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Abstract—We propose a new heuristic for deter-
ministic deployment of wireless sensor networks when
1-connectivity and minimum cost are the two com-
peting objectives. Given a set of data sources and
a base station, our aim is to introduce the minimum
number of relays to the network so that every sen-
sor is connected to the base station via some multi-
hop path. We assume that the data sources and base
station lie in a plane, and that every sensor and re-
lay has the same fixed communication radius. Our
heuristic is based on the GEOSTEINER algorithms
for the Steiner minimal tree problem, and proves to
be much more accurate than the current best heuris-
tics for the 1-connected deployment problem, espe-
cially in the case of sparse data source distributions.
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1 Introduction

A wireless sensor network (WSN) consists of small sens-
ing devices that can be readily deployed in diverse envi-
ronments to form a distributed wireless network for col-
lecting information in a robust and autonomous manner.
Although early research was mainly motivated by poten-
tial military uses, there are now many other important
applications such as fault detection, environmental habi-
tat monitoring, irrigation and terrain monitoring (see, eg,
[1], [9]). As an example of the latter, many lives have re-
cently been lost in Australia due to bush fires. An early
warning system is critical in preventing small fires from
becoming disastrous infernos. Deploying smart sensors
in strategically selected areas can lead to early detection
and an increased likelihood of success in fire extinguishing
efforts. There are also many medical applications includ-
ing monitors and implantable devices as well as smart
sensors for pollution control and climate control in large
buildings.

A sensor network can be deployed in two ways: with de-
terministic placement, where a particular quality of ser-
vice can be guaranteed; or with random placement, where
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sensors are scattered possibly from an aircraft. Although
many consider random placement to be the ultimate long
term goal, it is currently infeasible in most situations as
the individual sensors are generally too expensive for this
level of redundancy (in many cases costing thousands of
dollars each), and, under current technologies, often need
to be carefully set up by hand. Note also that the de-
terministic case, where we can control placement of the
nodes, provides a lower bound on the number of nodes
needed to cover the area and hence is useful for the ran-
dommodel where the density of the sensors is a significant
factor in performance. Randomly deployed WSNs may
also be augmented (for any of a number of reasons) by
deterministically deploying additional sensors or relays.
For these reasons this paper will focus on deterministic
deployment only.

The topic of this paper is the most fundamental objec-
tive of deployment of wireless sensor networks, namely
1-connectivity. Although it is possible to interconnect a
WSN in many ways, we define 1-connectivity as the exis-
tence of at least one multi-hop path between every sensor
in the network and the base station. This is the most ba-
sic requirement for the functioning of the network and
can primarily be achieved in two ways: through power
level adjustment (we will not consider this option here,
but see [11] as a starting point for further study), or by
deploying extra sensors or relays (see for instance [4]).
The competing objective when deploying relays for con-
nectivity is cost, which is predominantly determined by
the number of added relays. Consequently our aim will
be to deploy the minimum number of relays needed in or-
der to ensure connectivity. We make the assumption that
every sensor and relay in the network has the same com-
munication radius, and by scaling we may assume that
this radius is 1 unit.

These afore-mentioned conditions and assumptions lead
to the following model for the 1-connected deterministic
deployment problem. Represent all data sources (fixed
sensors) and the base station by nodes embedded in the
Euclidean plane. The objective is to embed the minimum
number of additional nodes (relays) to ensure that there
exists a tree interconnecting all nodes, where the length
of every edge in the tree is at most 1 unit. This abstract
version of the 1-connected deployment problem is referred
to as the minimum Steiner point tree (MSPT) problem
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in the literature, and an optimal solution is called a min-
imum Steiner point tree.

The MSPT problem was first described by Sarrafzadeh
and Wong in [12], where they showed that it is NP-
complete. Consequently a fair amount of research has
been directed towards finding good heuristics. In [8] the
minimum spanning tree (MST) heuristic was introduced
(note that there they refer to the MSPT problem as the
Steiner tree problem with minimum number of Steiner
points and bounded edge length, or STP-MSPBEL). This
heuristic simply subdivides all edges of an MST that
are longer than one unit, resulting in an approximate
MSPT solution within polynomial time. Mandoiu and
Zelikovsky [10] prove that, in any metric space, the per-
formance ratio of the MST heuristic is always one less
than the maximum possible degree of a minimum-degree
MST spanning points from the space. This gives an ap-
proximation ratio of four in the Euclidean plane and three
in the rectilinear plane. Chen et al. [3] provide an im-
proved approximation scheme, partly based on the MST
heuristic, which has a performance ratio of three in the
Euclidean plane.

