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Abstract—Krylov subspace spectral (KSS) methods
have been demonstrated to be effective tools for solv-
ing time-dependent variable-coefficient PDE. They
employ techniques developed by Golub and Meurant
for computing elements of functions of matrices to
approximate each Fourier coefficient of the solution
using a Gaussian quadrature rule that is tailored to
that coefficient. In this paper, we apply this same ap-
proach to time-independent PDE of the form Lu = f ,
where L is an elliptic differential operator. Numerical
results demonstrate the effectiveness of this approach
for Poisson’s equation and the Helmholtz equation in
two dimensions.
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1 Introduction

Let L be an elliptic second-order differential operator of
the form

Lu = −∇ · (p∇u) + qu, (1)

where p(x, y) > 0 and q(x, y) are smooth functions. We
consider the following boundary value problem on a rect-
angle,

Lu = g(x, y), 0 < x, y < 2π, (2)

with homogeneous Dirichlet boundary conditions, or pe-
riodic boundary conditions.

In [12] a class of methods, called Krylov subspace spectral
(KSS) methods, was introduced for the purpose of solv-
ing parabolic variable-coefficient PDE. These methods
are based on techniques developed by Golub and Meu-
rant in [3] for approximating elements of a function of a
matrix by Gaussian quadrature in the spectral domain. In
[6, 8], these methods were generalized to the second-order
wave equation, for which these methods have exhibited
even higher-order accuracy.

It has been shown in these references that KSS meth-
ods, by employing different approximations of the solu-
tion operator for each Fourier coefficient of the solution,
achieve higher-order accuracy in time than other Krylov
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subspace methods (see, for example, [7]) for stiff systems
of ODE, and, as shown in [8], they are also quite stable,
considering that they are explicit methods. In [9, 10], the
accuracy and robustness of KSS methods were enhanced
using block Gaussian quadrature. Recent extensions in-
clude the time-dependent Schrödinger equation [11] and
Maxwell’s equations [14].

It is our hope that by a change of integrand in the in-
tegrals used to compute the Fourier coefficients of the
solution, the high accuracy achieved for time-dependent
problems can be extended to the time-independent case,
even for cases in which the operator L is indefinite, as
in the Helmholtz equation. Section 2 reviews the main
properties of KSS methods, including block KSS meth-
ods, and explains how they can be applied to elliptic prob-
lems. Numerical results are presented in Section 3, and
conclusions are stated in Section 4.

2 Krylov Subspace Spectral Methods

We first review KSS methods, which were first developed
in [12] for parabolic problems. Let S = L−1 represent
the exact solution operator of the problem (2), restricted
to one space dimension for simplicity, and let 〈·, ·〉 denote
the standard inner product of functions defined on [0, 2π],

〈u(x), v(x)〉 =
∫ 2π

0

u(x)v(x) dx. (3)

Krylov subspace spectral methods, introduced in [12], use
Gaussian quadrature on the spectral domain to compute
the Fourier coefficients of the solution. Given the right-
hand side g(x), the solution is computed by approximat-
ing the Fourier coefficients that would be obtained by
applying the exact solution operator to g(x),

û(ω) =
〈

1√
2π

eiωx, Sg(x)
〉

. (4)

2.1 Elements of Functions of Matrices

In [3] Golub and Meurant describe a method for comput-
ing quantities of the form

uT f(A)v, (5)

where u and v are N -vectors, A is an N ×N symmetric
positive definite matrix, and f is a smooth function. Our
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goal is to apply this method with A = LN where LN

is a spectral discretization of L, f(λ) = λ−1, and the
vectors u and v are derived from êω and g, where êω is a
discretization of 1√

2π
eiωx and g represents the right-hand

side function g(x), evaluated on an N -point uniform grid.

