

Abstract—The Reference Model for Open Distributed
Processing (RM-ODP) defines a framework for the
development of Open Distributed Processing (ODP) systems in
terms of five viewpoints. Each viewpoint language defines
concepts and rules for specifying ODP systems from the
corresponding viewpoint. However the ODP viewpoint
languages are abstract and do not show how these should be
represented and specified. We treat in this paper the need of
formal notation and specification for behavioural concepts in
the enterprise language. Using the Unified Modelling
Language (UML)/OCL (Object Constraints Language) we
define a formal semantics for a fragment of ODP behaviour
concepts defined in the RM-ODP foundations part and in the
enterprise language. We mainly focus on time, action,
behaviour constraints (sequentiality, non determinism and
concurrency constraints), and policies (permission, obligation,
prohibition). We also give a mapping of the considered
concepts to Event-B. This will permit the verification of such
specifications.

Keywords: RM-ODP, Enterprise Language, Behaviour Semantics,
UML/OCL, Event-B .

I. . INTRODUCTION

The Reference Model for Open Distributed Processing
(RM-ODP) [1-4] provides a framework within which support
of distribution, networking and portability can be integrated.
It consists of four parts. The foundations part [2] contains the
definition of the concepts and analytical framework for
normalized description of arbitrary distributed processing
systems. These concepts are grouped in several categories
which include structural and behavioral concepts. The
architecture part [3] contains the specifications of the
required characteristics that qualify distributed processing as
open. It defines a framework comprising five viewpoints,
five viewpoint languages, ODP functions and ODP
transparencies. The five viewpoints are enterprise,
information, computational, engineering and technology.

The authors are with Department of Mathematics &

Computer Science, Mohammed V University, Rabat
Morocco

(E-mail: balouki@cmr.gov.ma, bouhdadi@fsr.ac.ma,
elhajji@fsr.ac.ma, jalal.doct@gmail.com,
belhaj@cmr.gov.ma, benaini@fsr.ac.ma)

Each viewpoint language defines concepts and rules for
specifying ODP systems from the corresponding viewpoint.
However, RM-ODP is a meta-norm [5] in the sense that it
defines a standard for the definition of other ODP standards.
The ODP standards include modelling languages,
specification languages and verification.

In this paper we treat the need of formal notation of ODP
viewpoint languages. The languages Z, SDL, LOTOS, and
Esterel are used in RM-ODP architectural semantics part [4]
for the specification of ODP concepts. However, no formal
method is likely to be suitable for specifying every aspect of
an ODP system.

Elsewhere, there had been an amount of research for
applying the Unified Modelling Languages UML [6] as a
notation for the definition of syntax of UML itself [7-9]. This
is defined in terms of three views: the abstract syntax,
well-formedness rules, and modeling elements semantics.
The abstract syntax is expressed using a subset of UML static
modelling notations. The well-formedness rules are
expressed in Object Constrains Language OCL [10]. A part
of UML meta-model has a precise semantics [11,12] defined
using denotational meta-modelling semantics approach. A
denotational approach [13] is realized by a definition of the
form of an instance of every language element and a set of
rules which determine which instances are and are not
denoted by a particular language element.

Furthermore, for testing ODP systems [2-3], the current
testing techniques [14, 15] are not widely accepted and
specially for the enterprise viewpoint specifications. A new
approach for testing, namely agile programming [16, 17] or
test first approach [18] is being increasingly adopted. The
principle is the integration of the system model and the
testing model using UML meta-modelling approach [19-20].
This approach is based on the executable UML [21]. In this
context OCL can be used to specify the invariants [12] and
the properties to be tested [17].

In this context we used the meta-modelling syntax and
semantics approaches in the context of ODP systems. We
used the meta-modelling approach to define syntax of a
sub-language for the ODP QoS-aware enterprise viewpoint
specifications [5]. We also defined a UML/OCL meta-model
semantics for structural concepts in ODP computational
language [22]. In this paper we use the same approach for
behavioural concepts in the foundations part and in the
enterprise language. We also show how the ODP considered
concepts could be specified in the Event-B method.

