
 
 

 

  
Abstract— Preventive maintenance (PM) can benefit systems 

having an increasing failure rate. However, PM is often 
scheduled in order to minimize the maintenance cost or to 
comply with production planning requirements or instruction 
from the equipment suppliers. Given that maintenance actions 
affect process time variability and resource utilization, such 
maintenance planning criteria may cause other adverse effects 
on the operational performance of the manufacturing system 
such as an increase in Work In Process (WIP) and cycle time. In 
this paper some approximate queueing models are utilize to 
asses the impact of PM interval on WIP. It is shown that WIP 
value is strongly influenced by the PM interval and that 
maintenance intervals corresponding to a minimum 
maintenance cost or minimum WIP can be quite different. This 
kind of analysis can help in making more informed decisions 
involving WIP and cost trade-offs. 
 

Index Terms— Maintenance optimization, manufacturing 
systems performances, preventive maintenance, queueing 
models.  
 

I. INTRODUCTION 
Manufacturing systems are subject to deterioration with 

usage and age. In case of repairable systems, maintenance 
can restore the operational status of manufacturing 
equipment after failures or can preserve it by reducing the 
occurrence of breakdowns. However, maintenance 
downtimes increase resources utilization and system 
variability, negatively affecting some relevant performance 
measures of manufacturing systems, such as work in process 
(WIP) and cycle time. While a vast body of literature about 
maintenance planning and optimization exists [1]-[5], the 
interactions between maintenance planning and 
manufacturing systems performances has been scarcely 
investigated. In particular, some criteria have been proposed 
to dynamically determine maintenance actions based on the 
system status [6]-[7] and to control manufacturing systems 
taking into account machines breakdowns [8]-[9]. However, 
most of these approaches are quite complex and difficult to 
apply in real life conditions. In this paper, instead, some easy 
to use approximate queueing models are utilized to assess the 
impact that preventive maintenance interval has on 
manufacturing systems performance, mainly focusing on 
WIP. This is made to show how the arbitrary selection of 
preventive maintenance interval or maintenance scheduling 
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based on minimum maintenance cost approaches can be 
detrimental to WIP and cycle time, so that trade-off decision 
may be required. 

The paper is organized as follows. At first a brief review of 
preventive maintenance optimization approaches based on 
cost minimization is carried out. Then, available queueing 
models for unreliable servers are surveyed to select suitable 
analytical tools to estimate the performance of manufacturing 
systems subject to corrective and preventive maintenance. 
Subsequently, the chosen queueing models are utilized in a 
comparative manner to explore the behaviour of a single 
machine system. Some analytical results are presented and 
discussed in order to point out the relevant issues to 
maintenance planners. This allows more informed decisions. 

 

II. ECONOMIC OPTIMIZATION OF PREVENTIVE 
MAINTENANCE SCHEDULE 

In systems having an increasing failure rate (IFR), 
preventive maintenance bringing the system into its original 
state (as good as new) is beneficial as it reduces the average 
failure rate. The problem then arises of determining the 
preventive maintenance interval TP. This is usually selected 
by maintenance planners in order to respect some external 
requirement (such as instructions from the equipment 
manufacturers or directives from the production planning 
department) or, too often, is decided arbitrarily. In case one 
wishes to optimize TP, a maintenance cost minimization 
approach is usually pursued. In this respect many policies 
exist [1]-[5] which mostly fall into two classes, namely age 
replacement policies and periodic replacement policies. In 
age replacement policy a unit is always replaced at failure or 
time TP if it has not failed up to time TP. In both cases an “as 
good as new” intervention is assumed which means that the 
failure rate is restored to its initial value. In periodic 
replacement policy, instead, a unit is replaced periodically at 
planned times kTP (k = 1, 2, . . . ). Only minimal repair after 
each failure is made so that the failure rate remains 
undisturbed by any repair of failures between successive 
replacements performed at times kTP.  

