
A New Rule-weight Learning Method based on 
Gradient Descent  

 
 

S.M. Fakhrahmad and M. Zolghadri Jahromi 
 
 

Abstract— In this paper, we propose a simple and efficient 
method to construct an accurate fuzzy classification system. In 
order to optimize the generalization accuracy, we use rule-
weight as a simple mechanism to tune the classifier and 
propose a new learning method to iteratively adjust the weight 
of fuzzy rules. The rule-weights in the proposed method are 
derived by solving the minimization problem through gradient 
descent. Through computer simulations on some data sets from 
UCI repository, the proposed scheme shows a uniformly good 
behavior and achieves results which are comparable or better 
than other fuzzy and non-fuzzy classification systems, proposed 
in the past. 
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I. INTRODUCTION 
   Fuzzy rule-based systems have recently been used to solve 
classification problems. A Fuzzy Rule-Based Classification 
System (FRBCS) is a special case of fuzzy modeling where 
the output of the system is crisp and discrete. Different 
approaches used to design these classifiers can be grouped 
into two main categories: descriptive and accurate. In the 
descriptive approach, the emphasis is placed on the 
interpretability of the constructed classifier. In this 
approach, the classifier is usually represented by a compact 
set of short (i.e., with a few number of antecedent 
conditions) fuzzy rules. Using linguistic values to specify 
the antecedent conditions of fuzzy rules makes it a suitable 
tool for knowledge representation. However, the main 
objective in designing accurate FRBCSs is to maximize the 
generalization accuracy of the classifier. No attempt is made 
to improve the understandability of the classifier in this 
approach. 

Rule-weight has often been used as a simple mechanism 
to tune a FRBCS. Fuzzy rules of the following form are 
commonly used in these systems. 
 
Rule Rj:  If x1 is Aj1 and … and xn is Ajn then class h with CFj                                                                  
(1) 
 
where, X=[x1, x2, …, xn] is the input feature vector, h∈  [C1, 
C2 …, CM] is the label of the consequent class, Ajk is the 
fuzzy set associated to xk , CFj is the certainty grade (i.e. 
rule-weight) of rule Rj.  
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Many heuristic [1, 2] and learning methods [3] have 
already been proposed to specify the weights of fuzzy rules 
in a FRBCS. The purpose of rule weighting is to use the 
information from the training data to improve the 
generalization ability of the classifier. 

In this paper, we propose a simple and efficient method of 
constructing accurate fuzzy classification systems. Using a 
specified number of triangular fuzzy sets to partition the 
domain interval of each feature, we propose a rule 
generation scheme that limits the number of generated fuzzy 
rules to the number of training examples. Each rule uses all 
features of the problem in the antecedent to specify a fuzzy 
subspace in feature space. We use rule weight as a simple 
mechanism to tune the constructed rule-base and propose an 
efficient rule-weight specification method.  

The rest of this paper is organized as follows. In Section 
2, FRBCSs are briefly introduced. In Section 3, two 
different methods of rule-base construction is given. In 
Section 4, the proposed method of rule-weight learning is 
discussed. Experimental results are presented in Section 5. 
Finally, Section 6 concludes the paper. 

 

II. FUZZY RULE-BASED CLASSIFICATION SYSTEMS  
 

   A FRBCS is composed of three main conceptual 
components: database, rule-base and reasoning method. The 
database describes the semantics of fuzzy sets associated to 
linguistic labels. Each rule in the rule-base specifies a 
subspace of pattern space using the fuzzy sets in the 
antecedent part of the rule. The reasoning method provides 
the mechanism to classify a pattern using the information 
from the rule-base and database. Different rule types have 
been used for pattern classification problems [4].  
   For an n-dimensional problem, suppose that a rule-base 
consisting of N fuzzy classification rules of form (1) is 
available. In order to classify an input pattern Xt = [xt1, xt2, 
…, xtn], the degree of compatibility of the pattern with each 
rule is calculated (i.e., using a T-norm to model the “and” 
connectives in the rule antecedent). In case of using the 
product as T-norm, the compatibility grade of rule Rj with 
the input pattern Xt can be calculated as: 
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In the case of using single winner reasoning method, the 

pattern is classified according to the consequent class of the 
winner rule Rw. With the rules of form (1), the winner rule is 
specified using:                              

 
arg max{ ( ) ,  1,..., }j t jw X CF j Nμ= =               (3)  
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Note that the classification of a pattern not covered by any 
rule in the rule-base is rejected. The classification of a 
pattern Xt is also rejected if two rules with different 
consequent classes have the same value of µ(Xt).CF in 
equation (2). 

