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Abstract—The optical behaviour of the human eye
is often characterized with the Zernike coefficients.
Great number of measurements and statistical data
are available for individuals and for various groups
of people concerning the Zernike coefficients of their
eyes. Although, these coefficients were obtained
from measurements at discrete points and via com-
putations using some discretization of the continu-
ous Zernike functions, the developers of these algo-
rithms could not rely on the discrete orthogonality
Zernike functions, simply because no mesh of points
ensuring discrete orthogonality was known. Only re-
cently was such a mesh of points found and reported.
In the present paper, this mesh is used to calculate
Zernike coefficients for some artificial cornea-like sur-
faces. Tests were carried out and are reported herein
on the precision of the discrete orthogonality obtained
via the mentioned discretization and on the precision
of the surface reconstruction.
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1 Introduction

The orthogonal system of Zernike functions were intro-
duced in [1] to model symmetries and aberrations of op-
tical systems (e.g., telescopes). In Fig. 1, one of the
Zernike functions is shown as an example in pseudo-
colour. Some of the important and useful properties of
the Zernike-system are summarized in [8]. The mentioned
paper can be used as a pointer to a wider range of rel-
evant publications. In Section 2, the continuous Zernike
functions and their indexing used in this paper are pre-
sented.

1.1 Zernike Functions in Ophthalmology

Nowadays, the ophthalmologists are quite familiar with
the smoothly curving Zernike-surfaces. They use these
surfaces exactly in the way as was intended by Zernike,
that is, to describe various symmetries and aberrations of
an optical system. In their case, of the human eye, more
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precisely, of the corneal surface – measured with some
corneal topographer – and of the refractive properties
of the eyeball (measured e.g., with a Shack-Hartmann
wavefront-sensor). This description is given in the form
of Zernike coefficients.

As the optical aberrations may cause serious acuity prob-
lems, and are significant factors to be considered in plan-
ning of sight-correcting operations, wide range of statisti-
cal data – concerning the eyes of various groups of people
– is available for the most important Zernike coefficients
[11].

Another interesting use of the Zernike coefficients was re-
ported recently. The optical aberrations of the eye make
it difficult or in certain cases impossible to make high-
resolution retinal images without compensating these
aberrations. However, by compensating them the high-
resolution retinal imaging can be achieved [12].

1.2 Placido Disks and Other Measurement
Patterns

The purpose of a cornea topographic examination is to
determine and display the shape and the optical power of
the living cornea. Due to the high refractive power of the
human cornea, the knowledge of its detailed topography
is of great diagnostic importance. The corneal surface is
often modelled as a spherical calotte, though, more com-
plex surface models are also used for various purposes,
including testing corneal topographer with non-spherical
surfaces [10]. Such test surfaces are shown in Figs. 5, 6
and 7.

The monocular cornea topographers evaluate the virtual
image of some measurement pattern that is reflected and
– after reflection – somewhat distorted by the corneal sur-
face. Many of the reflection-based corneal topographers
use a system of bright and dark concentric rings, called
Placido disk, as measurement-pattern. Such a measure-
ment pattern and its more sophisticated colour variant
are shown in Fig. 2.

The measurement properties of the conventional Placido
disk based topographers are rather problematic, as no
point-to-point correspondences are available for the pur-
pose of surface reconstruction [4]. On the other hand,
the reflection-based monocular corneal topographers with
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Figure 1: An example of the Zernike functions, namely Y 2
3 . Its indices can be verified in the index-space shown on

the right.

more elaborate and more distinguishable measurement
patterns are still popular, though they often rely on man-
ual positioning and on some means to mark a surface-
point.

Recently, a multi-camera surface reconstruction method
was suggested for the purpose of corneal topography in
[14]. The reconstruction is achieved by solving the par-
tial differential equations describing the specular reflec-
tions at the corneal surface. Though the multi-camera
corneal measurement approach is more precise and more
robust than the monocular measurements, the monocular
corneal topographers are nevertheless expected to remain
in use. For this reason, it is worth noting that the discrete
mesh of Fig. 3 – proposed in [8] – could well be considered
for the purpose of monocular corneal measurements.

1.3 Utilizing Discrete Orthogonality

Although, Zernike coefficients were obtained from mea-
surements at discrete corneal points and via computa-
tions using some discretization of the continuous Zernike
functions, the developers of these algorithms could not
rely on the discrete orthogonality – see e.g., [5], [6] –
Zernike functions simply because no mesh of points en-
suring discrete orthogonality was known. Not surpris-
ingly, the discrete orthogonality of Zernike functions was
a target of research for some decades [3] and only recently
was a mesh of points – ensuring discrete orthogonality of
the Zernike functions – found and introduced [8].