The preventive maintenance interval TP is often chosen to 
minimize the overall maintenance cost including both the 
cost of corrective repairs after a breakdown and planned 
preventive replacements. Over an infinite time horizon one 
usually refers to the expected maintenance cost per unit time 
of a maintenance cycle. In case of age replacement policy the 
average cost per unit time CAU (TP)  
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is computed as the ratio of the average maintenance cost over 
a cycle to the average cycle duration. In (1) CP is the cost of a 
preventive maintenance intervention and CB is the cost of a 
corrective intervention following a breakdown, R(TP) is the 
reliability computed over the preventive maintenance 
interval. MTTF is the average time to failure computed when 
a preventive maintenance with as good as new repair policy is 
adopted [10] 
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Assuming a Weibull distributed time to failure with 

parameters β an η, the reliability R(t) is [10] 
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In case of periodic replacement, TP is the fixed cycle length 
and the average number of corrective repairs N(TP) expected 
over the cycle length is given by renewal theory  
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where λB(t) is the failure rate function [10]. Therefore, the 
maintenance cost per unit time is 
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Since with short TP one has high preventive maintenance 

costs but low corrective maintenance costs, while for long TP 
the opposite occurs, an optimal value of TP which minimizes 
CAU (TP) may exist and numerical methods can be used to 
determine it. However, this widely practiced approach only 
focuses on costs but neglects other performance measures of 
a manufacturing system which may be worsened by an 
unsuitable choice of TP. In fact, the preventive maintenance 
interval besides affecting the average failure rate and 
maintenance cost, also influences resource availability and 
utilization, as well as the variability of effective processing 
times, thus determining congestion problems which may 
increase WIP accumulation and cycle time at the 
workstations. 

 

III. QUEUEING MODELS FOR UNRELIABLE MACHINES 
Queueing theory provides a convenient manner to quickly 

estimate the main performance measures of dynamic systems 
in which discrete events alter the state of the system. In 
queueing systems customers (i.e. jobs) arrive by some arrival 

process and wait in queue for the next available server (i.e. a 
machine). When the server becomes available a customer is 
selected from the queue and serviced according to some 
discipline before leaving the system. Analytical queueing 
models provide generalizable results and explicitly show the 
role of the influencing parameters, while this is generally not 
possible in discrete events computer simulation models. The 
latter, on the other hand, are much more flexible and 
powerful, but are very time consuming to create and validate. 
Queueing theory [11] is often utilized to study manufacturing 
systems and a number of textbook are available on this 
subject [12]-[14]. However, even if from a long time a 
number of queueing models have been developed for 
unreliable servers [15]-[17], most of them are based on the 
assumption of exponentially distributed time to failure (i.e. 
constant failure rate) and only address preemptive 
interruptions, such as breakdowns, or non-preemptive such 
as preventive maintenance. This prevents from using simple 
queueing models to optimize maintenance policies as one 
need to model both kind of interruptions. Moreover the 
assumption of constant failure rate makes the models 
unsuitable to the case of preventive maintenance which is 
only useful when the system shows an increasing failure rate 
caused by progressive wear and deterioration. Furthermore, 
due to the complex nature of interruptions in manufacturing, 
it is often difficult to properly select the appropriate model. 
To this end Wu et al. [18] propose a useful classification. 
They at first distinguish between preemptive and 
non-preemptive interruptions. Preemptive interruptions are 
unscheduled and can occur during the processing of a job, 
thus inflating the average process time respect the value of 
the natural process time. Non-preemptive interruptions, 
instead, are usually scheduled and, in any case, can be 
postponed until the job processing is terminated. Then they 
distinguish between run-based and time-based interruptions. 
Run-based interruptions can occur only if WIP exist in the 
system or are indirectly caused by the presence of WIP. For 
instance the breakage of a tool can occur only if the machine 
is processing a part. Time-based interruptions instead can 
occur even in absence of WIP. Examples of run-based and 
time-based preemptive interruptions are, for instance, 
breakdowns or out of spec inputs, and power outages 
respectively. Cases of run-based and time-based 
non-preemptive interruptions instead are, for instance, setups 
and preventive maintenance respectively. Finally, they 
further consider state-induced or product-induced events as 
sub-cases of run-based non-preemptive events (i.e. a 
state-induced event is an interruption deriving from a change 
of state of the machine such as a warm up period when the 
machine passes from stand-by to working conditions). 
According to this classification, in this work we are interested 
in run-based preemptive events (i.e breakdowns) and 
time-based non-preemptive events (i.e. preventive 
maintenance.). 

