
 
 

 

  

Abstract—Autonomous navigation in unknown cluttered 
environments is one of the main challenges for search and 
rescue robots inside collapsed buildings. Being able to compare 
different search strategies in various search fields is crucial to 
attain fast victim localization. Thus we discuss an algorithmic 
development and proliferation of realistic after–disaster test 
fields for search and rescue simulated robots. In this paper we 
characterized our developed search environments by their 
fractal dimensions. This index has shown to be a discriminative 
index for narrow pathways inside confined and cluttered spaces 
in our simulation test fields. In this approach a simulation of 
challenging parts of NIST red course is constructed and a 
benchmark for search strategies has been evaluated.  
 

Index Terms—exploration algorithms, Fractal path 
tortuosity, Search and Rescue operations, Multi agent. 

I. INTRODUCTION 
Inside unstructured and partially collapsed buildings in 
disaster areas, there are dangerous, unknown, and cluttered 
parts known as life safe voids [1]. These voids are the first 
place which rescue team should search for trapped victims 
inside the pancake collapses, since the chance of finding live 
victims is very high. However traditional tracked robots are 
not always able to crawl inside small voids and look for 
survivors (size limitation). Our approach is to evaluate the 
performance of multi-robot search techniques, for limited 
sensing mini robots, by reproducing various cluttered test 
courses. The introduction of discriminative indices, which 
defines search fields complexity and providing reference 
problems with metric of performance, allows the researchers 
create synthetic fields with which to compare their search 
strategies. Voshell et al. [15] studies ascertain that traditional 
performance measures are inadequate and incomplete for 
analyzing control and exploration tasks, especially inside 
complex environments. Therefore they introduced a novel 
analysis approach based on fractal path tortuosity. This 
index shows (from robot’s movement path) how well a robot 
can handle the difficulties in the environment. For instance 
robot’s movement path inside an environment with a high 
density of obstacles and closed passages (dead ends) has a 
large fractal path tortuosity comparing to an open space 
environment with a few obstacles. Thus in this paper we 
verify that, fractal dimension [2] of pathways (tortuosity) 
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inside the search fields, can also apply to characterize test 
courses for search robots.  

In entomology, scientists distinguish tortuosity of insect 
trails by their fractal dimension. This has been known as 
long memory Brownian motion, an example of random 
process that incorporates both statistical self-similarity and 
tortuosity. There are several tortuosity indices, however 
fractal dimension of Brownian motion has been known as a 
quantitative discriminator with which to characterize 
tortuosity of the trails in a comparative approach [6]. In this 
paper we deploy basic Ant algorithm, which follows long 
memory Brownian movement, on our simulated agents to 
generate various confined search fields (from their trails). 
Our contributions in this paper are: The development of an 
algorithmic approach to the generation of realistic after–
disaster test fields (map generator) for multi agent search 
and rescue system. Also introducing an index to differentiate 
simulated search terrains and defining their complexity. This 
index is tested on various after – disaster maps, which was 
developed by our map generator. Finally we were able to 
predict the average discovery time of Ant algorithm 
according to search field’s power spectral density (our 
evaluated benchmark). 

This paper is organized as follow: Section II contains the 
motivation of this approach while we have an overview of 
the research area. Section III presents how we are modelling 
the multi-agents and their capabilities. In section IV the 
algorithmic approach for 2D map generating is discussed. 
Section V introduces our discriminative index and test its 
effect on random developed search strategies, and in section 
VI the benchmark is presented. Simulation experimental 
results are also available in both sections V and VI to show 
the effectiveness of our novel index and finally we conclude 
in section VII.  

