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Abstract—We study the occurrence of backbones in

the nonlinear oscillations of semi-infinite cables rest-

ing on an elastic substrate reacting in compression

only, and subjected to a constant distributed load and

to a small harmonic displacement applied to the fi-

nite boundary. The moving boundary problem, which

arises because the position of the points where the

system detaches from the substrate is not known in

advance, is solved by the multiple scales expansion

technique.
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1 Introduction

In this work, we continue our investigations [8, 9, 10]
of a moving boundary problem for the wave equation,
which arises, e.g., in the modeling of the J-lay technique
for marine pipelines or cables, or in marine moorings [6].
The mechanical system under consideration consists of a
semi-infinite cable resting on a (unilateral) elastic sub-
strate reacting in compression only, subject to a constant
distributed load and to a harmonic displacement applied
to the finite boundary, which induces nonlinear forced os-
cillations. With regard to the J-lay problem, this model
describes only the laid part and the first part of the sus-
pended span, which are divided by the so-called Touch-
Down Point (TDP) (Fig. 1). Since the position of the
TDP is an additional unknown, which depends upon the
solution itself, the resulting dynamics is governed by a
nonlinear moving boundary problem [1].

The nonlinear dynamics of beams and cables resting on
unilateral elastic foundations have been investigated by
various authors in the past (see, e.g. [7, 12]), and we
quote [5] for a general overview of the interactions be-
tween structures and foundations.

Although in the statical regime exact solutions can easily
be found, even for large displacements (see, e.g. [10, 11]),
in the dynamical regime an exact, analytical solution of
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the nonlinear model equations is unattainable even for
small displacements; therefore, we resort to an approxi-
mate solution by using asymptotic analysis [3, 4]. The
first-order solution was presented in [8], and the second-
order solution in [9]. In those papers, however, typi-
cal nonlinear effects such as the bending of the resonant
curves (“backbones”) were not present. In order to de-
tect these effects, a different scaling must be used for the
external excitation [4]. In this paper, we analyze the be-
haviour of the system near a primary resonance, which
leads to the occurrence of backbones.

In our perturbation expansion, the zero-order terms cor-
respond to the static solution obtained in the absence of a
time-dependent excitation applied at the boundary. The
first-order terms give the primary resonances of the sys-
tem and their relation to the wave propagation toward
infinity [2]. In particular, two different regimes, below
and above a certain critical (cutoff) excitation frequency,
with very different wave properties [2], were identified in
[8] and in [9]. The second-order terms give information
on the nonlinear coupling of the linear modes, while the
third-order terms contain the information on the bending
of the resonant curves (“backbones”).

This paper is organized as follows: in section 2 we intro-
duce the mathematical model, in section 3 our perturba-
tive solution is presented and in section 4 we state our
conclusions.

2 The mathematical model

The profile of the cable is represented by the function
u(x, t), where 0 ≤ x < +∞ is the space variable and
t ≥ 0 the time. A constant downward load acts on the
whole cable, while a restoring elastic force is present only
on the portion of the spatial domain where the solution
u(x, t) is negative. This describes the action of the elastic
substrate (e.g., a Winkler soil) that acts in compression
only, and represents the unique source of nonlinearity in
the model (Fig. 1).

We assume that there exists only one point of the domain,
x = c(t), called Touch-Down-Point (TDP), where the
profile function vanishes, namely u(c(t), t) = 0; in partic-
ular, we suppose that u(x, t) > 0 for 0 ≤ x < c(t) and
u(x, t) < 0 for c(t) < x < ∞, which is justified for mo-
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Figure 1: The mechanical system

tions in the vicinity of the static solution, u(x, t) ≡ uS(x),
which exhibits only one TDP at x = c(t) ≡ c0 [8].

