
FTS-SQL: A Query Language for Fuzzy Multidatabases

Awadhesh Kumar Sharma∗, A. Goswami†, D.K. Gupta‡

Abstract—Once the relational data model is extended to sup-
port the fuzzy multidatabases, there is need to have a language
to facilitate fuzzy queries formulations on integrated fuzzy rela-
tions under the extended relational data model. Formulation of
such a query needs functions that do not exist in classical data
manipulation languages such as SQL, which is designed to ma-
nipulate data in a single database. Classical SQL deals with sin-
gle relation as an object of manipulation where as the current
need is to allow sets of relations as the objects. Therefore, there
is a need to extend the SQL to FTS-SQL that supports fuzzy
query formulation on FTS relations [12] under the extended re-
lational data model. To extend the SQL to FTS-SQL, a query
syntax is proposed with additional clause HAVING α, β and
WITH SOURCE-CONTEXT (optional). An option [sameDB] or
[anyDB] is attached to SELECT and WHERE clauses that give
a direction to the query processor for query evaluation. By spec-
ifying a suitable value to α, β ∈ [0, 1], a precision fuzzy query
can be formulated. Default values forα and β are set to 1 which
correspond to crisp case. Thus formulation of crisp queries on
FTS relations are also allowed. Use of WITH clause joins the
source context information to each of the resultant tuple. To
process these fuzzy queries efficiently, a query processing archi-
tecture is proposed that has a query mediator and a number of
query agents to handle the query processing tasks. A query de-
composition and optimization strategy is proposed based on the
use of option [sameDB]/[anyDB] attached with WHERE clause
and two algorithms namely, FTS-SQL-Processing-1 & FTS-SQL-
Processing-2 are devised to support them. The query syntax and
the query processing algorithms are explained by means of illus-
trative examples.

Keywords: fuzzy multidatabases, fuzzy query formulation, fuzzy
query processing, fuzzy query optimization

1 Introduction

Many users usually have their data in several databases and
frequently need to jointly manipulate data from different
databases. For example: a traveller looking for cheapest route
may need to query several airline, rail, and bus databases. The
manager of a company may need to see the account balances
that the company has at different bank branches. Therefore,
he would like to query all the relevant bank databases and his
own databases.

∗MMMEC, Gorakhpur, UP, India, email:akscse@rediffmail.com
†IIT Kharagpur, WB, India, goswami@maths.iitkgp.ernet.in
‡IIT Kharagpur, WB, India, dkg@maths.iitkgp.ernet.in

Formulation of such a query needs functions that do not exist
in classical data manipulation languages such as SQL, which
is designed to manipulate data in a single database. Classi-
cal SQL deals with single relation as an object of manipu-
lation where as the current need is to allow sets of relations
as the objects. A system for the manipulation of data in au-
tonomous databases is called a multidatabase system (MDBS)
and the corresponding language is called a multidatabase ma-
nipulation language (MML)[9]. Databases may be manip-
ulated together without global integration are called interop-
erable[5]. [6] present the multidatabase extension of SQL
called MSQL that contains new functions designed for non-
procedural manipulation of data in different and nonintegrated
SQL databases. A theoretical foundation for such languages
has been proposed in[2] by presenting a multirelational al-
gebra and calculus based on relational algebra and calculus.
In [7] a semantic query language, SemQL, has been provided
to enable users to issue queries to a large number of au-
tonomous databases without prior knowledge of their schema.
[10] presents an unique approach to query decomposition in
a multidatabase environment which is based on performing
transformations over an object algebra that can be used as the
basis for a global query language.

Many real world problems involve imprecise and ambiguous
information rather than crisp information. Recent trends in the
database paradigm are to incorporate fuzzy sets to tackle im-
precise and ambiguous information of real world problems.
Query processing in multidatabases have been extensively
studied, however, the same has rarely been addressed for fuzzy
multidatabases. In this paper, an attempt is made to extend the
SQL to formulate a global query on a fuzzy multidatabase un-
der FTS relational model discussed in [12]. An architecture
for distributed query processing with a strategy for query de-
composition and optimization has also been provided.