In the present paper, the aforementioned mesh is used
to calculate the Zernike coefficients for some artificial
cornea-like surfaces. Tests were carried out on the preci-
sion of the discrete orthogonality obtained via the men-
tioned discretization and on the precision of reconstruc-
tion from the Zernike coefficients.

In Section 3, the discretization approach introduced in
[8] is presented briefly. In Section 4, the program imple-

mentation of the discrete Zernike functions is presented
– together with programs for testing the orthogonality of
these functions, for computing the Zernike coefficients of
a surface. Finally, we draw conclusions in Section 5.

2 Continuous Zernike Functions

A surface over the unit disk can be described by a two-
variable function g(x, y). The application of the polar-
transform to variables x and y results in

x = ρ cosϑ, y = ρ sin ϑ, (1)

where ρ and ϑ are the radial and the azimuthal variables,
respectively, over the unit disk, i.e., where

0 ≤ ρ ≤ 1, 0 ≤ ϑ ≤ 2π. (2)

Using ρ and ϑ, g(x, y) can be transcribed in the following
form:

G(ρ, ϑ) := g(ρ cos ϑ, ρ sin ϑ). (3)

The set of Zernike polynomials of degree less than 2N is
as follows.

Y l
n(ρ, ϑ) :=

√
2n + |l|+ 1 ·R|l||l|+2n(ρ) · eilϑ

(l ∈ Z, n ∈ N, |l|+ 2n < 2N) (4)

The radial polynomials R
|l|
|l|+2n can be expressed with the

Jacobi polynomials Pα,β
k in the following manner:

R
|l|
|l|+2n(ρ) = ρ|l| · P 0,|l|

n (2ρ2 − 1). (5)
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Figure 2: The Placido disk and its more sophisticated random-coloured version.

For example, R0
0 = 1, R0

2 = 2ρ2 − 1, R0
4 = 6ρ4 − 6ρ2 + 1

and R1
1 = ρ, R1

3 = 3ρ3 − 2ρ.

In Fig. 1, a particular Zernike function – namely Y 2
3 –

is shown in a pseudo-colour representation. In the right-
hand-side of the figure, the index-space is shown for N =
6, that is, for the set of Zernike polynomials of degree less
than 12. The point (2, 3) – corresponding to the indices
of the particular Zernike function Y 2

3 – is shown as a red
dot in the index-space.

3 Discretization of Zernike Functions

3.1 The Mesh Ensuring the Discrete Or-
thogonality of Zernike Functions

The mesh, i.e., the set of nodal points – given in [8] and
proven to ensure the discrete orthogonality of Zernike
functions over this mesh – is as follows:

XN := {zjk := (ρN
k ,

2πj

4N + 1
) : k = 1, ..., N, j = 0, .., 4N},

(6)

where

ρN
k :=

√
1 + λN

k

2
, k = 1, ..., N. (7)

In (7), λN
k is the k-th root (k = 1, ..., N) of the Legendre

polynomial PN of order N . In Fig. 3, X8 is shown as an
example.

By using the discrete integral of (8), the discrete orthog-
onality of the Zernike functions can be proven. The dis-
crete orthogonality relation is given in (9).

∫

XN

f(ρ, φ)dνN :=
N∑

k=1

4N∑

j=0

f(ρN
k ,

2πj

4N + 1
)

AN
k

2(4N + 1)

(8)

In (8), the AN
k ’s are the weights that are associated with

the discrete circular rings in the mesh (e.g., with the dis-
crete rings in the particular mesh shown in Fig. 3). In
the right side of the figure, the weights A8

k’s are shown.
These weights are derived for the radial Zernike polyno-
mials from the quadrature formula of Legendre polyno-
mials PN of order N by argument transform. We note
here that another argument transform – used in conjunc-
tion with another corneal surface description approach –
was proposed in [9].

The quadrature formulas are significant tools in con-
structing discrete orthogonal systems. This is touched
upon in Subsection 3.2.

∫

X

Y m
n (ρ, φ)Y m′

n′ (ρ, φ)dνN = δnn′δmm′ . (9)

In the above orthogonality relation n + n′ + |m| < 2N
and n + n′ + |m′| < 2N is assumed.