In this work, we shall look for time-dependent solutions
that correspond to small oscillations about the static so-
lution, induced by a harmonic displacement applied at
the x = 0 boundary. The TDP x = c(t) then exhibits
an oscillating behaviour as well, which is described an
amplification factor [8, 9]. The dimensionless governing
equations are given by [9]

∂2u

∂t2
− ∂2u

∂x2
+ 1 = 0, 0 < x < c(t), (1)

∂2u

∂t2
− ∂2u

∂x2
+ u + 1 = 0, x > c(t). (2)

where the constant +1 term in equation (2) represents
the external constant load applied to the system. The
boundary condition at x = 0 corresponds to small har-
monic excitation about a constant average value U0. In
[8] and [9] we chose u(0, t) = U0 [1 + ε sin(ωt)], where ε
is a smallness parameter which represents the amplitude
of the external excitation and ω is the imposed external
frequency. In the present work, a different scaling of the
external amplitude w.r. to ε will be chosen (see secion 3).
At the infinite end of the system, we require that u(x, t)
be bounded; moreover, we assume that, whenever the
equations support traveling-wave solutions, terms corre-
sponding to waves returning from +∞ are not present,
so that only “outgoing” waves (traveling to the right) are
admitted [2]. Finally, we impose the continuity of the
solution and of its first spatial derivative (continuity con-
dition) and the vanishing of the solution (vanishing condi-
tion) at x = c, with c = c0 for static solutions and c = c(t)
for time-dependent solutions. The static solution, uS(x),
is obtained by switching off the time derivatives in equa-
tions (1)-(2) and setting ε = 0 in the boundary condition.
We will discuss it in the next section; here, we only an-
ticipate the expression for the static TDP c0, which is an
important parameter in our analysis and is given by [8]

c0 =
√

1 + 2U0 − 1. (3)

This expression shows that there is a one-to-one corre-
spondence between c0 and U0; for this reason, we will use
either c0 or U0, whichever is more convenient, as a gov-
erning parameter in our analysis. The other one is the
excitation frequency ω.

3 Perturbative solution

3.1 Expansion

We will recover the bending of the resonant curves by
using multiple time scales analysis on the system (1)-(2)
with the boundary condition

u(0, t) = U0 (1 + ε3 sin ω t). (4)

To this aim, we introduce two additional time scales, τ =
εt (intermediate time scale) and T = ε2t (long time scale)
and expand the unknown functions according to

u(x, t) = u0(x) + ε u1(x, t, τ, T ) (5)

+ε2 u2(x, t, τ, T ) + ε3 u3(x, t, τ, T ) + O(ε4)

v(x, t) = v0(x) + ε v1(x, t, τ, T ) (6)

+ε2 v2(x, t, τ, T ) + ε3 v3(x, t, τ, T ) + O(ε4)

c(t) = c0 + ε c1(t, τ, T ) (7)

+ε2 c2(t, τ, T ) + ε3 c3(t, τ, T ) + O(ε4),

where we have indicated with v(x, t) the solution u(x, t)
for x > c(t), keeping the symbol u for 0 < x < c(t).The
continuity and vanishing conditions at the TDP x = c(t)
are

u(c(t), t) = v(c(t), t) = 0 (8)

∂u

∂x
(c(t), t) =

∂v

∂x
(c(t), t). (9)

With the expansion given by (5)-(7) we have for the time
derivatives:

∂u

∂t
= ε

∂u1

∂t
+ ε2

(

∂u1

∂τ
+

∂u2

∂t

)

+ ε3

(

∂u1

∂T
+

∂u2

∂τ
+

∂u3

∂t

)

+ O(ε4) (10)

∂2u

∂t2
= ε

∂2u1

∂t2
+ ε2

(

2
∂2u1

∂t∂τ
+

∂2u2

∂t2

)

+ ε3

(

∂2u1

∂τ2
+ 2

∂2u1

∂t∂T
+ 2

∂2u2

∂t∂τ
+

∂2u3

∂t3

)

+ O(ε4) (11)

Similar asymptotic expansions can be obtained for the
continuity conditions (8)-(9) by expanding the functions
u and v and their derivatives at the TDP in a Taylor series
about the static value c0. For the sake of conciseness, we
do not report these expressione here. After substituting
into (1)-(2) and into the continuity conditions we obtain
the usual hierarchy of equations to all orders in ε.

3.2 Zero-order solution

To O(ε0) the equations of the hierarchy are

u′′

0(x) = 1 (12)

v′′0 (x) − v0(x) = 1, (13)
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with the boundary condition u0(0) = U0 and the conti-
nuity conditions

u0(c0) = v0(c0) = 0 (14)

u′

0(c0) = v′0(c0). (15)

This leads to the stationary solution, which was already
outlined in [8] and [9], and is given by

u0(x) = (x − c0)

(

x − U0

c0

)

, v0(x) = ec0−x − 1

with c0 given by (3).