1.1 Assumptions

The proposed system configuration basically consists of one
global site and a number of local sites. One of the local sites
can be the global site, in which case a data communication
cost is saved for the site and the global site. Each local site
maintains its own data management system that support FSQL
[3, 4] and is independent of other sites. A user communicates
only with the global site. A global query using FTS-SQL is
entered at the global site, and results are received from the

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



global site. The global site maintains information about each
local fuzzy database structure, such as fuzzy schema defini-
tions and which kind of fuzzy relations are stored in which
local fuzzy database. This allow the global site to efficiently
schedule a global fuzzy query processing plan. Each local
fuzzy database can accommodate any number of fuzzy rela-
tions and optimally process each local fuzzy query given by
the global site.

Rest of the paper is organized as follows: Section 2 gives brief
definitions of the concepts used in developing the algorithm in
question. Section 3 introduces and discusses an algorithm to
map the problem of Discovery of Fuzzy Inclusion Dependen-
cies (FIDα) in Fuzzy Databases to the problem of Finding
Cliques in Hypergraphs. The algorithm for the Discovery of
FIDα is developed and discussed in section 4 and finally the
paper is concluded in section 5.

2 The Query Syntax

Well defined semantics of FTS-relational operations may not
be directly suitable for query formulation, hence FTS-SQL
(the fuzzy version of TS-SQL[8]) is designed. Demonstra-
tion of syntax of a simple FTS-SQL query may be given as
follows:

SELECT < target attributes >[anyDB]/[sameDB]
WITH Source Context{optional}
FROM < FTS − relation >
WHERE < selection/join

conditions > [anyDB]/[sameDB]
HAVING < value of α, β >

It may be noted that the keyword anyDB or sameDB are op-
tional for SELECT clause and WHERE clause and at the same
time a simple FTS-SQL query has an optional WITH clause
and HAVING clause which makes it different from normal
SQL. For both clause, default keyword used is anyDB. If
WITH clause is specified in a FTS-SQL query, the query re-
sult will also include the source context allowing the user to
interpret the query tuples using source context. The HAVING
clause specifies the value ofα, β ∈ [0, 1] whereα is used for
α-resemblance [11] of fuzzy attribute values andβ is used as a
threshold of the membership grade of fuzzy tuple to the fuzzy
relation to satisfy theselectioncriteria. A FTS-SQL query can
be written as:

SELECT R.A, S.B [sameDB]
FROM R,S
WHERE R.XEQ S.X AND R.UEQ ‘abc’

AND S.V EQ HIGH [anyDB]
HAVING 0.8, 0.6

This query can be translated into an equivalent FTS-relational
expression as shown below:

fs
π sameDB

R.A,S.B,.8,.6

(
(
fs
σ R.U EQ ′abc′.8,.6 R)

fs
./

anyDB
R.X EQ S.X,.8,.6(

fs
σ S.V EQ High,.8,.6S)

)

This translation is allowed because both
fs
./ sameDB

α,β and are
fs
./ anyDB

α,β commutative and associative, however, source pred-
icate must be evaluated before any FTS join is carried out,
since attributes of operand relations are merged during the
join. A FTS-SQL query involving union, intersection or sub-
traction of two or more FTS-relation, can be written as given
below:

SELECT < target attributes >[anyDB]/[sameDB]
WITH SOURCE CONTEXT{optional}
FROM < FTS − relation >
HAVING < value of α, β >
WHERE < selection/join

conditions >[anyDB]/[sameDB]
Union [anyDB]/[sameDB] or
Intersection [anyDB]/[sameDB] or
Minus [anyDB]/[sameDB]
SELECT < target attributes >[anyDB]/[sameDB]
WITH SOURCE CONTEXT{optional}
FROM < FTS − relation >
WHERE < selection/join

conditions >[anyDB]/[sameDB]
HAVING < value of α, β >

In summary, the main features offered by FTS-SQL include:

• FTS-SQL satisfies the closure property. Given FTS-
relations, queries produce FTS-relations as result.

• FTS-SQL allows source options [anyDB]/[sameDB] to
be specified on the SELECT and WHERE clauses, as
well as on theunion, intersection & minusFTS opera-
tions. Source option on SELECT clause determines if
tuples from different local databases can be combined
during projection. Source option on WHERE clause de-
termines if tuples from different local databases can be
combined during join.