The paper is organized as follows. In Section 2, we define
a meta-model semantics of core behaviour concepts (time,

Event B for ODP Enterprise Behavioral
Concepts Specification

Y. Balouki, J. Laassiri, H. Belhaj, R. Benaini, S. El hajji, M. Bouhdadi

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

action, behaviour, role, process). Section 3 defines a
meta-model semantics for behaviour concepts of RM-ODP
foundations part namely, time, and behavioural constraints.
We focus on sequentiality, non determinism and concurrency
constraints. In Section 4 we introduce the behaviour
concepts defined in the enterprise language. We give precise
definitions for behavioural policies. In section 5 overview the
correspondence of the main concepts with the Event B
method constructs. A conclusion and perspectives end the
paper.

II. META-MODELLING CORE BEHAVIOR CONCEPTS IN
RM-ODP FOUNDATIONS PART

We consider the minimum set of modeling concepts
necessary for behavior specification. There are a number of
approaches for specifying the behavior of distributed systems
and considering different aspects of behavior. We represent a
concurrent system as a triple consisting of a set of states, a set
of action and a set of behavior. Each behavior is modeled as a
finite or infinite sequence of interchangeable states and
actions [23]. To describe this sequence there are mainly two
approaches [24].

 1. “Modeling systems by describing their set of actions
and their behaviors”.

 2. “Modeling systems by describing their state spaces and
their possible sequences of state changes”.

These views are dual in the sense that an action can be
understood to define state changes, and state occurring in
state sequences can be understood as abstract representations
of actions [24]. We consider both of these approaches as
abstraction of the more general approach based on RMODP.
We provide the formal definition of this approach that
expresses the duality of the two mentioned approaches.

We mainly use concepts taken from the clause 8 “Basic
modelling concepts” of the RM-ODP part 2. These concepts
are: behavior, action, time, constraints and state (see figure
1). the latter are essentially the first-order propositions about
model elements. We define concepts (type, instance,
pre-condition, post-condition) from the clause 9
“Specification concepts”. Specification concepts are the
higher-order propositions applied to the first-order
propositions about the model elements. Although basic
modelling concepts and generic specification concepts are
defined by RM-ODP as two independent conceptual
categories [25].

The behavior definition uses two RM-ODP modeling
concepts: action and constraints (RM-ODP, part 2, clause
8.6):
Behavior (of an object): “A collection of actions with a set
of constraints on when they may occur”.
Action: “something which happens”.

 RM-ODP does not give the precise definition of
behavioral constraints. These are part of the system behavior
and are associated with actions. This can be formally defined
as follows:
Context c : constraint inv:
c.constrained_act -> size > 0
Context m :modelbehavior inv :
m.behavior->includesAll(m.Actions->union(m.constraints))

For any element b from Behavior. ”if b is an Action and
has at least one constraint , this constraint is a Behavior
element.” Similarly when b is a Constraint and has at least
one action, this action is a Behavior element.
Context b :behavior inv :
m.behavior->forall(b |(m.actions->includes(m.b) and
b.constraints->notempty) or
(m.constraints->includes(m.b) and b.actions->notempty)

To formalize the definition, we have to consider two
other modeling concepts: time and state. We can see how
these concepts are related with the concept of action by
looking at their definitions. Time is introduced in the
following way (RM-ODP, part 2, clause 8.10):
Location in time: “An interval of arbitrary size in time at
which action can occur.”
instant_begin : each action has one time point when it starts .
instant_end : each action has one time point when it finishes
[26]. .
State (of an object) (RM-ODP, part 2, clause 8.7): At a
given instant in time, the condition of an object that
determines the set of all sequences of actions in which the
object can take part. Hence, the concept of state is dual with
the concept of action and these modeling concepts cannot be
considered separately: This definition shows that state
depends on time and is defined for an object for which it is
specified.
Context t :time inv :
b.actions->exists (t1,t2| t1 =action.instant_beging ->notempty and
t2 =action.instant_end ->notempty and t1<> t2).

Fig. 1. Core Behavior Concepts

III. META-MODELING TIME AND BEHAVIORAL
CONSTRAINTS

“Behavioral constraints may include sequentiality,
non-determinism, concurrency, real time” (RM-ODP, part 2,
clause 8.6). In this work we consider constraints of
sequentiality, non-determinism and concurrency. The
concept of constraints of sequentiality is related with the
concept of time.