While the reader can consult the paper of Wu et al. [18] for 
a more complete classification of M/M/1, M/G/1 and G/G/1 
queueing models referring to run-based or time-based 
interruptions when the uptime is exponentially distributed, 
here we consider only models for queues with Poisson 
arrivals and general service processes in single servers 
applications (M/G/1), which better fit the scope of this paper. 

By using the heavy traffic approximation of Whitt [19], 
valid for queues with general arrival and general service 
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processes in single servers applications (G/G/1), the 
queueing time (QT) can be estimated as, 
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where ca is the coefficient of variation of interarrival time, ce 
is the coefficient of variation of effective process time, 
ρ= λ/μA is the resource utilization, A the breakdown induced 
server availability, te is the expected value of the Effective 
Process Time (EPT). EPT represents the average effective 
process time as modified respect the average natural process 
time t0 to account for the interruptions. Please note that this 
definition of te does not include state-induced, run-based 
non-preemptive events. In case of Poisson arrivals obviously 
ca = 1. Hopp and Spearman [20] provide the following 
equations to compute the parameters of (7) in case of either 
preemptive or non-preemptive run-based events. 
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Non-preemptive interruptions 
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In (8) to (14) ta is the average interarrival time and σa its 

standard deviation. σ0 is the standard deviation of natural 
process time, MTTR and σr the mean value and standard 
deviation of time to repair, c0 is the coefficient of variation of 
natural process time, cr is the coefficient of variation of repair 
time, tt is the average duration of non-preemptive 
interruption, σt its standard deviation, and Nt is the average 
number of jobs processed between non-preemptive 
interruptions. 

In case one deals with both preemptive and 
non-preemptive interruptions Hopp and Spearman [20] 
suggest at first to compute the te and σe values including only 

preemptive interruptions through (9) - (10) and then to use 
such values as actual starting values t0 σ0 to compute the final 
te and σe values from (12)-(13). 

Unfortunately, (11) is valid only in case of constant failure 
rate, and an explicit analytical expression for the coefficient 
of variation of effective process time with increasing failure 
rate is difficult to obtain. Moreover (13) could be used only to 
account for setups but not for preventive maintenance as the 
latter is useless in case of constant failure rate while when the 
failure rate is increasing the maintenance interval Nt 
influences the actual vale of the MTTF so that the above 
described two-step procedure can not be applied. Finally, Wu 
et al [18] point out that this model does not account for 
time-based and state-induced events. 

A model such as the above one could be used as an 
approximation for cases including both preemptive and 
non-preemptive interruptions, provided that one includes in 
the effective process time the “inflation” effect of both 
breakdowns and preventive maintenance interruptions. 
However, the problem remains the estimation of ce  in case of 
increasing failure rate and non-preemptive interruptions. 

A model for M/G/1 non-preemptive priority queues with 
two priorities, by Adan and Resing [21], can be instead 
utilized as an approximation for time-based non preemptive 
interruptions cases, provided that average value of the 
process time is corrected to account for the effects of 
preemptive interruptions. According to this model λ1 and λ2 
are the arrival rates of high and low priority jobs and μ1 and 
μ2 the service rates of high and low priority jobs respectively. 
Here the low priority jobs are the preventive maintenance 
interruptions. 