• Defining source predicates to operand FTS-relations,
can make formulation of queries to a specific local
database. A source predicate is represented by<
relation name > .source in <set of localDBid >

• Queries can be on both crisp and fuzzy attributes. By
specifying different values ofα, β in the HAVING
clause, the precision in query formulation can be ad-
justed. α ∈ [0, 1] is used forα-resemblance of fuzzy
values in fuzzy predicates, where asβ ∈ [0, 1] imposes
a constraint while selecting a fuzzy tuple. Default value
for both of them is1 which correspond to crisp values.
It can be shown that some of the FTS-SQL queries in-
volving the anyDB option can not be performed both di-
rectly or indirectly by the normal SQL. Even when some

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



of the FTS-SQL queries can be computed by FSQL ex-
pressions, it is believed that FTS-SQL will greatly reduce
the effort of query formulation on fuzzy relational multi-
database of type-2.

• Using the clause WITH SOURCE CONTEXT, tuples in
the query results can be joined with its source related in-
formation available insource relationtable 3.

Table 1. Set of export fuzzy relations from
databases DB1 & DB2

[DB1]: Emp1

Name Age Hall µr

Jaya .5/old MT .50
Apu .5/mid JCB .50

[DB1]: Dept1
Dname HoD Fund µr

Chem Jaya .63/low .63
Eco Maya .63/mod .63

[DB2]: Emp2

Name Age µr

Jaya .5/mid .50
Maya .5/mid .50

[DB2]: Dept2
Dname Staff HoD Fund µr

Eco 10 Maya .6/mod .60
Chem 15 Jaya .63/mod .63

In the following examples, it is shown that a number of sim-
ple global fuzzy queries can be formulated using FTS-SQL
over the FTS relations given in Table 2 and their semantics are
explained . In every example it is assumed thatα = .8 and
β = .6 to indicate the precision of the fuzzy query.

Example 1 Q1: Retrieve the Department name and the name
of head of the department who has the departmental fund
greater than .6/mod.

SELECT T.Dname, T.HoD,
T.Fund[sameDB]

FROM Dept T
WHERE T.FundEQα .66/mod
HAVING .8,.6

T.Dname T.HoD T.Fund µr source
Chem Jaya .63/low .63 DB1

Eco Maya .63/mod .63 DB1

Eco Maya .6/mod .6 DB2

Chem Jaya .63/mod .6 DB2

With the source option [sameDB] assigned to SELECT clause,
Q1 requires the projection ofDept to include the source at-
tribute. Hence the fuzzy tuples with the identical projected
attribute values not source values remain to be separate in the

Table 2. FTS Relations: level-0 integration of
DB1, DB2

Emp=merge(Emp1, Emp2)
Name Age Hall µr source
Jaya .5/old MT .50 DB1

Apu .5/mid JCB .50 DB1

Jaya .5/old Null .50 DB2

Maya .5/mid Null .50 DB2

Dept=merge(Dept1, Dept2)
Dname Staff HoD Fund µr source
Chem Null Jaya .63/low .63 DB1

Eco Null Maya .63/mod .63 DB1

Eco 10 Maya .6/mod .60 DB2

Chem 15 Jaya .63/mod .63DB2

Table 3. Source relation to provide source (con-
text) Semantics

Source Relation
source Org-Unit LOC DBMS DBA
DB1 Personnel IITD ORACLE Gupta
DB2 R & D IITK DBASE3 Nanda

query result, e.g. information aboutEcodepartment. The two
fuzzy values .6/mod and .63/mod areα-resemblant but the tu-
ples related withEco department are not merged rather re-
main to be separate in the query result. If the source option
[anyDB]is not important during the projection, the source op-
tion can be assigned to the SELECT clause as shown in the
next query example.

Example 2 Q2: Retrieve the Department name and the de-
partmental fund regardless where the department record come
from.

SELECT T.Dname, T.Fund[anyDB]
FROM Dept T
HAVING .8,.6

T.Dname T.Fund µr source
Chem .63/low .63 DB1

Eco .63/mod .63 *
Chem .63/mod .6 DB2

As shown in result of the queryQ2, fuzzy tuples that areα-
resemblant are merged using fuzzyunionand the source value
of the merged tuple is indicated by ’*’ if the parent tuples
come from different source.