The MSPT problem may be seen as a variant of the clas-
sical Steiner tree problem, which asks for a shortest tree
interconnecting a set of nodes where any number of ad-
ditional nodes may be introduced. An optimal solution
to this problem is called a Steiner minimal tree (SMT).
As the minimum distance between the given nodes tends
to infinity, an SMT with subdivided edges becomes an
optimal solution to the MSPT problem. This leads us
to the question: would the SMT approximation for the
MSPT problem be a practical and accurate heuristic?
Certainly we do not have effective algorithms for calcu-
lating SMT’s for very large sets of nodes, in fact the prob-
lem is NP-hard. However, Warme, Winter, and Zachari-
asen ([13],[14]) have developed practical, fast and optimal
SMT algorithms for up to thousands of points, namely
the GEOSTEINER algorithms.

In this paper we define and analyze the SMT heuristic for
MSPTs. We provide a small linear upper bound in terms
of the number of original data sources (sensors) for the
performance difference of the SMT heuristic, and show
that this bound is best possible in the Euclidean plane.

2 Preliminaries

Consider a set N ⊆ R
2. The Steiner tree problem asks

for a shortest tree interconnecting N , where extra nodes
W ⊂ R

2 are introduced if they reduce the total length.
Introducing degree one or degree two nodes will not re-
duce total length, henceforth for the Steiner tree problem
we assume all added nodes are of degree at least three.
The nodes in N are called terminal points and the nodes
in W are called Steiner points.

In our discussions we distinguish between the concept of
a free node and an embedded node. In other words any
tree may be considered as a topological graph structure
only, or as an embedded network. Embedded nodes are
denoted by bold letters (as is common when representing
vectors).

Two standard techniques for shortening an embedded
tree are splitting and Steiner point displacements. To
split a node v one disconnects two or more of the edges
at v and connects them instead to a new Steiner point,
connected to v by an extra edge. To displace a Steiner
point one simply embeds it at any new point in the plane
without changing the topology of the tree. If no short-
ening of a tree is possible when splitting or Steiner point
displacements are allowed, then the tree is called a Steiner
tree. Note that an SMT is always a Steiner tree. A full
Steiner tree is a Steiner tree where every terminal is of
degree one and every Steiner point is of degree three. A
full Steiner tree has exactly |N | − 2 Steiner points and
2|N | − 3 edges. A cherry of a full Steiner tree is the
subtree induced by two terminals and their mutually ad-
jacent Steiner point. Every full Steiner tree has at least
two cherries. We refer the reader to [6] and [7] for more
background on Steiner trees.

Given two points x,y ∈ R
2, we denote the edge e between

them by e = xy, and we use the standard notation |e|
to denote ‖x − y‖. Any Steiner tree can be viewed as a
candidate MSPT if we simply subdivide, or bead, edges
that are longer than one unit. Formally, beading is the
process whereby for every edge e, �|e|�−1 equally spaced
degree-two nodes lying on e are included (along with the
elements of W ) in the set U of extra MSPT nodes. In
general, any tree can be viewed as an MSPT candidate
if we partition its nodes into a set N of terminals and
a set W of Steiner points of degree at least three, and
then bead any edges that are too long. Consequently,
when constructing an MSPT on a given set N , we are
mainly concerned with finding the elements of W , i.e.
the elements of U that have degree at least three; clearly
degree one nodes will not occur in U and degree two nodes
in U only arise from beading. Henceforth, degree two
nodes in U will not be considered as part of the topology
of the MSPT. All nodes in U will be referred to as beads
and, specifically, the nodes in W will be called Steiner
beads. The procedure of constructing an SMT in order
to approximate an MSPT will be referred to as the SMT
heuristic.

Let T be any tree with node-set partitioned into termi-
nals N and Steiner beads W . Let n = |N |. Then T ∗ is
the tree that results by splitting nodes of T until every
terminal is of degree one and every Steiner bead is of de-
gree three (i.e. T ∗ is a full Steiner tree). New nodes are
not displaced from their original positions, in other words
some zero edge-lengths may be introduced and the total
length of T does not change. See Figure 1 as an example;
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here t is a degree-four terminal, s is a Steiner point, and
after splitting t we have three zero-length edges (depicted
by broken lines).

t

t ss

Figure 1: Conversion to a full Steiner tree

Let the edge-set of T ∗ be E(T ∗) = {e1, ..., em}, where
m = 2n − 3. Then the bead count of T is beads(T ) =
|U | = n − 2 +∑m

i=1 (�|ei|� − 1) = 1− n+
∑m

i=1�|ei|�. In
other words, by considering T ∗ rather than T we get a
formula for beads(T ) that does not depend on the number
of Steiner beads of T ; this formula works because every
time a node is split (creating a new Steiner bead) we
introduce a zero-length edge which in effect cancels the
count of this Steiner bead. We can now reformulate the
MSPT problem as follows: let N be a subset of R

2. Find
a W ⊂ R

2 and a tree T interconnecting N ∪W such that
every node in W is of degree at least three and beads(T )
is a minimum over all trees interconnecting N .