3.2 The Significance of the Quadrature For-
mulas in Discretization

Quadrature formulas are known for some well-researched
continuous orthogonal polynomials – of certain impor-
tance – of one variable since Gauss’s time. See e.g., [2]
The quadrature formulas are expressed in the following
way:

∫ 1

−1

f(x)dx ≈
N∑

k=1

f(λN
k )AN

k . (10)

Interestingly, the integration of function f(x) is much
more precise than a numerical integration using over some
arbitrary (e.g., equidistant mesh). In our case, that is,
for the discretization of the radial Zernike polynomials
– i.e., the radial component of the Zernike functions –
the N roots of Legendre polynomials PN were used. The
exact formula for deriving the AN

k weights is not given
here, but we emphasize that the formula is exact for every
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Figure 3: An example of the XN mesh of points, namely X8, that ensures the discrete orthogonality of Zernike
functions over the mesh (left). As can be verified, this particular mesh contains N(4N + 1) = 8 ∗ 33 points. The
weights – i.e., the Cristoffel numbers – appearing in the quadrature formula for Legendre polynomial P8 (middle).
The weights used in the discrete integral of (8) over mesh X8 (right). Note that these weights are the same as the
corresponding weights in the middle image, but the function is morphed by the argument transformation used in (5).

polynomial f of order less than 2N , if the proper weights
are used in the above summation.

In Fig. 3b, a particular Legendre polynomial, namely P8

is shown. Its 8 roots fall in the interval [−1, 1] and the
weights A8

1, ..., A
8
8 that should be used in the quadrature

formula in (10) are indicated at the corresponding roots.

3.3 Precision Achieved

In order to check the mathematical calculations outlined
above, a program implementation of the discrete Zernike
functions was developed using standard double-precision
floating point arithmetics. In Fig. 4, the user interface of
this program is shown. With the marked indices input to
the program, the aforementioned discrete orthogonality
relation was checked for Zernike functions Y 3

5 and Y 9
1 and

the discrete integral (9) was found to be about 3.8 ·10−18.

4 The Discrete Zernike Coefficients

4.1 Computing the Discrete Zernike Coeffi-
cients

The discrete Zernike coefficients associated with function
T (ρ, φ) can be calculated with the following discrete in-
tegral:

Cm
n =

1
π

∫

XN

T (ρ, φ)Y m
n (ρ, φ)dνN . (11)

It is worth noting that if T (ρ, φ) happens to be an ar-
bitrary linear combination of Zernike functions of degree
less than 2N , then the above discrete integrals, i.e., for
n’s and m’s satisfying the inequality 2n + |m| < 2N , re-
sult in the exact Zernike coefficients which are calculated
from the corresponding continuous integrals.

4.2 Program Implementation for Comput-
ing Discrete Zernike Coefficients

The developed program implementation for computing
the discrete Zernike coefficients was used to create Figs.
5, 6 and 7. The input functions were selected from the
test-surfaces suggested by [10]. The reasons for select-
ing these three surfaces for illustrating the changes in the
Zernike coefficients are as follows. Both Fig. 5 and Fig. 6
are sphero-cylindrical surfaces. This is clearly indicated
by the two relatively strong low-order Zernike coefficients
marked in each of the two figures. Note that the most sig-
nificant Zernike coefficient C0

0 is not shown in the figure
to avoid the suppression of the other coefficients during
normalization. By comparing the value – represented by
the colour – of the two dots with the coordinates (0,1),
one can see the change of strength in respect this coef-
ficient between the two surfaces. Fig. 6 – on the other
hand – was included here to show a surface with many
active Zernike coefficients.

5 Conclusions and Future Work

The discretization used in this paper was proposed in
[8]. It has relevance to the concrete application field, i.e.,
corneal measurements, but could also benefit physicists
and engineers dealing with optical measurements, or with
the design of optical measurement devices.

However, using this mesh directly, that is, using it as a
measurement-pattern in a reflective corneal topographer
– similarly to the Placido disks shown in Fig. 2 – will not
result in a sampling that ensures discrete orthogonality
of the Zernike functions.

In order to benefit in reflective corneal topography from
the discretization used in this paper, the optical system
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Figure 4: With the developed program, the precision of the discrete orthogonality can be checked for the mesh of
points corresponding the index-set. For this index-set – i.e., for the corresponding mesh of points – and for the two
Zernike functions (with the marked indices) the error was 3.8 · 10−18.

Figure 5: A sphero-cylindrical surface and its Zernike coefficients.

Figure 6: A more cylindrical sphero-cylindrical surface and its Zernike coefficients.

Figure 7: A surface modelling a deformed cornea (keratoconus) and its many active Zernike coefficients.
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– together with the internal control system – of the to-
pographer must ensure that the sampling points on the
corneal surface – i.e., the points (patches) that actually
reflect the points of the measurement-pattern into the
camera – are positioned according to the mesh with re-
spect to the optical axis of the camera.

As the corneal surface does not have a standard shape,
the above requirement is best achieved by some adaptive
optical mechanism and appropriate control similarly to
the approach described in [12].
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