 

III. RULE-BASE CONSTRUCTION 
 

   For an M-class problem in an n-dimensional feature space, 
assume that m labeled patterns Xp=[xp1, xp2, …, xpn], p=1, 2, 
…, m from M classes are given. A simple approach for 
generating fuzzy rules is to partition the feature space by 
specifying a number of fuzzy sets (i.e., k) on the domain 
interval of each input attribute. Some examples of this 
partitioning (using triangular membership functions) are 
shown in Fig. 1. 

Given a partitioning of pattern space, one approach is to 
consider all possible combinations of antecedents for 
generating the fuzzy rules. The selection of the consequent 
class for an antecedent combination (i.e. a fuzzy rule) can be 
easily expressed in terms of confidence of an association 
rule from the field of data mining [5]. A fuzzy classification 
rule can be viewed as an association rule of the 
form jj CclassA  ⇒ , where, Aj is a multi-dimensional 
fuzzy set representing the antecedent conditions and Cj is a 
class label. Confidence (denoted by C) of this fuzzy 
association rule is defined as [6]: 
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Where, µj(Xp) is the compatibility grade of pattern Xp with 
the antecedent of the rule and m is the number of training 
patterns. The consequent class Cq of an antecedent 
combination Aj is specified by finding the class with 
maximum confidence. This can be expressed as: 

 

{ }arg max ( | 1, 2,...,jq C A class h h M= ⇒ =        (5) 

 
Note that, when the consequent class Cq can not be uniquely 
determined, the fuzzy rule is not generated. 

The problem with grid partitioning is that for an n-
dimensional problem, kn antecedent combinations should be 
considered. It is impractical to consider such a huge number 
of antecedent combinations when dealing with high 
dimensional problems. 

In this paper, we use two different solutions to tackle 
the above problem. We had introduced them in [7], [8], as 
two different methods for efficient rule generation in high 
dimensional problems. Our goal is to assess the effect of the 
new rule-weight learning method, proposed in this paper, on 
both of the systems. 

 
A. The 1st Approach to Rule Generation 

 

The goal of this method is to propose a solution that 
enables us to generate fuzzy rules with any number of 
antecedents, i.e., there would be no restriction on the 
number of antecedents especially for high dimensional data 
sets (the problem which originates from the exponential 
growth of rule-base by increasing the number of features). 
For this purpose, we consider the well-known evaluation 
measure, Support as the primary factor for rule filtering. In 
equation (6), a simple definition for the fuzzy aspect of the 
Support measure is presented. 
 
s(Aj ⇒ Class h) = ( )∑

∈ h Class 
p

x Am
1

p
j
xμ  (6) 

 
, where µj(Xp) is the compatibility degree of Xp with the 
antecedent part of the rule Rj, m is the number of training 
patterns and h is a class label. After determining a minimum 
support threshold (denoted by MinSupp), a set of 1-
dimensional rules (containing one antecedent), is generated. 
This set is then filtered by selecting only rules having a 
support value above the MinSupp. Combining the rules 
within this set in the next step, results in the set of 2-
dimensional candidate rules. The 1-dimensional rules which 
are pruned through the first step because of their bad 
supports, can not absolutely lead to 2-dimensional rules with 
good supports and thus there is no need to consider them. 
Another key point in combination of a pair of 1-dimensional 
rules is the conditions under which the rules can be 
combined: 
1) The rules must not contain similar antecedents on their 
left-hand sides. 2) The consequent classes of the two rules 
must be identical. Similarly, the resulting rule set is filtered 
with respect to the MinSupp value. However, note that the 
rules being selected according to their higher support values 
are just candidate rules and may be rejected in the next step. 
The rule selection metric will be discussed later. 
   In order to generate rules containing more than two 
antecedents, a similar procedure is followed. Generating 3-
dimensional rules is accomplished using the 1 and 2-
dimensional candidate rules. Any possible combination of 
the rules from these two sets, having the same consequent 
and not containing common antecedents would be a 3-
dimensional candidate rule. Of course, some principles are 
considered in order to avoid the time-consuming evaluation 
of some useless rules (which can not have high support 
values).  
   Following the above process, it will also be possible to 
generate rules having 4 and more antecedents, for any data 
set having arbitrary number of features. 
Although the set of rules is pruned to some extent, in some 
cases the number of rules is still large. This problem gets 
more sensible as we increase the number of antecedents. In 
order to obtain a more concise data set, we divide the set of 
candidate rules into M distinct groups, according to their 
consequents (M is the number of classes). The rules in each 
group are sorted by an appropriate evaluation factor and the 
final rule-base is constructed by selecting p rules from each 
class, i.e., in total, M.p rules are selected. Many evaluation 
measures have already been proposed [9]. In this work, we 
use the measure proposed in [10] as the rule selection 
metric, which evaluates the rule jj CclassA  ⇒  through 
the following equation: 
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This method of rule generation is illustrated and 
discussed in more details in [7]. 