3 The Upper Bound

In this section we provide an upper bound for the perfor-
mance difference of the SMT heuristic. Let N be a set
of n terminals in the Euclidean plane. We use Topt to
denote an MSPT on N and TS to denote an SMT on N .
We need the following lemma before we prove our main
result:

Lemma 1 If i, k are real numbers then �i+k�−�i� = �k�
or �k�−1 (equivalently 
k� or 
k�+1), with �i+k�−�i� =
k if k is an integer.

Proof. Suppose that �i� = i + εi and �k� = k + εk

where 0 ≤ εi, εk < 1. Then �i+k� = �i�+�k�−
εi+εk�,
from which the result follows.

Suppose that E(T ∗
opt) = {e1, ..., em} and E(T ∗

S) =

{a1, ..., am}. Then
m∑

i=1

|ai| ≤
m∑

i=1

|ei| since TS is a shortest

total length tree connecting N . We can therefore parti-
tion the set {1, ...,m} as follows: let {1, ...,m} = I ∪ D
such that |ei| = |ai|+ pi for i ∈ I and |ei| = |ai| − pi for
i ∈ D. Here each pi is a non-negative real number and
the cardinality of D, but not I, may be zero. We further
partition I into IZ and I ′Z (where IZ may be empty) such
that i ∈ IZ if and only if |ai| is an integer. We similarly

partition D into DZ and D′
Z . Note that

∑
i∈I

pi ≥
∑
i∈D

pi -

an inequality that is central to the next proof.

Proposition 2 beads(TS) − beads(Topt) ≤ 2n − 4 − j,
where j is the number of integer-length edges in E(T ∗

S).

Proof.

beads(TS)− beads(Topt)

=

[
1− n+

m∑
i=1

�|ai|�
]
−

[
1− n+

m∑
i=1

�|ei|�
]

=
m∑

i=1

�|ai|� −
m∑

i=1

�|ei|�

=
∑
i∈D

{�|ai|� − �|ai| − pi�} −
∑
i∈I

{�|ai|+ pi� − �|ai|�}.

Therefore, if some pi /∈ Z for i ∈ I then:

beads(TS)− beads(Topt)

≤
∑

i∈DZ


pi�+
∑

i∈D′
Z

(
pi�+ 1)−
∑
i∈IZ

�pi�

−
∑
i∈I′

Z

(�pi� − 1)

= |D′
Z |+ |I ′Z |+

∑
i∈D


pi� −
∑
i∈I

�pi�

≤ m − j +
∑
i∈I

pi −
∑
i∈I

�pi�

< m − j

= 2n − 3− j.

Similarly, if pi ∈ Z for all i ∈ I then:

beads(TS)− beads(Topt)

≤
∑

i∈DZ


pi�+
∑

i∈D′
Z

(
pi�+ 1)−
∑
i∈I

pi

≤ m − |I| − j

< m − j.

Corollary 3 beads(TS)−beads(Topt) ≤ 2n−c−3 where
c is the number of full components of TS.

Proof. Note that every terminal x of degree deg(x)
is split deg(x)−1 times to produce T ∗

S , i.e. each terminal
x produces deg(x) − 1 zero-length edges after all splits.
Clearly also c =

∑
x∈N

{deg(x)− 1}.
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Corollary 4 If TS has at most one edge with non-integer
length then beads(TS) = beads(Topt).

Du et al. in [3] and [5] provide an approximation for
the MSPT problem that gives a performance ratio with
upper bound of three in the Euclidean plane. Their algo-
rithm is based on the MST heuristic and therefore runs
in polynomial time. If we rewrite our performance differ-
ence to get the bounded ratio beads(TS)

beads(Topt)
≤ 1+ 2n−4

beads(Topt)

we see that the performance ratio of the SMT heuristic
has a smaller upper bound than the heuristic of Du et al.
when beads(Topt) > n − 2. Since beads(Topt) increases
as the minimum distance between any pair of terminals
increases, we arrive at the intuitive fact that the per-
formance of the SMT heuristic improves as the terminal
configuration becomes more sparse. During this limiting
process the upper bound of the ratio beads(TM )

beads(TS) , where TM

is an MST, tends towards the well-known Steiner ratio.
This gives a limiting upper bound of beads(TM )

beads(TS) ≤
√

3
2 in

the Euclidean plane, which serves as a comparison be-
tween the performances of the SMT heuristic and the
standard MST heuristic.