3 Distributed Query Processing Architecture

3.1 Query Mediator and Query Agents

The proposed distributed query processor has a query media-
tor and for each local database there is one query agent. The

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



responsibilities of a query mediator are:

1. to take the global queries as input given by multi-
database applications, and decompose it into multiple
sub-queries to be evaluated by the query agents of the re-
spective local databases. For this decomposition process
it has to refer to Global Fuzzy Schema to Export Fuzzy
Schema Mapping information. This unique information
is supposed to be stored in the FMDBS.

2. to forward the decomposed queries to respective local
query agents.

3. to assemble the sub-query results returned by query
agents and further process the assembled results in order
to compute the final query result.

4. to transform back the format of final query result into a
format that is acceptable to multi-database applications.
Here again it refers to Global fuzzy Schema to Export
Fuzzy Schema Mapping information.

The responsibilities of a query agents are:

1. to transform sub-queries into local queries that can be
directly processed by the local database systems. This
transformation process refers to Export Schema and Ex-
port to Local Schema Mapping information. This in-
formation is supposed to be stored in respective local
databases.

2. to transform back (using Export Schema and Export to
Local Schema Mapping information) the local query re-
sults into a format that is acceptable to the query mediator
and forward the formatted results to the query mediator.

Sub-queries are independent hence they may be processed in
parallel at respective local databases. This reduces the query
response time. Query agents hide heterogeneous query inter-
faces of local database systems from the query mediators.

Distributed query processing steps designed for global FTS-
SQL queries can be described briefly as follows: Global FTS-
SQL queries are parsed to ensure that they are syntactically
correct. Based on the parsed trees constructed, the queries
are validated against the global schema to ensure that all rela-
tions and attributes in the queries exist and are properly used.
Given a global FTS-SQL query, the query mediator decom-
poses it into sub-queries to be evaluated by the query agents.
Here the local database involved in global FTS-SQL query
will be determined. Some query optimization heuristics are
introduced to reduce the processing overhead. Similar strate-
gies have been adopted for optimizing queries for other multi-
database systems[1]. Decomposed sub-queries disseminated
to the appropriate query agents for execution. Query agents
further translate the sub-queries to the local database queries
and return the sub-query results to the query mediator. The

query mediator assembles the sub-query results and computes
the final query result if there exist some sub-query operations
that could not be performed by the query agents.

4. Query Decomposition with Optimization

FTS-SQL allows source options to be attached to their SE-
LECT and WHERE clauses. Hence a strategy should should
be evolved to decompose a FTS-SQL query to handle differ-
ent combination of source options. Therefore, it has been de-
signed to meet the following objectives:

(a) Query agents are supposed to perform most of the query
processing tasks in order to maximize the parallelism in
local query evaluation.

(b) To reduce the sub-query results that have to be transferred
from the local database sites to the query mediator and
heuristic query optimization has to be performed. Query
response time can be improved with small local query
results shipped between sites.

(c) Since every FTS-SQL operations can’t be performed by
local database systems, the decomposition process must
consider the capabilities of query agents and also deter-
mine the portion(s) of global queries to be processed by
the query mediator itself. At present it is assumed that all
query agents support the usual select-project-join FTS-
SQL queries.

WHERE clause with the source option sameDB allows the
join of tuples from the same local database only and with the
source option anyDB it allows the join of tuples from any
local database. Based on this join definition, the decompo-
sition strategies are derived for following two categories of
FTS-SQL queries:

4.1. FTS-SQL queries with WHERE <
. . . >[sameDB]

As per this strategy, a global query is decomposed into a sub-
query template and a global query residue. Sub-query tem-
plate is the sub-query generated based on the global schema
and it has to be further translated into sub-queries on the ex-
port schemas of local fuzzy databases relevant to the global
query. The global query residue represents the remaining
global query operations that have to be handled by the query
mediator. SincesameDBis the source option of the WHERE
clause, allselectionandjoin predicates on the global FTS re-
lation(s) can be performed by the query agents together with
their local database systems. Deriving theSub-Query Tem-
plateand theGlobal Query Residuefrom aGlobal Querymay
be given as follows:

1: The SELECT clause of Sub-Query Template is assigned
the list of attributes that appear in the SELECT clause
of Global Query, including those which appears in the
aggregatefunctions.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



2: The FROM clause of Sub-Query Template is assigned the
global FTS-relations that appear in the FROM clause of
Global query.