This model computes the expected cycle time CT as 
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S1 and S2 are the effective process times, 
ρ1= λ1/μ1, ρ2= λ2/μ2, while  
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This model explicitly accounts for time-based 

non-preemptive interruptions (i.e. preventive maintenance) 
while preemptive interruptions should be included in the 
computation of effective process time S1. 

 

IV. IMPACT OF PREVENTIVE MAINTENANCE INTERVAL ON 
MANUFACTURING SYSTEM PERFORMANCES 

In the following, the above approximate queueing models 
will be used as a means to describe the impact of preventive 
maintenance interval on the operational performance of a 
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manufacturing system. For sake of simplicity the analysis 
will be limited to an elementary manufacturing system 
composed by a single machine, considering work in process 
as the performance measure of interest. WIP is a relevant 
performance measure, in fact, apart from the carrying costs it 
involves, it also implies space occupation on the shop floor 
and contributes to the increase of manufacturing lead time. 
For a stationary system, in fact, the relation between WIP, 
throughput λ and lead time, here referred as cycle time CT, is 
given by the well known Little’s law [22] 
 
WIP = λ CT .                 (18) 
 

In the rest of the paper the following assumptions are made. 
A constant throughput is assumed, according to an imposed 
value of the average interarrival time of jobs to be processed. 
Interarrival time of jobs has an exponential distribution 
(Poisson arrivals), while the processing time is assumed to 
have a general distribution. The adopted queueing models 
will then belong to the M/G/1 class. The machine is assumed 
to have an increasing failure rate with time to failure modeled 
resorting to a Weibull distribution, while preventive 
maintenance is carried out at constant time interval according 
to a periodic replacement policy. Maintenance is carried out 
under the “as good as new” assumption, i.e. after replacement 
the equipment failure rate is restored to the initial value, 
while minimal repair is done at breakdowns. 

Considering that no simple queueing models are available 
which include explicitly both preemptive and 
non-preemptive interruptions for unreliable servers with 
Weibull distributed increasing failure rate, three approximate 
queueing models will be utilized for sake of comparison, to 
estimate the average WIP at the workstation when the 
preventive maintenance interval TP is changed. This is made, 
for instance, to compare the TP value corresponding to a 
minimum WIP, if any, to the value corresponding to the 
minimum maintenance cost per unit time, and to assess the 
effect of changing TP on system WIP. 

It should be pointed out that this paper has not the goal of 
developing a new or exact queueing model for unreliable 
servers subject to both preemptive and non-preemptive 
interruptions, but rather to use some existing approximate 
queueing model to point out the following issues often 
neglected by maintenance planners: 
a) WIP and cycle time can be quite sensitive to the 

frequency of preventive maintenance actions; 
b) to choose a preventive maintenance interval based only 

on maintenance cost minimization or other criteria 
(production planning requirements, instructions from 
equipment manufacturers etc.) may have a negative 
impact on other operational performances of the 
manufacturing system such as WIP and cycle time, which 
can also bring an adverse impact on overall costs; 

c) the value of preventive maintenance interval which 
minimizes the maintenance cost can be quite different 
from the value which minimizes WIP, thus asking for a 
trade-off decision. 

In this section, to provide an evidence of the above issues, 
some numerical results will be shown using the following 
approximate queueing models. We do not expect that any of 
the adopted model will provide precise numerical results, 
owing to the large number of approximations involved, but 
their combined utilization can give a measure of the effects of 

improperly selecting the preventive maintenance intervals, 
and can give a qualitative guidance to maintenance planners. 
Improved queueing models or simulation studies will be 
required to obtain precise results. 
 
MODEL I) 

This is the basic Whitt model (7) where ce is changed in a 
parametric manner assuming values 0.5, 0.75, 1. This avoids 
the need to explicitly compute its value based on the 
reliability characteristics of the machine and the timing of 
maintenance actions. 