II. MOTIVATION 
The National Institute of Standards and Technology 

(NIST) defines three distinct areas of increasing 
verisimilitude and difficulty [7][8]. However they have not 
defined any exact indices for each test course (three 
scenarios of progressive difficulty: yellow, orange and red 
courses) to describe its level of complexity. Using 
discriminative indices will simplify the development and 
proliferation of test arenas for urban search and rescue robot 
systems. The most complex and challenging arena among 
defined test courses is the red course. It is essentially a 

 
 

An Algorithmic Approach to Generate After-disaster 
Test Fields for Search and Rescue Agents          

      Panteha Saeedi                    and               Soren A. Sorensen  

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009



 
 

 

rubble pile with assorted debris, which is very difficult for 
mobile robots to sense and manoeuvre. There are also 
pancaked collapses (floors collapsed onto the lower floors) 
with confined voids inside [9]. These narrow pathways and 
small tunnels (multi connected cavities), which define life 
safe voids, are the most demanding parts for exploration 
robots in the red course. An appropriate search technique for 
multi robots will minimize the overall victim(s) discovery 
inside these voids. Lewis et al. [10] have developed the 
simulations test fields of NIST as a reference facility for 
search and rescue robots. In their approach a simulation of 
the Orange arena was constructed to evaluate rapidly 
prototyped interfaces and Robots-Agents-People (RAP) 
team coordination and control strategies prior to the 
construction and testing of physical robots. However in 
orange arena there are no cluttered and confined voids in 
which mobile robots to manoeuvre. In addition search and 
rescue operation in complex terrains of the red arena is for 
collaborative autonomous multi robots. To validate an 
optimum search strategy, for the red arena, we should test its 
functionality inside several different simulation 
environments with various level of complexity, prior to 
physical tests.  

III. SIMULATION MULTI-AGENT 
In this section we define our simulated agents by 

describing their functionality and setup tasks. There are two 
main tasks defined for our modelled robots. Firstly they are 
in charge of creating life safe voids. For this task they are 
performing a random walk and looking for victims (ant 
algorithm). Their trail on the field will be marked and 
defined as the pathways and unexplored cells will be 
selected as obstacles. Secondly they are modelling our 
search robots inside the simulation environment. Thus they 
are able to test the performances of our developed search 
strategies. 

A. Ant Random movement 
Ant algorithm is one of the most popular exploration 

techniques and it performs random behaviour; therefore in 
this paper Ant algorithm has been selected to generate 
simulation environments as well as testing the developed 
fields to introduce discriminative index. When agent ants are 
released at the entrance of the confined simulation search 
field, they immediately start their random walk inspired by 
“Brownian movement” [11]. These mobile agents follow a 
straight line headed to some initial random direction. When 
they reach the end of this segment, a new direction is chosen 
according to equation (1). Note that we assume the random 
function returns a uniform random number (2) in the range 
of {0...n-1}. Here n = 8, since our agent can randomly select 
any of eight cells around it.  

! 

"(t +#) ="(t) + $                                         (1) 

! 

" = 45°# (Random(8) +1)                              (2) 
As indicated in figure 1 there are boundaries defined to 

limit the environment and set the bounded field for agents to 
navigate within. Agents should change direction every time 

they meet the borders or any other obstacle. This is also 
known as the end of their initial segment. However there is a 
selected time limit for all ant agents (

! 

" ). Every time an 
agent reaches its time limit it should choose a random 
direction according to equation (1) and reset its time limit.  

 To avoid any collision either with other agents or 
obstacles they are equipped with sufficient number of 
sensors to observe their surroundings (8 Infrared limited 
sensor range).  

 

 

   

 

 
 
Fig. 1.  Random Walk trails in bounded field 
 
Every time an ant meets the goal it should randomly choose 
another direction as discussed above. Then it should return 
back to the start point and report its finding. A Brownian 
Bridge is a Brownian trail that returns to its starting point. 
When each ant, which localized victim, creates a Brownian 
Bridge it has accomplished its task. The execution time to 
create the Brownian Bridge is called discovery time. This is 
selected as our metric to measure the performance of multi-
robot search strategies:  
discovery time = exploration time +exploitation time 

Figure 1 illustrates an agent performing a random 
Brownian movement to explore a goal. Our simulation agent 
is able to detect human’s head from its temperature. While 
we assumed victim is fully dressed so IR sensors can only 
detect its head. To distinguish live victims with other 
possible warm objects, our simulated agent is also equipped 
with NDIR (non dispersive infrared absorbance) sensor, 
which is able to monitor the amount of CO2 emission, and 
for human this is highly selective. Furthermore we assumed 
that the agent detects the victim’s body as an obstacle.  