3.3 First-order solution

To O(ε) we have

∂2u1

∂t2
− ∂2u1

∂x2
= 0 (16)

∂2v1

∂t2
− ∂2v1

∂x2
+ v1 = 0, (17)

with the boundary condition u1(0, t, τ, T ) = 0. The conti-
nuity conditions, thanks to the zero-order equations (12)
and (13) and continuity conditions (14) and (15), are
given by

u1(c0, t) = v1(c0, t) (18)

∂u1

∂x
(c0, t) =

∂v1

∂x
(c0, t) (19)

c1 = u1(c0, t) (20)

Since we are interested in steady-state oscillations, [8, 9],
we seek solutions of the form

u1(x, t, τ, T ) = f10(x, τ, T ) + f11(x, τ, T ) cosΩt

+g11(x, τ, T ) sin Ωt

v1(x, t, τ, T ) = h10(x, τ, T ) + h11(x, τ, T ) cosΩt

+k11(x, τ, T ) sin Ωt,

with boundary conditions f10(0, τ, T ) = f11(0, τ, T ) =
g11(0, τ, T ) = 0 and h10, h11, k11 → 0 as x → +∞. After
substituting these expansions into (16) and (17) and after
equating the coefficients of the trigonometric functions
there introduced, we obtain a set of equations which can
be easily solved (here, primes indicate derivatives w.r. to
x and ν =

√
1 − Ω2):

f10 = A10(τ, T )x h10 = C10(τ, T ) e−x

f11 = A11(τ, T ) sin Ωx h11 = C11(τ, T ) e−νx

g11 = B11(τ, T ) sin Ωx k11 = D11(τ, T ) e−νx.

We have chosen to work with the case Ω < 1 (correspond-
ing to the 1-subcritical regime introduced in [9]), so that
ν is real and positive. The matching conditions (18) and
(19) then give

A10 c0 = C10 e−c0

A10 = −C10 e−c0

which are solved by A10 = C10 = 0, and

A11 sin Ωc0 = C11e
−νc0

Ω A11 cosΩc0 = −νC11e
−νc0

which have nonvanishing solutions only if

δ(Ω) ≡ ν sin Ωc0 + Ω cosΩc0 = 0. (21)

Equation (21) is the dispersion relation which gives
the first-order resonances and which was already ob-
tained in [8] and [9]. In this case we have C11 =
A11 eνc0 sin Ωc0 and it is easy to see that we also have
D11 = B11 eνc0 sin Ωc0. By collecting all these results we
obtain for the first-order solution:

u1(x, t, τ, T ) = s1(t) sin Ωx

v1(x, t, τ, T ) = s1(t) eν(c0−x) sin Ωc0

c1(t, τ, T ) = s1(t) sin Ωc0

where s1(t) = A11(τ, T ) cosΩt + B11(τ, T ) sin Ωt, with
A11 and B11 as yet undetermined.

3.4 Second-order solution

To O(ε2) we have

∂2u2

∂t2
− ∂2u2

∂x2
= −2

∂2u1

∂t∂τ
∂2v2

∂t2
− ∂2v2

∂x2
+ v2 = −2

∂2v1

∂t∂τ
,

with the boundary condition u2(0, t, τ, T ) = 0. The conti-
nuity conditions, thanks to the zero- and first-order equa-
tions and continuity conditions, are given by

u2(c0, t) = v2(c0, t) (22)

∂u2

∂x
(c0, t) +

c2
1

2
+ c1

∂2u1

∂x2
(c0, t)

=
∂v2

∂x
(c0, t) + c1

∂2v1

∂x2
(c0, t) (23)

c2 = u2(c0, t) +
c2
1

2
+ c1

∂u1

∂x
(c0, t). (24)

We again seek for solutions of the form

u2(x, t, τ, T ) = f20(x, τ, T )

+f21(x, τ, T ) cosΩt + g21(x, τ, T ) sinΩt

+f22(x, τ, T ) cos 2 Ωt + g22(x, τ, T ) sin 2 Ωt

v2(x, t, τ, T ) = h20(x, τ, T )