The expected effective process time has a value which 
includes the natural process time, and the downtimes 
occurring during the processing of the job owing to 
breakdowns and preventive maintenance. The computation is 
performed utilizing (9) and (12) in sequence, considering that 
in the present application the average number of units 
processed during the time interval TP between two 
consecutive preventive maintenance actions is  
 

0t
ATN P

t=                   (19) 

 
thus obtaining 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+=

AT
t

A
t

N
t

A
tt

P

t

t

t
e

1
0

0 .         (20) 

 
The breakdown induced availability is  
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where MTTF is computed as shown in (2)-(3) assuming a 
Weibull distributed time to failure.  
Finally, the resource utilization is computed as ρ = te/ta.  
 
MODEL II) 

This is the Whitt model (7) where te is computed as shown 
for model I, while breakdown-related ce is computed 
according to Hopp and Spearman (11) but using the MTTF 
value from (2) computed with IFR and preventive 
maintenance. Since in case of Weibull lifetime distribution 
the actual failure rate is increasing, to use a constant value, 
equal to the average value of the failure rate over interval TP 
is an approximation. However, given that systems with 
increasing failure rate are more predictable in their failure 
time, it is well known that the coefficient of variation of 
uptime is lower than 1 [23] so that it is expected that (11) 
overestimates rather than underestimates the value of ce. 
Moreover, we can expect the variability effect to be less 
relevant than the resource saturation effect. The final value of 
ce resulting from the inclusion of non-preemptive 
interruptions is again obtained from (12)-(14) according to 
the above cited two-step procedure. 
 
MODEL III) 

This is the model with two priorities (15)-(17), where the 
preventive maintenance actions are explicitly modeled with 
the stream of arrivals having priority 2. The stream of jobs to 
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be processed is the one having priority 1. The parameters 
utilized in the model are λ1 = 1/ta, λ2 = 1/TP, μ1 = 1/te, μ2 = 
1/tt, E(S1) = te, E(S2) = tt, where te, includes only the effects of 
breakdowns, and is computed according to (9) with 
availability given by (2) and (21).  

In all models, except where otherwise specified, the cycle 
time is computed as E(CT) = E(QT) + te, and the average 
value of WIP is computed from Little’s law (18). 

 
In the following a sample numerical application is 

considered to assess the occurring phenomena and draw 
some conclusions. Only one numerical case is shown here 
owing to space limitations but a number of other numerical 
experiments confirmed that it is representative of a typical 
system behavior. Computations were made assuming the 
parameters values shown in Table I. 

 
Table I. Parameters values for the numerical application. 
 

Weibull parameter, η 160 
Weibull parameter, β 4.5 
Natural average process time, t0 (min) 85 
Standard deviation of natural process time, σ0 (min) 2 
WIP holding cost, h (€/unit hr) 10 
Mean preventive maintenance Time, tt (h) 2 
Standard deviation of preventive maintenance 
time, σt (h) 

0.5 

Mean interarrival time, ta (min) 100 
MTTR (h) (corrective maintenance) 5 
Standard deviation of MTTR, σr (h) 1 

 
Figure 1 shows the WIP trends computed resorting to the 

three adopted models when TP changes from 20 to 500 hr. 
Curves referring to model I are shown for ce values of 0.5, 
0.75, and 1. While significant differences in the computed 
values occur, due to the different approximations involved, 
all models show the same trend. In particular it is worth 
noting that two radically different models, namely Model III 
and Model I with ce = 0.5 show quite similar values. Model II 
show much lower WIP owing to the very low ce value 
resulting from the application of Hopp and Spearman model 
to the case of IFR, which raises doubts on the acceptability of 
this approximation. Overall, as TP is gradually increased, the 
WIP trend involves at first a rapid reduction until a minimum 
is reached, then an increase, followed by a final stabilization 
to an asymptotic value. This may be explained observing 
that, apart from the variability term, WIP directly depends 
from the resource saturation which, in turn, is directly 
dependent on the value of the effective process time. Figure 2 
then shows the variation of effective process time. In Figure 
2a), which refers to models I and II, we observe three distinct 
zones. In the first zone, for small values of TP, the value of te 
is high, but rapidly decreasing, because of the significant 
impact of preventive maintenance downtime. This downtime 
is distributed over a comparatively small number of pieces 
given the high frequency of preventive maintenance actions. 
Contribution of corrective maintenance downtime is instead 
negligible as the frequent preventive maintenance keeps the 
system failure rate low and few breakdowns are expected 
given that MTTF > TP. In the third zone, for high values of 