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

A. Time

Time has two following important roles in system design
[26]:

•　　It serves for the purpose of synchronization of
actions inside and between processes, the synchronization of
a system with system users, the synchronization of user
requirements with an actual performance of a system.

•　　It defines sequences of events (action sequences)
To fulfil the first goal, we have to be able to measure time

intervals. However, a precise clock that can be used for time
measurement does not exist in practice but only in theory
[27]. So the measurement of the time is always approximate.
In this case we should not choose the most precise clocks, but
ones that explain the investigated phenomena in the best way.
Simultaneity of two events or their sequentiality, equality of
two durations should be defined in the way that the
formulation of the physical laws is the easiest” [27]. For
example, for the actions synchronization, internal computer
clocks can be used and, for the synchronization of user
requirements, common clocks can be used that measure time
in seconds, minutes and hours.

We consider the second role of time. According to [27] we
can build some special kind of clock that can be used for
specifying sequences of actions. RM-ODP confirms this idea
by saying that “a location in space or time is defined relative
to some suitable coordinate system” (RM_ODP, part 2,
clause 8.10). The time coordinate system defines a clock used
for system modelling. We define a time coordinate system as
a set of time events. Each event can be used to specify the
beginning or end of an action. A time coordinate system must
have the following fundamental properties[26]:

•　　Time is always increasing. This means that time
cannot have cycles.

•　　Time is always relative. Any time moment is
defined in relation to other time moments (next, previous or
not related). This corresponds to the partial order defined for
the set of time events.

We use the UML (fig1) and OCL to define time: Time is
defined as a set of time events.
nextTE: defines the closest following time events for any
time events [26].

We use the followingTE relation to define the set of the
following time events or transitive closure for the time event t
over the nextTE relation:
followingTE: defines all possible following time events
Using followingTE we can define the following invariant
that defines the transitive closure and guarantees that time
event sequences do not have loops :
Context t :time inv :
Time->forAll(t:Time | (t.nextTE->isempty implies
t.follwingTE->isempty)
and (t.nextTE->notempty and t.follwingTE->isempty implies
t.follwingTE =t.nextTE) and (t.nextTE->notempty and
t.follwingTE->notempty implies t.follwingTE->
includes(t.nextTE.follwingTE->union(t.nextTE)) and
t.follwingTE->exludes(t)).

This definition of time is used in the next section to
define sequential constraints.

B. Behavioral constraints

We define the behavior like a finite state automaton
(FSA). For example, figure 2 shows a specification that has
constraints of sequentiality and non determinism. The system
is specified using constraints of non-determinism since state
S1 has a non-deterministic choice between two actions a and
b.

Based on RM-ODP, the definition of behavior must link
a set of actions with the corresponding constraints. In the
following we give definition of constraints of sequentiality,
of concurrency and of non-determinism.

(a) (b)

Fig. 2. a - Sequential deterministic constraints;
b - Sequential non deterministic constraints.

B.1 Constraints of sequentiality

Each constraint of sequentiality should have the
following properties [26]:
•　　It is defined between two or more actions.

•　　Sequentiality has to guarantee that one action is
finished before the next one starts. Since RM-ODP uses the
notion of time intervals it means that we have to guarantee
that one time interval follows the other one:

Context sc :constraintseq inv :
Behavior.actions-> forAll(a1,a2 | a1<> a2 and
a1.constraints->includes(sc)
and a2.constraints->includes(sc) and
((a1.instant_end.followingTE->includes(a2.instant_begin)
or(a2.instant_end.followingTE->includes(a1.instant_begin))

For all SeqConstraints sc, there are two different actions
a1, a2, sc is defined

between a1 and a2 and a1 is before a2 or a2 is before a1.

B..2 Constraints of concurrency

Figure 3 shows a system specification that has
constraints of concurrency since state a1 has a simultaneous
choice of two actions a2 and a3.

