.8 10.6 10.8 11.0 25.8 4.1 13.7 8.0

REFERENCES
[1] E. Mansoori, M. Zolghadri Jahromi and S.D. Katebi, A weighting

function for improving fuzzy classification systems performance
Fuzzy Sets and Systems 158 (5) (2007), 583-591.

[2] M. Zolghadri Jahromi and E. Mansoori, Weighting fuzzy
classification rules using receiver operating characteristics (ROC)
analysis, Information Sciences 177 (11) (2007), 2296-2307.

[3] M. Zolghadri Jahromi and M. Taheri, A proposed method for
learning rule weights in fuzzy rule-based classification systems,
Fuzzy Sets and Systems, (2007).

[4] O. Cordon, M. J. del Jesus, F. Herrera, A proposal on reasoning
methods in fuzzy rule- based classification systems, International
Journal of Approximate Reasoning 20 (1999) 21-45.

[5] R. Agrawal, R. Srikant, Fast algorithms for mining association
rules, in: Proc. 20th International Conference on Very large
Databases, 1994, pp. 487-499.

[6] H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective
genetic local search algorithms and rule evaluation measures in data
mining, Fuzzy Sets and Systems 141 (1) (2004) 59-88.

[7] S.M. Fakhrahmad, A. Zare and M. Zolghadri Jahromi, "Constructing
Accurate Fuzzy Rule-based Classification Systems Using Apriori
Principles and Rule-weighting" The 8th International Conference on
Intelligent Data Engineering and Automated Learning (IDEAL'07),
Birmingham, U.K , pp. 457-462, December 2007,.

[8] S.M. Fakhrahmad and M. Zolghadri Jahromi, "Constructing
Accurate Fuzzy Classification Systems: A New Approach Using
Weighted Fuzzy Rules", 4th International Conference (IEEE) on
Computer Graphics, Imaging and Visualization, (CGIV07),
Bangkok, Thailand., pp. 408-413, 15-17 August 2007.

[9] H. Ishibuchi, T. Yamamoto, Comparison of heuristic criteria for
fuzzy rule selection in classification problems, Fuzzy Optimization
and Decision Making 3 (2) (2004) 119-139.

[10] A. Gonzalez, R. Perez, SLAVE: A genetic learning system based on
an iterative approach, IEEE Trans. on Fuzzy Systems 7 (2) (1999)
176-191

[11] T. Kohonen, The self-organizing map, in: Proceedings of the IEEE,
vol. 78, 1990, pp. 1464–1480.

[12] T. Kohonen, G. Barna, R. Chrisley, Statistical pattern recognition
with neural networks: benchmarking studies, in: IEEE International
Conference on Neural Networks, vol. 1, San Diego, 1988, pp. 61–
68.

[13] S. Geva, J. Sitte, Adaptive nearest neighbor pattern classification,
IEEE Trans. Neural Networks 2 (2) (1991) 318–322.

[14] C. Goutte, Note on free lunches and cross-validation, Neural
Computation, 9 (1997) 1211-1215.

[15] H. Ishibuchi, T. Yamamoto, Rule Weight Specification in Fuzzy
Rule-Based Classification systems, IEEE Transaction on Fuzzy
Systems 13 (4) (2005) 428-435.

[16] Elomaa, T. and J. Rousu. “General and efficient multisplitting of
numerical Attributes,” machine Learning 36 (1999), 201-244.

[17] V. Vapnik, Statistical Learning Theory,Wiley-Interscience,
NewYork, 1998.

[18] Roberto Paredes, Enrique Vidal, Learning prototypes and distances:
A prototype reduction technique based on nearest neighbor error
minimization, Pattern Recognition 39 (2006) 180 – 188.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