+h21(x, τ, T ) cosΩt + k21(x, τ, T ) sinΩt

+h22(x, τ, T ) cos 2 Ωt + k22(x, τ, T ) sin 2 Ωt

with boundary conditions f20(0, τ, T ) = f21(0, τ, T ) =
g21(0, τ, T ) = f22(0, τ, T ) = g22(0, τ, T ) = 0 and
h20, h21, k21, h22, k22 → 0 as x → +∞. By proceeding
in the same way as for the first-order solution, we find

f20 = A20(τ, T )x h20 = C20(τ, T ) e−x

f22 = A22(τ, T ) sin 2 Ωx h22 = C22(τ, T ) e−µx

g22 = B22(τ, T ) sin 2 Ωx k22 = D22(τ, T ) e−µx,
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where µ =
√

1 − 4 Ω2, and

f21 = A21(τ, T ) sin Ωx + Ap x cosΩx

g21 = B21(τ, T ) sinΩx + Bp x cosΩx

h21 = C21(τ, T ) e−νx + Cp x e−νx

k21 = D21(τ, T ) e−νx + Dp x e−νx

with

Ap = −2 (∂B11/∂τ) Cp = (Ω/ν)Ap eνc0 sin Ωc0

Bp = 2 (∂A11/∂τ) Dp = (Ω/ν)Bp eνc0 sin Ωc0.

Here, we have assumed Ω < 1/2, so that µ is real and
positive (this corresponds to the 2-subcritical regime in-
troduced in [9]). After equating constant terms in the
matching conditions (22) and (23) we obtain, after few
steps,

A20 =
A2

11 + B2
11

4 (1 + c0)
sin2 Ωc0 (25)

C20 =
A2

11 + B2
11

4 (1 + c0)
c0 ec0 sin2 Ωc0. (26)

After equating the cosΩt and sin Ωt terms we have the
non homogeneous system

A21 sinΩc0 − C21e
−νc0 (27)

= −2
c0

ν
(Ω sin ωc0 + ν cosΩc0)

∂B11

∂τ

A21Ω cosΩc0 + C21 ν e−νc0 (28)

= −2

ν
(Ω sin ωc0 + ν cosΩc0)

∂B11

∂τ

for the unknowns A21 and C21. The homogeneous sys-
tem associated with (27) and (28) admits non trivial so-
lutions (thanks to the first-order dispersion relation (21))
and therefore the right hand side of the non homogeneous
system must be orthogonal to the solution of the associ-
ated adjoint homogeneous system. It can be easily seen
that this implies

∂B11

∂τ
= 0

∂A11

∂τ
= 0

which shows also that the coefficients A20 and C20 depend
only upon T and that Ap = Bp = Cp = Dp = 0. As
is customary in the multiple scale technique [3, 4], we
neglect the homogeneous solutions at all orders higher
than the first. This gives A21 = C21 = B21 = D21 = 0,
from which it follows that and therefore f21 = g21 =
h21 = k21 = 0.

Finally, by equating the cos 2 Ωt and sin 2 Ωt terms in the
matching conditions (22) and (23) we obtain:

A22 =
A2

11 − B2
11

4 δ(2 Ω)
sin2 Ωc0 (29)

C22 =
A2

11 − B2
11

4 δ(2 Ω)
eµc0 sin 2 Ωc0 sin2 Ωc0 (30)

B22 =
A11 B11

2 δ(2 Ω)
sin2 Ωc0 (31)

D22 =
A11 B11

2 δ(2 Ω)
eµc0 sin 2 Ωc0 sin2 Ωc0 (32)

which shows that also the coefficients A22, C22, B22 and
D22 depend only upon T . The presence of the function
δ(2 Ω) at the denominators is consistent with the occur-
rence of second order superharmonic resonances, as was
found in [9]. The second-order solution can then be writ-
ten as

u2(x, t, τ, T ) = A20(T )x + s2(t) sin 2 Ωx (33)

v2(x, t, τ, T ) = C20(T ) e−x

+s2(t) eµ(c0−x) sin 2Ωc0 (34)

c2(t, τ, T ) = u2(c0, t, τ, T ) +
c2
1

2

+c1
∂u1

∂x
(c0, t, τ, T ) (35)

with s2(t) = A22(T ) cos 2 Ωt + B22(T ) sin 2 Ωt and A20,
C20, A22, B22, C22 and D22 given by (25), (26), (29),
(31), (30) and (32).