Fig. 3. RM-ODP diagram: Example constraints of

concurrency

a2

a3

a1 cc

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

For all concuConstraints cc there is a action a1, there are two
different internal actions a2, a3, cc is defined between a1 and a2 and
a3, a1 is before a2 and a1 is before a3
Context cc: constraintconc inv:
Behavior.actions-> forAll(a1 :Action ,a2 ,a3 : internalaction | (a1 <>
a2) and
(a2 <> a3) and (a3 <> a1) and a1.constraints->includes(cc) and
a2.constraints->includes(cc) and a3.constraints->includes(cc) and
a1.instant_end.followingTE-> includes(a2.instant_begin) and
a1.instant_end.followingTE-> includes(a3.instant_begin))

B..3 Constraints of non-determinism

In order to define constraints of non-determinism we

consider the following definition given in [24]: “A system is
called non-deterministic if it is likely to have shown number
of different behavior, where the choice of the behavior
cannot be influenced by its environment”. This means that
constraints of non-determinism should be defined between a
minimum of three actions. The first action should precede the
two following actions and these actions should be internal
(see figure 4).

a1
a3

a2

C

Fig. 4. Example Constraints example of non-determinism

We define this constraint as follows :
Context ndc: NonDetermConstraints inv :
Behavior.actions-> forAll(a1 :Action ,a2 ,a3 : internalaction | (a1 <>
a2) and
(a2 <> a3) and (a3 <> a1) and a1.constraints->includes(ndc) and
a2.constraints->includes(ndc) and
a3.constraints->includes(ndc) and
a1.instant_end.followingTE-> includes(a2.instant_begin) or
a1.instant_end.followingTE-> includes(a3.instant_begin)) .

We note that, since the choice of the behavior should not
be influenced by environment, actions a2 and a3 have to be
internal actions (not interactions). Otherwise the choice
between actions would be the choice of environment [26].

IV. MODELING BEHAVIOUR CONSTRAINTS SPECIFICATIONS
IN EVENT-B

In this last section, we treat the question of verifying ODP
specifications. For this we begin by defining how to use the
formal method event B [] to specify the RM-ODP concepts.
Event-B is a simplification as well as an extension of de B
formalism which has been used in number of large industrial
projects. The objective of this formal method is use the
refinement calculus to define and prove in the step by step
fashion so that the system in question will be correct by
construction. This will be very adequate in our context since
each specification is a refinement of another. This will be
done by using the propositional language, the predicate
language, the set-theoretic language, and arithmetic language
,such they presents some mathematical justifications to proof
obligation rules used in this approach.

In the previous chapters we specified the behaviour
constraints (Sequentiality, non-determinism, concurrent),
here we presents how we can develop these concepts by
using the Event-B and the tools of the open source
RodinPlatform.

This section introduces a Event-B concepts which
supports modelling with a set of semantic constructs that
correspond to those in behaviour concepts, defined in
enterprislanguage (see table 1).

Table 1. T Sample table

We develop the initial model of the sequential constraint
by both essentials construct of Event-B: machine and
context.

Fig. 6 A context of sequential constraint

Behavior
Concepts

Event-B Construct

Behavior Machine
State State static (constant with axioms) or

State dynamic(variable with invariants)
Action Event with guards(necessary conditions for

event to occur)
Constraint Invariants + guards

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

Fig. 7 A machine of sequential constraint

V. CONCLUSION
We address in this paper the need of formal ODP

viewpoint languages. Using the meta-modeling semantics,
we define a UML/OCL based semantics for a fragment of
behavior concepts defined in the foundations part (time,
sequentiality, non determinism and concurrency) and in the
enterprise viewpoint language (behavioral policies). These
concepts are suitable for describing and constraining the
behavior of open distributed processing enterprise
specifications.

The initial model of sequential constraint is developed by
using Event-B, Each model will be analyzed and proved to be
correct. The next step is the refinement of this model. We are
applying the same approach for other ODP enterprise
behavior concepts (real time).

REFERENCES

[1] ISO/IEC, ‘’Basic Reference Model of Open Distributed
Processing-Part1: Overview and Guide to Use, ‘’ISO/IEC CD
10746-1, 1994

[2] ISO/IEC, ‘’RM-ODP-Part2: Descriptive Model, ‘’ ISO/IEC
DIS 10746-2, 1994.

[3] ISO/IEC, ‘’RM-ODP-Part3: Prescriptive Model, ‘’ ISO/IEC
DIS 10746-3, 1994.

[4] ISO/IEC, ‘’RM-ODP-Part4: Architectural Semantics, ‘’
ISO/IEC DIS 10746-4, July 1994.