The basic idea is as follows: since the matrix A is sym-
metric positive definite, it has real eigenvalues

b = λ1 ≥ λ2 ≥ · · · ≥ λN = a > 0, (6)

and corresponding orthogonal eigenvectors qj , j =
1, . . . , N . Therefore, the quantity (5) can be rewritten
as

uT f(A)v =
N∑

j=1

f(λj)uT qjqT
j v. (7)

We let a = λN be the smallest eigenvalue, b = λ1 be the
largest eigenvalue, and define the measure α(λ) by

α(λ) =

⎧⎪⎨
⎪⎩

0, if λ < a∑N
j=i αjβj , if λi ≤ λ < λi−1∑N
j=1 αjβj , if b ≤ λ

, (8)

where αj = uT qj and βj = qT
j v. If this measure is posi-

tive and increasing, then the quantity (5) can be viewed
as a Riemann-Stieltjes integral

uT f(A)v = I[f ] =
∫ b

a

f(λ) dα(λ). (9)

As discussed in [3], the integral I[f ] can be approximated
using Gaussian quadrature rules, which yield an approx-
imation of the form

I[f ] =
K∑

j=1

wjf(tj) + R[f ], (10)

where the nodes tj , j = 1, . . . , K, as well as the weights
wj , j = 1, . . . , K, can be obtained using the symmetric
Lanczos algorithm if u = v, and the unsymmetric Lanc-
zos algorithm if u �= v (see [5]).

2.2 Block Gaussian Quadrature

In the case u �= v, there is the possibility that the weights
may not be positive, which destabilizes the quadrature
rule (see [1] for details). One option to get around this
problem is rewriting (5) using decompositions such as

uT f(A)v =
1
δ
[uT f(A)(u + δv)− uT f(A)u], (11)

where δ is a small constant. Guidelines for choosing an
appropriate value for δ can be found in [12, Section 2.2].

If we compute (5) using (11) or the polar decomposition

1
4
[(u + v)T f(A)(u + v)− (v − u)T f(A)(v − u)], (12)

then we have to carry out the process for approximating
an expression of the form (5) with two sets of starting vec-
tors, whereas a single quadrature rule is more desirable.
Instead, we consider

[
u v

]T
f(A)

[
u v

]
which results in the 2× 2 matrix

∫ b

a

f(λ) dμ(λ) =
[

uT f(A)u uT f(A)v
vT f(A)u vT f(A)v

]
, (13)

where μ(λ) is a 2× 2 matrix function of λ, each entry of
which is a measure of the form α(λ) from (8).

In [3] Golub and Meurant show how a block approach
can be used to generate quadrature formulas. We will
describe this process here in more detail. The integral∫ b

a
f(λ) dμ(λ) is now a 2 × 2 symmetric matrix and the

most general K-node quadrature formula is of the form

∫ b

a

f(λ) dμ(λ) =
K∑

j=1

Wjf(Tj)Wj + error, (14)

with Tj and Wj being symmetric 2 × 2 matrices. By
diagonalizing each Tj , we obtain the simpler formula

∫ b

a

f(λ) dμ(λ) =
2K∑
j=1

f(λj)vjvT
j + error, (15)

where, for each j, λj is a scalar and vj is a 2-vector.

Each node λj is an eigenvalue of the matrix

TK =

⎡
⎢⎢⎢⎢⎢⎣

M1 BT
1

B1 M2 BT
2

. . . . . . . . .
BK−2 MK−1 BT

K−1

BK−1 MK

⎤
⎥⎥⎥⎥⎥⎦

(16)

which is a block-triangular matrix of order 2K. The vec-
tor vj consists of the first two elements of the correspond-
ing normalized eigenvector.

To compute the matrices Mj and Bj , we use the block
Lanczos algorithm, which was proposed by Golub and
Underwood in [4]. Let X0 be an N × 2 given matrix,
such that XT

1 X1 = I2. Let X0 = 0 be an N × 2 matrix.
Then, for j = 1, . . . , K, we compute

Mj = XT
j AXj ,

Rj = AXj −XjMj −Xj−1B
T
j−1, (17)

Xj+1Bj = Rj .

The last step of the algorithm is the QR decomposition
of Rj such that Xj+1 is n × 2 with XT

j+1Xj+1 = I2.
The matrix Bj is 2× 2 and upper triangular. The other
coefficient matrix Mj is 2× 2 and symmetric.
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2.3 Block KSS Methods

We are now ready to describe block KSS methods for
elliptic PDE in 1-D of the form Lu = g. For each wave
number ω = −N/2 + 1, . . . , N/2, we define

R0(ω) =
[

êω g
]

and compute the QR factorization R0(ω) = X1(ω)B0(ω).
We then carry out the block Lanczos iteration described
in (17) to obtain a block tridiagonal matrix TK(ω) of the
form (16), where each entry is a function of ω.