 
B. The 2nd Approach to Rule Generation 

 

   Unlike the first approach, in this method, all of the 
generated rules are equi-length. Every rule's premise 
includes all the features of the dataset under investigation. 
The main idea in this method is to generate a fuzzy rule only 
if it has at least one training pattern in its decision area. 
Using fuzzy sets of Fig.1, to partition each attribute of a 
problem, a pattern is in the decision area of a rule only if 
each attribute value of the pattern has a membership greater 
than 0.5 in the corresponding antecedent condition of that 
rule.  

 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Different partitioning of each feature axis 

 
As an example, for a 2-feature problem with four fuzzy 

sets on each feature, the decision areas of 16 fuzzy rules are 
shown in Fig. 2. Note that, although the covering areas of 
different rules are overlapped, their decision areas are not. 
As we only generate a rule if it has at least one training 
pattern in its decision area, the number of rules generated 
will be at most equal to the number of training patterns. 
Making use of this key issue, the time complexity of the rule 
generation process in high dimensional problems is reduced 
to O(m), where m is the number of training patterns (i.e., 
compared to O(kn)). 

 

 
 

Fig. 2. Decision areas of 16 fuzzy rules. 
 
 

IV. THE PROPOSED METHOD OF RULE WEIGHTING (GDW1) 
   For a specific problem, assume that the method of 
previous section is used to generate a set of N fuzzy rules. 
Initially, all rules are assumed to have a weight of one (i.e. 
CFk=1, k=1,2,...,N). In this section we propose an algorithm 
that assigns a weight in the interval [0,∞] to each rule.  
Our objective is to minimize the following index that 
represents the leave-one-out misclassification rate of the 
classifier: 

1 . ( )( )
. ( )x

w xJ Step
n w x

μ
μ

≠ ≠

= == ∑                 (8) 

 
Where, the step function is defined as:  
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In above formulas, the pairs (w = , ( )xμ= ) and 

(w ≠
, ( )xμ≠

) represent the weights and the compatibility 
grades associated to the rules of the same-class and the 
different-class that are most compatible with pattern x, 
respectively.  
In order to minimize J using gradient descent, we need the 

derivative of J with respect to weights (i.e., w = and w ≠ ). 
For this purpose, we approximate the step function by the 
sigmoid function: 
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                             (9) 

 
Replacing the step function in (8), we have: 
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To simplify (10), we define r(x) as: 
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Using this, equation (10) can be re-written as: 
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To derive the gradient descent update equations, we need to 
use Φ'(τ), which is given as: 
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Φ'(τ) is a function whose maximum value occurs in τ =1 and 
vanishes for |τ −1|>>0. This function approaches the Dirac 
delta function for large values of β. For small values of β, it 
is approximately constant in a wide range of its domain.  
Regarding the mentioned equations, the following gradient 
descent equation is obtained to be used for updating the rule 
weights. 
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Similarly,  
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To adjust the weights of the rules, the algorithm starts by 
visiting each training example (i.e., x) and updates the 
weights of two rules (i.e. the same-class and different-class 
rules that are most compatible with pattern x). The 
optimization process can terminate after a specified number 
of passes over the training data or when no significant 
improvement of the performance index J was observed over 
previous pass. The weight update law can be expressed as: 

2
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where η is a small positive real number that represents the 
learning factor of the algorithm.  
The rule-weight learning algorithm is given in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   One of the parameters needed by the algorithm is υ. It can 
take just a fixed value for i or may vary among different 
rules using some heuristics; for example, it may be 
proportional to the no. of right-class patterns existing in the 
decision area of a rule. Moreover, for smoother (but slower) 
convergence, we had better decrease this factor value along 
the successive iterations of the algorithm's loop. In general, 
the value of this factor may have a significant impact on the 
learning speed but, as long as it is not too large, it should not 
have an important influence on the learning results. A 
generally suitable value for the learn step factor to be used 
for any data can not be found since it depends on the nature 
and characteristics of the training data.  
   The effect of the update equation in the learning algorithm 
is obvious. The rule-weight learning mechanism is much 
related to the Reward-And-Punishment approach used in 
some well-known methods in the literature, such as LVQ1, 
LVQ2 [11, 12] and DSM [13]. In an iterative manner, each 
training pattern, x, rewards its nearest rule that classifies it 
correctly (by increasing the associated weight). Meanwhile, 
it punishes another rule, having the maximum compatibility 
to x, which misclassifies it (by decreasing the associated 
weight). During this learning process, the decision areas of 
the rules covering many compatible patterns and few 
incompatible ones grow more significantly. 