B. Modelling search and rescue robots  
 All agents are equipped with a ring of simulated Infrared 

(IR) sensors. A ring of eight IR elements spaced 45 degrees 
apart of each other. An IR range reading provides 
information concerning empty or occupied volumes in the 
space subtended by the beam (45º cone for the present 
sensors that covers 8 cells around) in front of the sensor. 
Light waves from an IR sensor project in a cone-like manner 
from the point of its origin. It has been considered that each 
robot has the view of eight cells in its surrounding area. 
Cells can be empty or occupied (either by other robots or by 
obstacles). Mobile agents also can move one cell only in any 
direction, if the selected cell is empty. Mobile agents are 
aware of their direction (e.g. North, South...) with their 
equipped gyroscope. More over agents are able to 
communicate with each other. They interact with each other 
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by sending visual information through their eight triangular 
RGB (Red, Green, and blue) LEDs. Agents should 
communicate visually while wireless communication (RF) is 
unreliable in indoor environments. Visual communication as 
well is restricted to one cell only in each direction. 

When simulated agent localized a victim it starts to 
inform other agents (by changing its LEDs colour) however 
its task is to create a Brownian bridge and report back its 
discovery. Other agents that visualize this event will start to 
speed up the operation. Therefore they change their LEDs 
colour and perform their search strategy this time their goal 
is to reach their start point (entrance). However in this 
approach our agents are not yet able to tag the environment. 
In future an extra ability will be added to our simulated 
agents to leave a trail and use the environment as a medium 
for indirect communication. 

IV. SIMULATION SEARCH ENVIRONMENT 
Our simulated agents, by performing Ant Brownian 

movement, can develop various 2D simulated environments. 
In this section we describe the algorithmic approach to 
introduce an after –disaster map generator. As discussed 
before we use discriminative index to differentiate these 
generated test fields. This index will be discussed later in 
this paper. 

A. Modelling 2D Search Field  
The simulation environment is divided into several equal 

regions (square cells with a length of 100 mm), and each cell 
is covered by simple robot motion (e.g. turn left). In real 
search and rescue scenarios, for a fast observation larger 
robots are applied.  They are able to avoid obstacles, move 
over rubbles, and have a larger line of sight comparing to 
small robots. However they are not able to squeeze inside 
small gaps and voids. Due to limitation in their functionality 
they can deploy mini robots whenever it is required to 
perform an exhaustive search operation. Thus in our scenario 
there is a Master robot sitting at the start point and sending 
in smaller robots (we assumed larger robots discovered these 
narrow voids), one by one inside the search field to perform 
the second stage of the search operation. There are borders 
defined for all search fields. These boundaries limit the 
exploration area. Agents should only perform their search 
operation within those defined borders and all search fields 
are limited with boundaries (walls). 

As discussed above, there are four types of cells in our 
simulation grid map: 
1) Occupied by obstacle, or human body 
2) Occupied by human’s head (human cells occupies 2 cells) 
3) Occupied by another agent (agent occupies one cell) 
4) Empty 

The first three kinds of cells are un-traversable by agents. 
We assumed that each agent occupied only one cell every 
time it moves. Every cell that is explored by any agent will 
be indicated on the simulation field. Therefore unexplored 
cells are white, while explored cells by the agents are 
illustrated with grey colour. This feature demonstrates the 

agent’s behaviour visually (e.g. how well the applied search 
strategy is able to spread its agents inside the search field).  

B. Map Generator 
 To generate various confined and cluttered 2D simulation 

environments we follow these steps: 
Step 1: Locate a victim randomly inside an empty search 
field. The victim is a combination of green cells (obstacle as 
its body), and blue cells (warm object as its head). We define 
three sizes for simulated victims (small, Medium, and 
Large). 
Step 2: We select a narrow restricted entrance in the corner 
(start point). 
Step3: We send in an Ant agent, at the entrance, to perform a 
random Brownian search to locate victim’s head (goal). The 
paths that agent takes to find the victim will be selected as 
free cells (white cells) and the remaining cells are selected as 
obstacles (e.g. rubbles inside the void). 
Step 4: Randomly change the victim’s location or size and 
go to step 3. 