3: Move the selection and join predicates in the WHERE
clause of Global Query to the WHERE clause of Sub-
Query Template.

4: The Global Query Residue inherits the SELECT clause
of the original Global Query. Its FROM clause is de-
fined by the union of sub-query results. In other words,
only operations to be performed by the Global Query
Residue are Projections. The WITH clause is retained
in the Global Query Residue and performed in the last
phase of the query processing.

5: The values ofα and β in the HAVING clause of the
global query are assigned to the having clause of all the
sub-queries.

Example 3 Consider the global fuzzy database as given in
Table 2 whose component local fuzzy databases are given in
Table 1. In the following queryQa, it is shown that the join
predicate (T1.Name EQα T2.HoD) and selection predicate
(T2.Fund EQα .66/mod) have been propagated to the sub-
query template for decomposition of a global query that has
been formulated using FTS-SQL. Having performed a union of
sub query results returned by the query agents, a final projec-
tion operation on the union result will be required as specified
in the global query residue.

Global Query(Qa):
SELECT T1.Name, T2.Dname [anyDB]
FROM EmpT1, DeptT2

WHERE T1.Name EQα T2.HoD AND
T2.Fund EQα .66/mod [sameDB]

HAVING .8, .6

Sub-Query Template:
SELECT T1.Name, T2.Dname
FROM EmpT1, DeptT2

WHERE T1.Name EQα T2.HoD AND
T2.Fund EQα .66/mod

HAVING .8, .6

Global Query Residue:
SELECT T1.Name, T2.Dname [anyDB]
FROM <Union of sub-query results>
HAVING .8, .6

4.2. FTS-SQL queries with WHERE< . . . >[anyDB]

This strategy generates one Global Query Residue and mul-
tiple Sub-Query Templates, one for each global relation in-
volved in the Global Query. In other words, a Global Query
with n relations in its FROM clause will be decomposed into
n Sub-Query Templates. This is necessary because join predi-
cates in Global Query can’t be propagated to the Sub-Queries.

Given below is the sequential steps to deriveSub-Query Tem-
platesandGlobal Query Residuefrom aGlobal Query.

1: For each global FTS-relation R involved in the FROM
clause its corresponding sub-queries are generated as fol-
lows:

(a) The SELECT clause of Sub-Query Template is as-
signed the list of R’s attributes that appears in the
SELECT clause or join predicates of the Global
Query, including those which appears in theaggre-
gatefunctions.

(b) Selection and join predicates using R’s attributes
in the Global Query are propagated to Sub-Query
Template.

(c) The FROM clause of Sub-Query Template is as-
signed R.

2: For the inter-global relationjoin predicates in the
WHERE clause of Global Query, theprojections are
retained in WHERE clause of Global Query Residue.
The clause WITH SOURCE CONTEXT is also retained,
however, processed at last.

3: The values ofα and β in the HAVING clause of the
global query are assigned to the having clause of all the
sub-queries.

Example 4 Consider here again a similar query as in Exam-
ple 3 but withanyDBoption attached to WHERE clause. Thus,
a new global queryQb has been formulated which is decom-
posed as shown below:

Global Query(Qb):
SELECT T1.Name, T2.Dname [sameDB]
FROM EmpT1, DeptT2

WHERE T1.Name EQα T2.HoD AND
T2.Fund EQα .66/mod [anyDB]

HAVING .8, .6

Sub-Query Template-1(for Emp):
SELECT T1.Name
FROM EmpT1

HAVING .8,.6

Sub-Query Template-2(for Dept):
SELECT T2.Dname, T2.Fund, T2.HoD
FROM DeptT2

WHERE T2.Fund EQα .66/mod
HAVING .8,.6

Global Query Residue:
SELECT T1.Name, T2.Dname[sameDB]
FROM <union of Sub-query results for Emp> T1,

<union of Sub-query results for Dept> T2

WHERE T1.Name EQα T2.HoD
HAVING .8,.6

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



The FTS-SQL query shown in example 4, it can be shown
that the join predicateT1.NameEQαT2.HoD can’t be
evaluated before the two Global FTS-relations Dept and
Emp are derived. Nevertheless, the selection predicate
T2.FundEQα.66/mod can still be propagated to the sub-
queries for local relations corresponding to Dept. Having per-
formed unions of sub-query results to construct the global re-
lationsDept andEmp, a finaljoin andprojectionof the global
relations will be required as specified in the Global Query
Residue.