5. Experimental results 

To measure the effectiveness of the proposed rule-
weighting scheme in improving the generalization ability of 
the constructed rule-base, we used the data sets of Table I 
available from UCI ML repository. To construct an initial 
rule-base for a specific data set, each feature was first 
normalized to interval [0,1]. For rule-base construction, we 
followed both of the methods given in section 3, in turn. 
When applying the second method, we used five triangular 
fuzzy sets to partition the domain interval of each feature. 
To assess the generalization ability of various schemes, we 
used ten-fold cross validation scheme [14].  

For a given training subset, a rule-base was generated 
using one the methods of Section 3 and the method of 
Section 4 was then used to specify the weight of each fuzzy 
rule. Five trials of ten-fold cross validation were performed 
to calculate the average error-rate of the classifier on test 
data. First of all, in order to evaluate the effect of the 
weighting method on the generalization ability, the accuracy 
of each of the two classifiers presented in Section 3 was 
monitored before and after rule-weigh specification. In Fig. 
6, we report on generalization error-rate of the rule-base 
before and after rule weighting for various data sets.  
In Table II, we report on ten-fold generalization ability of 
the system using both methods of rule generation, in turn. 
GDW(1) and GDW(2) stand for the proposed scheme when 
using the first and the second approaches of rule generation, 
respectively. The proposed scheme is compared with 
different weighting methods on fuzzy classifiers defined by 
Ishibuchi in [15]. The results are also compared with two 
other fuzzy classifier given in [3], [8], respectively. The first 
classifier uses a method of rule weight learning based on 
ROC analysis, while the second follows a heuristic 
weighting method. The competitive results for these fuzzy 
rule-based classifiers are given in Table II. In all schemes, 
the rule selection is performed using the single winner 
reasoning method. 

Algorithm GDW(D, R, W, β, η, ε) 
{ 
     // D: training data set; R,W: initial rule-base and weights; 
     // β: sigmoid slope; η: learning factor; ε: a small constant number 
    
     λ' = ∞;  λ = J(R,W);  P' = P;  W' = W 
     while (|λ' - λ|> ε) 
     { 
           λ' = λ 
           for each x in D 
           { 
      rule= = NearestRule_SameClass(R,W,x)  
      rule≠ = NearestRule_DiffClass(R,W,x)  
      i = index(rule=) 
      k = index(rule≠) 
      z1 = Φ'(r(x), β) * (W[k] / (W[i])2) * ((μk(x)) / ( μi(x))) ; 
      z2 = Φ'(r(x), β) * ((μk(x)) / ( W[i]*μi(x))) ; 
      W'[i] = W'[i] + η * z1                                                         
                     W'[k] = W'[k] - η * z2  
           } 
           P = P';  W = W';  λ = J(R,W)    
     } 
     return W 
} 

Fig. 3. Rule-weight Learning algorithm. 
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Fig. 6. The effect of rule-weight learning scheme on reducing the error rates of the classifier for benchmark datasets: (a) using the 
1st method of rule generation, (b) using the 2nd method of rule generation 
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Table I. Some statistics of the data sets used in our computer simulations. 

Data set 
Number of 
attributes 

Number of 
patterns 

Number of 
Classes 

Iris 4 150 3 
Wine 13 178 3 
Pima 8 768 2 

Australian 14 690 2 
German 20 1000 2 
Heart 13 270 2 
Bupa 6 345 2 

Landsat 36 6435 6 
Balance Scale 4 625 3 

Thyroid 5 215 3 
Voting 16 435 2 
Liver 7 345 2 
Glass 9 214 6 
Letter 6 20000 2 
Sonar 60 208 2 

Vehicle 18 946 4 
  

 
Table II. Classification Error rates of the new classifier (GDW) using two different methods of rule generation ((1), (2)), in 

comparison with other fuzzy rule-based classifiers: Non-weighted fuzzy classifier, Ishibuchi weighting methods (4 methods) and 
the heuristic weighting method of [8] 

  Error Rates (%)  

Ishibuchi  GDW  
Data sets No. Weight  

(1) (2)  (3)  (4)  
ROC-based 

method  
Heuristic 
method  (1)  (2) 

Iris 5.0 4.2  4.4  4.6  4.2  4.9  3.6  2.9 1.7  
Wine 6.1  6.7  5.6  8.4  8.4  3.7  5.1  4.7 5.0 
Pima 27.8  26.5 27.8 26.5 26.3  24.6  24.3  21.6 21.4 
Bupa 39.0  38.8  38.8  38.4  39  34.5  37.8  34.3 37.3  

Thyroid 8.5  6.1  6.3  5.8  6.7  4.2  4.1  4.2 3.8 
Glass 35.0  44.4  40.6  40.2  41.1  38.2  33.3  29.9 31.4 
Sonar 11.2  10.8  10.6  10.8  11.0  25.8  4.1  13.7 8.0 
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