Then, we can express each Fourier coefficient of the ap-
proximate solution as

[û]ω =
[
BH

0 EH
12[TK(ω)]−1E12B0

]
12

(18)

where E12 =
[

e1 e2

]
. The computation of (18) con-

sists of computing the eigenvalues and eigenvectors of
TK(ω) in order to obtain the nodes and weights for Gaus-
sian quadrature, as described earlier.

Once the approximation u is computed using the inverse
FFT, we can compute the residual r = g − LNu, and
correct the solution by applying the block KSS method
again to the problem LNc = r, and updating the solution
by u = u + c. We can continue this process of residual
correction until the residual is sufficiently small.

Although we have restricted ourselves to one space di-
mension in the description of block KSS methods, gener-
alization to higher dimensions is straightforward, as dis-
cussed in [13].

3 Numerical Results

In this section we demonstrate the effectiveness of block
KSS methods for solving elliptic PDE.

3.1 Poisson’s Equation

We first apply a 2-node block KSS method to the problem

∇ · (p(x, y)∇u(x, y)) = g(x, y), 0 < x, y < 2π, (19)

with Dirichlet boundary conditions, where

p(x, y) ≈ 4.03 + 0.017 cos y + 0.0052 sin y +
0.0026 cos 2y + 0.029 cos x +
0.014 sin x + 0.0083 cos(x + y) +
0.0019 cos(x− 2y) +
0.0073 cos(x− y) +
0.0046 sin(x− y) + 0.0021 cos 2x, (20)

g(x, y) ≈ −2.39 sin y + 1.44 sin 2y +
0.47 sin 3y − 0.31 sin x−
1.44 sin(x + y) + 0.19 sin(x + 2y)−
5.73 sin(x− y)− 0.53 sin 2x−

0.35 sin(2x + y)−
1.63 sin(2x− y) + 1.07 sin 3x +
0.6 sin(3x + y). (21)

The coefficient p(x, y) is constructed so as to have the
smoothness of a function with four continuous deriva-
tives, using a technique described in [12]. The function
f is obtained by applying the spatial operator Lu =
−∇ · (p∇u) to a function u(x, y) that is constructed in
the same was as p(x, y), with the same smoothness, so
that the exact solution is known.

In our experiments, we will use different grid spacings in
order to investigate how the error varies with increasing
resolution. The problem data is computed on the finest
grid, and projected onto the coarser grids. However, in
order to isolate error due to KSS methods themselves, we
do not include error due to truncation of Fourier series in
our error estimates.

The results are shown in Figure 1 and Table 1. The
relative error is rapidly reduced by residual correction
until it is not much greater than machine precision. As
shown in the figure, we achieve linear convergence, with
a very small asymptotic error constant. We also see that
the error only increases by a factor of 3 as the number of
grid points per dimension doubles, but since these error
estimates do not include truncation of Fourier series, it
follows that the overall error decreases as the number of
grid points increases.

Figure 1: Relative error in solutions to Poisson’s equation
(19), (20), (21) computed by 2-node block KSS methods
with residual correction.

We now solve (19) with a less smooth coefficient and
right-hand side,

p(x, y) ≈ 4.04 + 0.017 cos y + 0.0052 sin y +
0.0089 cos 2y + 0.0042 cos 3y +
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Table 1: Relative L2 error, excluding truncation of
Fourier series, in solutions of (19), (20), (21) with N grid
points per dimension. The third column lists the number
of iterations of residual correction.

N Error Iterations
16 1.3e-14 4
32 4.0e-14 4
64 1.2e-13 4

0.0021 sin 3y + 0.029 cos x +
0.014 sinx + 0.0083 cos(x + y) +
0.0036 cos(x + 2y) + 0.0023 cos(x + 3y) +
0.0066 cos(x− 2y) + 0.0073 cos(x− y) +
0.0046 sin(x− y) + 0.0072 cos 2x +
0.0038 cos(2x + y) + 0.0018 sin(2x + y) +
0.004 cos(2x− y)− 0.0034 sin(2x− y) +
0.004 cos 3x + 0.0033 cos(3x + y) +
0.0026 cos(3x− y), (22)