We change the number of victims and robots from 1 to 3 
and follow the steps above to generate various simulation 
environments. For instance we have 3 robots and one small 
victim, at least one mobile agent will find the victim thus the 
algorithm terminates immediately. All the paths taken by all 
the agents (was recorded as grey cells) will be considered as 
pathways and untouched free cells will become obstacles. In 
this case we might have multiple paths, which only one path 
leads to victim and others to dead ends (all the free cells are 
reach able by our agents). In result by generating different 
random numbers and running our random Ant algorithm we 
can generate various search paths (therefore various search 
fields) through our algorithmic map generation. Also we are 
able to increase the size of the search field (frame size) up to 
10000 grid cells. 

 

 
 
Fig. 2.  An image of our simulation map (each cell: 100 mm x 100 mm) 
 

Figure 2 shows an overhead (bird’s-eye-view) of an 
example environment. In search field development, Ant 
agents (for map generation) are not required to create any 
Brownian bridge. It only performs exploration task. In the 
next stage, testing generated fields, each search agent should 
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move inside the void from restricted entrance path to 
explore the unknown search environment, with its various 
branches in different lengths.  

Brownian motion is produced while the random steps 
taken by each agent are correlated in equally spaced spatial. 
Ant agent has been sent inside the developed fields, which 
has been generated by the ant agent itself. The average time 
steps that single agent takes to create Brownian Bridge in 
each field, has been recorded. Shortly, in this paper we 
investigate search field complexity index. This 
discriminative factor differentiates both pathways and 
obstacles located inside 101 confined life safe voids. We 
will show that there is a correlation between this index and 
mobile Ant agent’s discovery time steps.  

V. FRACTAL DIMENSION  
Fractal dimension [4] provides an objective means for 

quantifying the fractal properties of an object and distinct it 
from other fractals. One of the important characteristics of 
fractals is the concept of self-similarity. However for natural 
phenomena self-similarity refers to the statistical properties 
of the outline, trail or surface. Many natural phenomena, like 
discharges of rivers and outline forms of coastlines filled 
with seemingly complex irregular shapes and random 
variations [3]. In ecology several discriminative indices have 
been introduced that is able to differentiate landscape 
patterns. In this regard fractal dimension is an index of 
complexity of shapes on landscapes. For instance if the 
landscape is composed of simple geometric shapes its fractal 
dimension is small while for the landscape contains many 
patches with complex and convoluted shapes the fractal 
dimension is much larger. In literature fractal dimensions 
have been used in various applications to indicate fractal 
figure complexity [5].  

Every fractal has a numeric fractal dimension that can be 
used to indicate fractal figure complexity. There are several 
methods to calculate fractal dimension. The box dimension 
method has used in various applications such as graphic 
image processing [13]. In Grid Method (Box-Counting) we 
superimpose a regular grid of cells of length δ (in our map: 
δmin=100 mm) on the object and count the number of 
occupied cells (ni) in every kind of cells. Therefore we 
follow the power law relationship defined by Voss et al to 
calculate the fractal dimension of our simulation map. 
Power–law relationship is:  

  

! 

n
i
(") = K"#D          (3) 

K is the total number of cells available on our map 
(image) of all kind. 
      

! 

K = n
i
(")

i=1

N

#            (4) 

We have N kind of cells where ni is the number of 
individuals belonging to the ith types of cells 
(
  

! 

i " I = {1,2,L,N}) with the size of δ. Here we consider only 
two types of cells (occupied and free, N=2), and to estimate 
the fractal dimension of obstacles on the map, we calculate 

the noc (number of cells of length δ which are occupied on 
our map, either by victims or obstacles). Also we estimate 
the fractal dimension of pathways (path tortuosity). npath is 
the number of free cells inside our map that are used as 
pathways for agents. From equation (3) we can calculate 
fractal dimension (D) of our map as: 

! 