[5] M. Bouhdadi et al., ‘’A UML-Based Meta-language for the
QoS-aware Enterprise Specification of Open Distributed
Systems’’ IFIP Series, Vol 85, Springer, (2002) 255-264.

[6] J. Rumbaugh et al., The Unified Modeling Language, Addison
Wesley, 1999.

[7] B. Rumpe, ‘’A Note on Semantics with an Emphasis on UML,
‘’ Second ECOOP Workshop on Precise Behavioral
Semantics, LNCS 1543, Springer, (1998) 167-188.

[8] A. Evans et al., ‘’Making UML precise, ‘’ Object Oriented
Programming, Systems languages and Applications,
(OOPSLA'98), Vancouver, Canada, ACM Press (1998)

[9] A. Evans et al. The UML as a Formal Modeling Notation, ‘’
UML, LNCS 1618, Springer, (1999) 349-274

[10] J. Warmer and A. Kleppe, The Object Constraint Language:
Precise Modeling with UML, Addison Wesley, (1998).

[11] S. Kent, et al. ‘’A meta-model semantics for structural
constraints in UML,, In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral specifications for businesses and systems,
Kluwer , (1999). chapter 9

[12] E. Evans et al., Meta-Modeling Semantics of UML, In H.
Kilov, B. Rumpe, and I. Simmonds, eds, Behavioral
specifications for businesses and systems, Kluwer , (1999). ch.
4.

[13] D.A. Schmidt, ‘’Denotational semantics: A Methodology for
Language Development, ‘’ Allyn and Bacon, Massachusetts,
(1986)

[14] G. Myers, ‘’The art of Software Testing, ‘’, John Wiley
&Sons, (1979)

[15] Binder, R. ‘’ Testing Object Oriented Systems. Models.
Patterns, and Tools, ‘’ Addison-Wesley, (1999)

[16] A. Cockburn, ‘’Agile Software Development.
‘’Addison-Wesley, (2002).

[17] B. Rumpe, ‘’ Agile Modeling with UML, ‘’ LNCS vol. 2941,
Springer, (2004) 297-309.

[18] Beck K. Column on Test-First Approach. IEEE Software,
Vol. 18, No. 5, (2001) 87-89

[19] L. Briand , ‘’A UML-based Approach to System testing, ‘’
LNCS Vol. 2185. Springer, (2001) 194-208,

[20] B. Rumpe, ‘’ Model-Based Testing of Object-Oriented
Systems; ‘’ LNCS Vol.. 2852, Springer; (2003) 380-402.

[21] B. Rumpe, Executable Modeling UML. A Vision or a
Nightmare?, In: Issues and Trends of Information technology
management in Contemporary Associations, Seattle, Idea
Group, London, (2002) pp. 697-701.

[22] M. Bouhdadi, Y. Balouki, E. Chabbar. ‘’ Meta-Modeling
Syntax and Semantics of Structural Concepts for Open
Networked Enterprises”, ICCSA 2007, Kuala Lumpor, 26-29
August, LNCS 4707, Springer, (2007) 45-54

[23] Lamport, L. and N.A. Lynch, Distributed Computing: Models
and Methods, in Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics. 1990, Elsevier and
MIT Press.

[24] Broy, M., “Formal treatment of concurrency and time,‘’ in
Software Engineer's Reference Book,J. McDermid, Editor,
Oxford: Butterworth-Heinemann, (1991),pp 23

[25] Wegmann, A. et al. ‘’ Conceptual Modeling of Complex
Systems Using RMODP Based Ontology‘’ . in 5th IEEE
International Enterprise Distributed Object Computing
Conference -EDOC (2001). September 4-7 USA. IEEE
Computer Society pp. 200-211

[26] P. Balabko, A. Wegmann, “From RM-ODP to the formal
behavior representation” Proceedings of Tenth OOPSLA
Workshop on Behavioral Semantics ¨Back to Basics¨, Tampa,
Florida, USA , pp. 11-23 (2001).

[27] Henri Poincaré, The value of science, Moscow «Science»,
1983

[28] Harel, D. and E. Gery, “Executable object modeling with
statecharts“, IEEE Computer.30(7) pp. 31-42 (1997)

[29] Jean-Raymond Abrial: A System Development Process with
Event-B and the Rodin Platform. ICFEM (2007) 1-3

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009