g(x, y) ≈ −2.39 sin y + 4.93 sin 2y +
3.82 sin 3y − 0.31 sin x− 1.44 sin(x + y) +
0.68 sin(x + 2y)− 1.37 sin(x + 3y)−
0.98 sin(x− 3y)− 5.75 sin(x− y)−
1.78 sin 2x− 1.15 sin(2x + y)−
1.21 sin(2x + 2y)− 1.67 sin(2x + 3y)−
0.24 sin(2x− 3y) + 0.95 sin(2x− 2y)−
0.12 cos(2x− y)− 5.47 sin(2x− y) +
0.34 cos 3x + 8.84 sin 3x +
0.19 cos(3x + y) + 4.95 sin(3x + y) +
2.3 sin(3x + 2y)− 1.84 sin(3x + 3y) +
0.72 sin(3x− 3y) + 0.79 sin(3x− 2y) +
0.98 sin(3x− y), (23)

and with Dirichlet boundary conditions. The results are
shown in Figure 2 and Table 2. We observe that even
though the Fourier coefficients of the problem data decay
more slowly than in the previous problem by two orders
of magnitude, the computed solution has comparable ac-
curacy, after just one extra iteration of residual correc-
tion. As before, the error increases only moderately as
the number of grid points per dimension is doubled.

Figure 3 displays the error in solutions to a one-
dimensional analogue of (19) with smoothly varying co-
efficients and data, after each pass of residual correction,
using a 2-node block KSS method with 256 and 512 grid
points, respectively. It can easily be seen from the fig-
ure, and confirmed by a simple Fourier analysis, that for
Poisson’s equation, the error in the initial iterations of
residual correction is smooth, but becomes less smooth
as residual correction continues. Furthermore, the initial

Figure 2: Relative error in solutions to Poisson’s equation
(19), (22), (23) computed by 2-node block KSS methods
with residual correction.

Table 2: Relative L2 error, excluding truncation of
Fourier series, in solutions of (19), (22), (23) with N grid
points per dimension. The third column lists the number
of iterations of residual correction.

N Error Iterations
16 6.0e-15 5
32 8.9e-14 5
64 3.1e-13 5

smooth error is essentially independent of the grid reso-
lution. Therefore, it makes sense to use a multigrid-like
approach, in which initial solutions are computed on a
coarse grid, and corrected on a finer grid; that is, the
opposite sequence of a traditional V-cycle. Future work
will explore the development of more efficient iterative
methods based on this idea.

3.2 The Helmholtz Equation

Now, we apply a 2-node block KSS method to the inho-
mogeneous Helmholtz equation

Δu(x, y) + k(x, y)2u(x, y) = g(x, y), (24)

with periodic boundary conditions, where

k(x, y)2 ≈ 4.03 + 0.017 cos y + 0.0052 sin y +
0.029 cos x + 0.014 sinx +
0.0083 cos(x + y) + 0.0073 cos(x− y) +
0.0046 sin(x− y), (25)

g(x, y) ≈ 1.63 + 0.015 cos y + 0.0039 sin y +
0.014 cos x + 0.0057 sinx +
0.0048 cos(x + y) + 0.0056 cos(x− y) +
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Figure 3: Error in computed solutions to a 1-D ana-
logue of (19) after zero (solid blue curve), one (dashed
red curve), two (dotted-dashed black curve) and three
(dotted green curve) iterations of residual correction in
conjunction with a 2-node block KSS method on a 256-
point grid (top plot) and a 512-point grid (bottom plot).

0.0033 sin(x− y). (26)

The results are shown in Table 3. Although the solution
is not as accurate as for Poisson’s equation, we note that
the accuracy does not degrade with the number of grid
points. This is due to the fact that the dominant portion
of the error arises from the computation of the Fourier
coefficients corresponding to the region of phase space
where the symbol of L = Δ + k2 is smallest. This leads
to Gaussian quadrature nodes near the singularity in the
integrand f(λ) = λ−1. The integrand is more difficult
to approximate accurately by polynomial interpolation
near this singularity, and the resulting error is negligibly
impacted by the grid refinement.