D =
logK " logni(#)

Log#
=

log(
K

ni(#)
)

log#
     (5) 

D is a metric dimension; therefore its definition depends 
on metric scaling properties. Figure 3 illustrates the 
correlation between agent’s discovery time and fractal 
dimension. 101 simulated number of search fields (generated 
by our map generator) have been chosen to select the most 
suitable index for search terrain complexity. These 
environments are differentiated by their FDO (Fractal 
Dimension of Obstacles) and FDP (Fractal Dimension of 
Pathways). Fractal dimension, considering the obstacles, has 
a negative correlation to time steps (with little fluctuations), 
in other words to search field complexity. While between 
fractal dimensions, considering the pathways, and 
exploration terrains there is a positive correlation. In 
ascending order of a single ant discovery time, FDP is 
selected as our best discriminative index (with a less 
fluctuation) for the search field complexity. The larger is the 
FDP the more complex (for the random behaviour) is the 
generated search terrain.  

 

 
Fig. 3. Fractal dimension of obstacles and pathways (one time step=36 sec.) 
 
Each point (time steps) in our graphs (fig. 3) is the average 
of running the ant algorithm (random walk) 100 times. The 
default values in our experiments are: a map of 1089 
(33×33) cells, and as discussed above we vary the 
environment according to their fractal dimension of 
pathways and obstacles. The number of the agents in this 
experiment was set as the best performance (in discovery 
time) for Ant algorithm. Thus we selected 3 agents to run the 
experiment. Our simulation tool (map generator) is based on 
the objected–oriented CLOWN formalism that controls the 
agent’s search technique performance in addition to search 
field development. In the result of this experiment we were 
convinced to deploy fractal dimension of path tortuosity in 
our map generator, this index is able to differentiate random 
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developed environments according to their complexity of 
their paths, since Brownian movement of our agents has 
developed them. FracLac [16] is image-analyze software, 
developed for image J tool. This tool is used for objectively 
analyzing complexity and heterogeneity as well as some 
other measures of binary digital images. It has a global 
binary grid scan option that applies box-counting technique 
over an image. This tool calculates the fractal dimension of 
our complex search environments as same as our presented 
mathematical procedure, it automatically calculates the most 
suitable δ value.  Thus all users are able to produce the maps 
by our algorithmic approach and save their images as a 
binary image (zero for obstacles and 1 for pathways) and 
scan them by image J and it calculates their fractal 
dimension. 

 Another index that we deploy in this paper is the power 
spectral density of random movement. By this index we are 
able to evaluate a benchmark that allows us to compare it 
with other search strategies. Furthermore our developed 
environments, with different fractal dimension, have been 
used to test other search algorithm (e.g. Tree search 
algorithm), which has been developed particularly for 
complex search fields (multi branch paths). 

VI. SPECTRAL DENSITY 
The fractal dimension of random movement is directly 

related to the Hurst exponent for a statistically self-similar 
data set. Power spectral densities characterize the random 
movements of mobile agents, which produce pathways for 
our simulation environments. Brownian motion has a 
spectrum of [14]: 

! 

P( f ) = Kf
"2H"1        (6) 

Fractal dimension of a fractional Brownian motion is 
simply related to Hurst exponent (H): 

! 

D = 2 "H           
We calculated the fractal dimension of our pathways, 

among 101 generated fields as: 

! 

1.12 " Dpath "1.25  
Brownian walks can be generated from a defined Hurst 

exponent. If the Hurst exponent is 0.5 < H < 1.0, the random 
walk will be a long memory process. If we calculate the 
frequency according to Bernoulli’s theorem the probability of 
obtaining a particular outcome in a single trial if it is known 
to be P the relative frequency of occurrence of that outcome 
in a large number of trials converges to P. 
Therefore spatial frequency is defined as 

! 

f =
npath

K
        

The fractal dimension of pathways should be estimated as 
discussed before (section V).  Figure 4 indicates that power 
spectral density of pathways is inversely proportional to 
agent’s time steps. We are able to calculate the Hurst 
exponent and provide some estimate of the amount of 
predictability in our noisy data set (i.e., random movement). 
Spectral density is proportional to 

! 

f
"# , where 

! 