We mention once again that the SMT heuristic does not
run in polynomial time. However, for n up to a few thou-
sand nodes the GEOSTEINER algorithms will produce
solutions in reasonable running time. This makes the
SMT heuristic a tool worthy of consideration for applica-
tions where optimization is required during an initializa-
tion process (such as deployment) and the cost benefit of
a more accurate algorithm justifies a possible time delay.

4 Sharpness of the Upper Bound

The aim of this section is to show that the performance
difference from Proposition 2 is best possible. We begin
with a few definitions and preliminary results. Due to
minimality of total length, any two adjacent edges of a
Euclidean Steiner tree meet at an angle of at least 120◦.
This implies that the degree of any terminal is no more
than 3, and the degree of any Steiner point is exactly 3.
Let T be a full Steiner tree on a set of embedded ter-
minals. To sprout new terminals from a given terminal
t of T , with incident edge e one replaces t by a Steiner
point s and embeds two new terminals t1, t2 adjacent to s
such that the two new edges st1 and st2 each form 120◦

angles with e and with each other - see Figure 2. We
denote by L(T ) the total Euclidean edge length of T . If
N is a set of embedded terminals then TS will denote a
Euclidean SMT on N and Topt will denote a Euclidean
MSPT on N . As usual we let n = |N |. The next proposi-
tion shows that we can use sprouting to create full SMTs
with any given topology. It is a fundamental result and
is almost certainly known, but does not appear to have
been explicitly written up in the literature before now.

t

t1

t2
s

e

Figure 2: Sprouting new terminals

Proposition 5 Given any full Steiner topology, there ex-
ists a set of embedded terminals N such that the SMT
for N has the given topology and is unique. Further-
more, such trees can be explicitly constructed for any
given topology.

Proof. Let Gn be a full Steiner topology on n termi-
nals. We will show how a suitable set of embedded termi-
nals Nn can be constructed by induction on n, where the
inductive step involves sprouting new terminals. Note
that the construction is trivial if n = 1, 2 or 3. The in-
ductive claim is as follows.

Claim: For any full Steiner topology, Gi, on i terminals
(with i ≥ 4), there exists a set of embedded terminals Ni

and a real number fi > 0 such that

1. the SMT, Ti, for Ni has topology Gi, and

2. if T ′
i is a Steiner tree for Ni such that the topology

of T ′
i is not Gi, then L(T ′

i )− L(Ti) ≥ fi.

For the base case of the claim (i = 4), choose N4 to
be the four points with coordinates (±3/2,±√

3/2). It
is easily checked that the SMT T4 for N4 has Steiner
points (±1/2, 0) and length 5 (see Figure 3). The short-
est Steiner tree T ′

4 with a different topology is full with
Steiner points (0,±(√3/2−1/√

(3))) and length L(T ′
4) =

3
√
3. So we can choose f4 = 3

√
3 − 5 > 0. Up to rela-

belling of the terminals, there is only one full topology
for i = 4, so this completes the base case.

We now establish the inductive step for (i = n), where
we assume that the claim holds for i = n − 1. Given a
full Steiner topology Gn (n > 4), this topology contains
at least one cherry. Replacing such a cherry by a single
terminal t∗ gives a full Steiner topology Gn−1 on n −
1 terminals. By the inductive assumption there exists
an embedded terminal set Nn−1 with unique SMT Tn−1

which has topology Gn−1 and a corresponding constant
fn−1 > 0. Let t be the embedded terminal corresponding
to t∗ and create a new Steiner tree as follows.
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1

1

1

1

Figure 3: Base case

We sprout new terminals tn and tn−1 from t, with t
replaced by a Steiner point s, such that |stn−1| = |stn| =
fn−1/4. Let this new tree be Tn with embedded terminal
set Nn. By construction, Tn has the correct topology Gn.

Let T ′
n be any Steiner tree (but not necessarily an SMT)

on Nn with topology not Gn. Suppose we collapse tn and
tn−1 into the point s, and consider the resulting topol-
ogy G of this network. If G = Gn−1, then T ′

n also has
the same topology as Tn, which by convexity and the
fact that T ′

n is a Steiner tree implies that T ′
n = Tn (see

Theorem 1.3 of [7]); this is a contradiction and hence
G �= Gn−1. It follows from this that, if we consider the
network T ′

n ∪{stn} (which interconnects Nn−1), we have
L(T ′

n) + |stn| ≥ L(Tn−1) + fn−1. This implies that

L(T ′
n) ≥ L(Tn−1) + (fn−1 − |stn|)

> L(Tn−1) + 3|stn| = L(Tn) + |stn|.