However, this error is substantially reduced if the coeffi-
cient k(x, y)2 and right-hand side g(x, y) are very smooth,
because then the basis functions eiω·x are nearly eigen-
functions, which makes most of the terms αjβj in (8)
negligibly small. Future work will explore the use of pre-
conditioning similarity transformations, aided by fast al-
gorithms presented in [2] for application of Fourier inte-
gral operators, for homogenizing variable coefficients in
order to improve the performance of KSS methods for
such problems.

We now solve the modified problem

Δu(x, y) + 100k(x, y)2u(x, y) = g(x, y), (27)

with periodic boundary conditions and k(x, y) and g(x, y)
as defined in (25), (26). The results are listed in Table
4. We see that even though there is a greater degree

Table 3: Relative L2 error, excluding truncation of
Fourier series, in solutions of (24), (25), (26) with N grid
points per dimension. The third column lists the number
of iterations of residual correction.

N Error Iterations
16 3.5e-9 5
32 3.5e-9 5
64 3.5e-9 5

of indefiniteness in the operator L, the errors are still
quite small, and that high accuracy is achieved after only
a single residual correction. This is because the domi-
nant portion of the error, described earlier, corresponds
to Fourier coefficients that, in the exact solution, are sig-
nificantly smaller.

Table 4: Relative L2 error, excluding truncation of
Fourier series, in solutions of (27), (25), (26) with N grid
points per dimension. The third column lists the number
of iterations of residual correction.

N Error Iterations
16 1.9e-16 1
32 9.7e-15 1
64 1.3e-11 1

We now solve (24) with less smooth coefficients and data,

k(x, y)2 ≈ 4.03 + 0.017 cos y + 0.0052 sin y +
0.0026 cos 2y + 0.029 cos x +
0.014 sinx + 0.0083 cos(x + y) +
0.0019 cos(x− 2y) + 0.0073 cos(x− y) +
0.0046 sin(x− y) + 0.0021 cos 2x, (28)

g(x, y) ≈ 1.62 + 0.015 cos y + 0.0039 sin y +
0.0011 cos 2y + 0.014 cos x +
0.0057 sinx + 0.0048 cos(x + y) +
0.0056 cos(x− y) + 0.0033 sin(x− y), (29)

and with periodic boundary conditions. The results are
shown in Table 5. We observe that as before, the error
is relatively insensitive to increases in the number of grid
points per dimension, although the reduced smoothness
does cause this error to increase to a small extent.

Finally, we solve the same problem, except that the coef-
ficient k2 is replaced by 100k2. The results are listed in
Table 6. We see that the combination of reduced smooth-
ness and the magnitude of the coefficient poses difficulty
for block KSS methods as the number of grid points in-
creases. Due to the reduced smoothness, the dominant
portion of the error corresponds to Fourier coefficients
that are more significant in the exact solution. Fur-
thermore, because these Fourier coefficients correspond
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Table 5: Relative L2 error, excluding truncation of
Fourier series, in solutions of (24), (28), (29) with N grid
points per dimension. The third column lists the number
of iterations of residual correction.

N Error Iterations
16 2.6e-7 6
32 1.4e-8 6
64 7.0e-8 6

to higher frequencies than when k2 is relatively small,
higher-frequency oscillations are introduced, which are
then amplified by differentiation during the computation
of the recursion coefficients in TK , resulting in larger er-
rors.

Table 6: Relative L2 error, excluding truncation of
Fourier series, in solutions of (27), (28), (29) with N grid
points per dimension. The third column lists the number
of iterations of residual correction.

N Error Iterations
16 3.0e-14 1
32 8.4e-12 1
64 4.5e-5 1

4 Summary and Future Work

We have demonstrated that KSS methods, while origi-
nally designed for time-dependent PDE, can also be ap-
plied to time-independent elliptic PDE with smoothly
varying coefficients. Using residual correction, these
methods can compute highly accurate solutions, even for
the Helmholtz equation, for which the integrand in the
Riemann-Stieltjes integrals used to compute Fourier co-
efficients is singular.

Future work will extend the approach described in this
paper to problems in which the coefficients and data are
oscillatory or discontinuous, and problems featuring com-
plicated geometry. In addition, we will consider the use of
Gauss-Radau and Gauss-Lobatto rules, in which selected
nodes are prescribed, to deal with the singularity associ-
ated with the Helmholtz equation. We will also explore
the development of multigrid-like approaches to residual
correction in order to maximize efficiency.
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