" = 2H +1. For 

! 

H = 0  we have the spectrum of the

! 

1

f

noise. 

Brownian movement of ant algorithm will be used as an 
evidence to predict a data set for our map generator. We use 

these data as our benchmark to compare it with the 
performances of our future developed search techniques. 
Figure 4 indicates the performance of ant algorithm (for 
three agents). Their performances have been tested on 101 
search fields. Black dots on the graph indicate the average of 
running the ant algorithm (random walk) 100 times. 

 
Fig. 4. Power spectral densities of developed search fields (one time step = 
36 sec.) 
 

The red lines indicate the maximum time steps and 
minimum time steps to discover the victim in each search 
field (error bars). The search fields are set according to 
power spectral in ascending order. As it is indicating Power 
spectral density has a negative correlation to time steps 
(discovery time). The larger is the power spectral the smaller 
is the time to discover the victim. Further more, in figure 5, 
we compared the estimated discovery time steps (continues 
black line) with average time steps that actually were taken 
by our ant agents (red doted line). From this result we are 
easily able to predict the average discovery time for the ant 
algorithm, according to search field power spectral density.  

We estimated the Hurst exponent for our Ant algorithm as 
H=0.82. Ant benchmark (discovery times according to 
pathways spectral density) will be automatically estimated 
for all the random developed search fields by our 
algorithmic map generator. 

 

 
Fig. 5. Estimated and average power spectral densities (1 time step=36 sec.) 
 
According to above figure when 
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x" 0  then 

! 

y"#, also 
when 

! 

y" 0  then 

! 

x"#, therefore we define an equation as 

“

! 

y =
A

x
” to depict the estimated graph in figure 5. In a 

concise explanation, that is how we are estimating the 
discovery time and deploying Ant algorithm as our 
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benchmark: 

! 

discoverytime =
101.2*H

P( f )
=
82.4

P( f )

    (7)       

(Average of 100 runs of discovery times for each field) 

! 

A = tMin
dis cov erytime

*H               

The minimum average discovery time recorded for Ant 
algorithm is 101.2 time steps (

! 

P( f ) " H ). This time step has 
considered in the numerator (part of our constant A). By 
inserting the P(f) of each search field inside above equation 
(7), its discovery time by Ant Brownian movement will be 
estimated.  

We test basic Tree algorithm [17], an existed algorithm, 
on our agents inside the generated test fields. In this search 
technique we are expecting to speed up victim localization, 
comparing to our benchmark (Ant algorithm, random 
performance) in the modelled life safe voids inside collapsed 
buildings. The experiment setup is as the same as discussed 
before (same as Ant algorithm). However in Tree algorithm 
we changed the head of the victim randomly 10 times inside 
the search field (same field just 2 cells, head, were randomly 
moved) and we calculated the average time to find the goal. 
In non-random algorithms discovery time is highly 
dependent on goal’s state. While FDP value is independent 
of the goal’s position (counted as occupied cell, like 
obstacles). However fractal dimension is still a 
discriminative index to characterize our generated search 
fields. Tree search algorithm is a cooperative multi-agent 
technique. In future we introduce this algorithm in detail 
(outside the scope of this paper) and compare it with 
different novel search strategies developed by the author. 
 

 
Fig. 6. Tree search algorithm performances compared to benchmark       
(one time step = 36 sec.) 

 

VII. CONCLUSION AND FUTURE WORK 
By learning new cooperative behaviours, multi-robot 

system is able to minimize the overall victim’s discovery 
time, inside the narrow gaps and small voids of a collapsed 
building. However there is no such a map generator 
available to generate various random after–disaster maps to 
allow researchers for detailed testing of their exploration 
techniques, prior to physical tests. We have discussed how to 
model the dangerous, cluttered and confined (challenging 

areas) parts of NIST red course in a simulation environment.  
To develop these confined search terrains there is a 
discriminative index estimated in this paper. By deploying 
fractal path tortuosity, map generator is able to differentiate 
its random generated confined fields. In future we introduce 
our novel path planning for narrow pathways and small 
tunnels. This collaborative search technique will be tested in 
various complex and ambiguous test fields generated by our 
map generator. We compare our work to existing algorithms, 
as well as our evaluated benchmark, Ant algorithm, which is 
a well-known search technique for autonomous multi robots.  