5 Conclusions and Future Work

In this paper a query language FTS-SQL is proposed to formu-
late a global fuzzy query on a fuzzy relational multidatabase
of type-2 under FTS relational model.FTS relational oper-
ations operate on FTS relations to produce a resultant FTS
relation. An architecture for distributed query processing with
a strategy for query decomposition and optimization is also
provided. Sub-queries obtained as a result of query decom-
position are allowed to get processed in parallel at respective
local fuzzy databases. This reduces the query processing time
effectively.

The future work will explore an appropriate extension to the
relational model for integrated fuzzy databases with level-1
instance integration using information on fuzzy inclusion de-
pendencies among component fuzzy relational databases. A
user-friendly query interface can be designed and developed
for FTS-SQL queries in the heterogeneous database environ-
ment.

References

[1] Evrendilek, C., Dogac, A., Nural, S., Ozcan,
F., “Query optimization in multidatabase systems”,
Jouranal of Distrubuted and Parallel Databases, 5(1)
(1997), 77-114.

[2] John Grant, Witold Litwin, Nick Roussopoulos,
Timos Sellis, “Query languages for relational mul-
tidatabases”,The VLDB Journal, Volume 2, Issue 2
(1993), pp 153-172.

[3] Galindo J., Medina J.M., Cubero J.C., Garca M.T.,
“Relaxing the Universal Quantifier of the Division in
Fuzzy Relational Databases”,International Journal of
Intelligent Systems, Vol. 16-6, (2001), pp 713-742.

[4] Galindo J., Medina J.M., Pons O., Cubero J.C., A
Server for Fuzzy SQL Queries, “Flexible Query An-
swering Systems”, eds. T. Andreasen, H. Christiansen
and H.L. Larsen,Lecture Notes in Artificial Intelligence
(LNAI), 1495, Ed. Springer,(1998), pp. 164-174.

[5] Litwin W. and Abdellatif A., “Multidatabase Interoper-
abilty”, IEEE Computer journal, (19)12, (1986), pp 10-
18.

[6] Litwin, W., Abdellatif, A., Zeroual, A., Nicolas, B.
“MSQL: A multidatabase language”,Information sci-
ences, 49, (1989), pp 59-101.

[7] Lee, Jeong-Oog, Baik, Doo-Kwon, “SemQL: a se-
mantic query language for multidatabase systems”,In:
Proceedings of the eighth international conference on
Information and knowledge management, United States,
(1999), pp 259-266.

[8] Lim Ee Peng, Chiang Roger H.L., Cao Yinyan “Tu-
ple source relational model: A source aware data model
for multidatabase”,Data and Knowledge Engineering,
29, (1999), pp 83-114.

[9] Litwin W. et al, “SIRIUS Systems for Distributed Data
Management”, In: Schneider, H.J., ed.,Distributed
Databases, New Yark: North-Holland, 1982.

[10] Juan C. Lavariega, Susan D. Urban, “An Object Al-
gebra Approach to Multidatabase Query Decomposition
in Donaj”, Distributed and Parallel Databases, Volume
12, Issue 1, (2002), 27-71.

[11] Rundensteiner, E.A., Hawkes, L.W. and Bandler,
W., “On Nearness Measures in Fuzzy Relational Data
Models”, International Journal of Approximate Reason-
ing, (3), (1989), 267-298.

[12] Sharma A.K., Goswami A., Gupta D.K., “FTS Re-
lational Data Model for Source-aware Fuzzy Rela-
tional Multidatabases”, In International Conf.Proc. of
ISCC’04, Alexandria, Egypt, (2004), pp 134-139.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