TP, the contribution of preventive downtime becomes 
negligible, given that a high number of pieces are processed 
between preventive stoppages, and the corrective downtime 
contribution stabilizes to the value corresponding to 
distributing the corrective downtime over the average 
number of pieces processed between two consecutive 
breakdowns, given that TP becomes greater than MTTF and 
that for high TP values the frequency of preventive 
maintenance has only a negligible effect on the failure rate 
which stabilizes towards an asymptotic value. In the 
intermediate zone a minimum of te, and thus WIP, may occur 
or not depending on the trade-off between the competing 
effects of reducing preventive stoppages and increasing 
corrective stoppages, when TP and MTTF become 
comparable and changes in TP strongly affect MTTF 
variations and resource availability. Figure 2b) instead shows 
te computed according to Model III where only the effect of 
corrective stoppages is included, being the preventive 
stoppages treated separately. In that figure the asymptotically 
stabilizing contribution of breakdowns is evident. Finally, 
Figure 2c) shows the trend of te computed with models I and 
II but in a different case respect that of Table I, showing that 
the above described trade-off between corrective and 
preventive downtime effects on effective process time does 
not necessarily give rise to a minimum value of te. Figure 3, 
shows instead the WIP curve of model III superimposed to 
the total maintenance cost per unit time CAU (TP) curves 
computed according to (6). Three curves are depicted for 
different couples of preventive and corrective intervention 
costs. This shows that while the actual costs involved in 
maintenance actions define a different optimal preventive 
maintenance interval, this interval is obviously not related to 
the interval minimizing WIP, and significant percent 
increases of WIP may occur when TP is set at the minimum 
maintenance cost respect the minimum WIP value. 
Therefore, if we sum to the overall maintenance cost CAU 
(TP), the WIP holding cost, CWIP(TP) = h WIP, where h 
(€/unit hr) is the unit WIP carrying cost, we can compute a 
total cost as shown in Figure 4. The corresponding TP value 
minimizing this total cost can be another option for planning 
a maintenance policy. 

 

 
 

Figure 1. WIP vs preventive maintenance interval. 
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a) b) c) 
Figure 2. Trends of effective process time vs preventive maintenance interval 

 

 
 

Figure 3. Trends of WIP and maintenance costs  
(legend: Cmp = CP, Cmg = CB). 

 

 
 

Figure 4. Trends of WIP, maintenance and total costs. 

I. CONCLUSIONS 
In this paper some queueing models have been used to 

assess the effects that the preventive maintenance interval has 
on the operational performance of single machine 
manufacturing systems characterized by an increased failure 
rate. While the study pointed out that still some research 
work is required to develop precise queueing models for 
unreliable servers undergoing both preemptive an non 
preemptive interruptions with non exponentially distributed 
uptimes, it was also shown that such approximate models can 
help to quickly represent the order of magnitude and the 
effects of the involved trade offs. In particular, it was shown 
that WIP can be very sensitive to the preventive maintenance 
interval, and that the minimum cost maintenance interval is 
not related to a minimum WIP. Arbitrary selection of this 

interval or its choice made to minimize only the maintenance 
cost can have a detrimental effect on the system 
performances. Presented models allow, instead, to determine 
the maintenance interval giving the minimum total cost or, 
anyway, can help maintenance planners to make more 
informed decision related to costs-performances trade offs. 
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