REFERENCES 
[1] R.R Murphy, “Activities of the rescue robots at the world Trade 

Centre from 11-12 September 2001”, IEE Robotics and Automation 
magazine, 11(3): 851-864, September 2004. 

[2] J.R. Krummel, R.H. Gardner, G. Sugihara, R.V. O’Neill, and P.R. 
Coleman.  Landscape pattern in a distributed environment. 48:321-
324, Oikos,1987. 

[3] P.A. Burrough, Fractals and geochemistry: In The Fractal approach 
to the chemistry of distorted systems, ed. By D. Avnir, Wiley and 
Sons, New York, 1988. 

[4] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San 
Francisco, 1983. 

[5] Voss, R.F.  Fractals in nature: from characterization to simulation. 
In: Peitgen, H. -O. and D. Saupe (eds.) The science of fractal images 
pp. 21-70, Springer, New York, 1998 

[6] M. Dicke, and P.A. Burrough, “Using fractal dimension for 
characterizing tortuosity of animals”, Physiological Ecology, Physiol 
Entomol, 13,pp 393-398, 1988. 

[7] A. Jacoff, E. Messina, and J. Evans, “A reference test course for 
autonomous mobile robots”, In proceeding of SPIE-AeroSense 
Conference, Orlando, FL, 2001. 

[8] A. Schultz, The 2000 AAAI Mobile Robot Competition and 
Exhibition”, AI Magazine, 22(1), spring 2001, AAAI. 

[9] A. Jacoff, E. Messina, B.A. Weiss, S. Tadokoro, and Y. Nakagawa, 
“Test arenas and Performance Metrics for Urban Search and Rescue 
Robots”, In proceeding of the IEEE/RS international conference on 
intelligent Robots and Systems, Las Vegas, NV, October 27-31,2003. 

[10] M. Lewis, K. Sycara, and I. Nourbaksh, “Developing a Testbed for 
studying Human-Robot Interaction in Urban Search and rescue”, In 
proceeding of 10th International Conference on Human-Computer 
Interaction (HIC03), Crete, Greece, 2003. 

[11] P.E. Merloti, and J. Lewis, “Simulation of artificial Ant’s Behavior in 
a Digital Environment”, in proceeding of international conference on 
Artificial Intelligence (ICAI05), Las Vegas, Nevada, USA, 2005. 

[12] A.L. Jones, Image Segmentation via Fractal Dimension, Master 
theises, Dec. 1987. 

[13] JP. Zhang, H. Barad, and A. Martinez, “Fractal Dimension of 
Fractional Brownian Motion”, IEEE Southeastcon '90,pp 934-939 
vol.3, New Orleans Lousiana, 1990. 

[14] Andrew W. Lo and A. Craig MacKinlay, Long-Term Memory in Stock 
Market Prices, Chapter 6 in A Non-Random Walk Down Wall Street 
by, Princeton University Press, 1999. 

[15] A.W. Martin Voshell and D. D. Woods, “Overcoming the keyhole in 
human-robot coordination: Simulation and Evaluation”, Proceedings 
of the Human Factors and Ergonomics Society 49th Annual Meeting, 
2005. 

[16] http://rsb.info.nih.gov/ij/plugins/frac-lac.html, FracLac tool, accessed 
[10.06.2008]. 

[17] N. Agmon, N. Hazn, and G. A. Kaminka, “Constructing spanning 
trees for efficient multi-robot coverage”, in ICRA06: Proceeding of 
the International Conference on Robotics and Automation IEEE press, 
2006.  

FDO 

Ti
m

e 
ste

ps
  

Proceedings of the World Congress on Engineering 2009 Vol I
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN: 978-988-17012-5-1 WCE 2009