Hence, we can choose fn = fn−1/4 < L(T ′
n)− L(Tn).

The claim (and lemma) now follow. Furthermore, the
iterative algorithm for constructing a suitable set of em-
bedded terminals for any required Steiner topology is con-
structive with fi = (3

√
3− 5)/4i−4 for each i ≥ 4.

The next proposition shows that the upper bound from
Proposition 2 is sharp.

Proposition 6 Let Gn be a full Steiner topology on
n terminals. There exists an embedded set of termi-
nals N in the Euclidean plane such that beads(TS) =
beads(Topt) + 2n − 4 and TS has topology Gn.

Proof. We construct an SMT TS with topology
Gn by repeatedly sprouting terminals, starting from a
full Steiner tree on three terminals called the base. By
the previous proposition any full Steiner topology can be
produced in this way. By making the edges of the base
large enough, it is clear that we can construct TS such
that every edge-length has the form ai ± εi, where ai is
an integer of order at least two and εi has any predefined
value between zero and one. TS is then converted into an
MSPT by a sequence of displacements (which we describe

below) of the Steiner points, where displacements do not
change the original topology Gn.

In TS , let s0 be a Steiner point adjacent to a terminal t
and two other nodes v1,v2 where edge-lengths are prese-
lected as follows: |ts0| = a1 − ε, |s0v1| = |s0v2| = b1+ ε1

for large integers a1, b1 and 0 < ε, ε1 < 1. In the first
step (Figure 4) we displace s0 along the line through t
and s0 and in the direction of the vector

−→
ts0. We dis-

place until |ts0| = a1 − ε′ and |s0v1| = |s0v2| = b1 − ε′1
for some 0 < ε′, ε′1 < 1. Clearly this is possible as long
as we preselect ε1 to be small enough compared to ε.

st 0

v2

v1

Figure 4: First step of the displacement sequence

We now displace all other Steiner points in a depth-first
or breadth-first order rooted at t. Suppose that in the
process we have reached the Steiner point s with parent s′

and children u1,u2. We displace s along the line through
s and the point p and in the direction −→ps, where p is the
position s′ had before its displacement; see Figure 5. If
|ss′| = a − ε1 then we preselect |su1| = |su2| = b + ε2

for 0 < ε2 < 1. We select ε2 small enough so that the
displacement of s produces the lengths |ss′| = a− ε′1 and
|su1| = |su2| = b − ε′2, for some 0 < ε′1, ε

′
2 < 1. We

continue this process until we have displaced all Steiner
points. Call the resultant tree T . Note that the edges
of TS were preselected so that one edge has length a1 −
ε and every other edge ei has length bi + εi. After all
displacements the first edge has length a1 − ε′ and every
other ei has length bi − ε′i. Clearly then beads(TS) =
beads(T ) + 2n − 4 and T is an MSPT.

5 Conclusions and Future Work

In this paper we defined and analyzed the SMT heuristic
for the deterministic deployment of sensor networks with
a 1-connectivity objective. We find a provably sharp up-
per bound for the performance of the heuristic and we ar-
gue that the performance will improve as the data-source
configuration becomes more sparse. In fact, there exists
a lower bound on the minimum distance between pairs
of data-sources which guarantees that the SMT heuris-
tic has a better worst-case performance than the current
best possible heuristics in the literature.
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p

s

s'

u2

u1

Figure 5: General step of the displacement sequence

Extensive simulations have been performed for the
GEOSTEINER algorithm (see for instance [13]), so we
will not repeat them here. These simulations show that
one can calculate SMTs efficiently for up to about two
thousand terminals. We therefore believe that the SMT
heuristic will become a valuable tool for WSN deploy-
ment, especially in applications such as habitat and ter-
rain monitoring where, indeed, data-sources distributions
are often sparse and seldom contain more than a couple
of thousand individual sources. Of course, any deter-
ministically deployed WSN is unlikely to consist of an
extremely large number of sensors, which means that the
SMT heuristic is generally suitable for most of these sce-
narios.

Computational and theoretical results have led us to be-
lieve that it is possible to improve the performance of the
SMT heuristic even more by small displacements of the
Steiner points. One of the ways we wish to explore this
possibility in the future is through extensive simulations.
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