3.5 Third-order solution

To O(ε3) we have

∂2u3

∂t2
− ∂2u3

∂x2

= −
(

∂2u1

∂τ2
+ 2

∂2u1

∂t∂T

)

− 2
∂2u2

∂t∂τ

∂2v3

∂t2
− ∂2v3

∂x2
+ v3

= −
(

∂2v1

∂τ2
+ 2

∂2v1

∂t∂T

)

− 2
∂2v2

∂t∂τ
,

with the boundary condition u3(0, t, τ, T ) = U0 sinωt.
The continuity conditions, due to the zero-, first- and
second-order equations and continuity conditions, be-
come

u3(c0, t) + c1
∂u2

∂x
(c0, t) +

c2
1

2

∂2u1

∂x2
(c0, t) +

c3
1

6

= v3(c0, t) + c1
∂v2

∂x
+

c2
1

2

∂2v1

∂x2
(c0, t) (36)

∂u3

∂x
(c0, t) + c1

∂2u2

∂x2
(c0, t) +

c2
1

2

∂3u1

∂x3
(c0, t)

+c2
∂2u1

∂x2
(c0, t) +

c3
1

6
+ c1 c2

=
∂v3

∂x
(c0, t) + c1

∂2v2

∂x2
(c0, t)

+
c2
1

2

∂3v1

∂x3
(c0, t) + c2

∂2v1

∂x2
(c0, t) (37)

c3 = u3(c0, t) + c1
∂u2

∂x
(c0, t)

+
c2
1

2

∂2u1

∂x2
(c0, t) + c2

∂u1

∂x
(c0, t). (38)
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Since we study oscillations at a frequency near a primary
resonance, say Ω, we put ω = Ω + ε2 σ, where σ is a
detuning parameter [4]. We then have for the boundary
condition

u3(0, t, τ, T ) = U0 sin(Ω + ε2 σ)t = U0 sin(Ωt + σT ). (39)

Again, we seek for solutions of the form

u3(x, t, τ, T ) = f30(x, τ, T )

+f31(x, τ, T ) cosΩt + g31(x, τ, T ) sin Ωt

+f32(x, τ, T ) cos 2 Ωt + g32(x, τ, T ) sin 2 Ωt

+f33(x, τ, T ) cos 3 Ωt + g33(x, τ, T ) sin 3 Ωt

v3(x, t, τ, T ) = h30(x, τ, T )

+h31(x, τ, T ) cosΩt + k31(x, τ, T ) sinΩt

+h32(x, τ, T ) cos 2 Ωt + k32(x, τ, T ) sin 2 Ωt

+h33(x, τ, T ) cos 3 Ωt + k33(x, τ, T ) sin 3 Ωt

with boundary conditions f30(0, τ, T ) = f32(0, τ, T ) =
g32(0, τ, T ) = f33(0, τ, T ) = g33(0, τ, T ) = 0,
f31(0, τ, T ) = U0 sin σT , g31(0, τ, T ) = U0 cosσT and
h30, h31, k31, h32, k32, h33, k33 → 0 as x → +∞. By pro-
ceeding as before, we have

f30 = A30(τ, T )x

h30 = B30(τ, T ) e−x

f31 =

[

A31(τ, T ) +
B′

11(T )

2 Ω

]

sin Ωx

+ (U0 sin σT − xB′

11(T )) cosΩx

h31 = C31(τ, T ) e−νx

−1 + 2 ν x

2 ν2
Ω sin Ωc0 B′

11(T )eν(c0−x)

g31 =

[

B31(τ, T ) − A′

11(T )

2Ω

]

sinΩx

+ (U0 cosσT + xA′

11(T )) cosΩx

k31 = D31(τ, T ) e−νx

+
1 + 2 ν x

2 ν2
Ω sin Ωc0 A′

11(T )eν(c0−x).

The remaining functions are not needed for our analy-
sis and we omit them. The coefficients A30, B30, A31,
B31, C31 and D31 are to be determined by equating the
zero- and first-order Fourier components in the matching
conditions (36) and (37). The matching equations are
rather long and we made use of a symbolic manipula-
tion program. The matching of the zero component gives
f30 = h30 = 0. The four equations which express the
matching of the first component (the cosΩt and sin Ωt
terms) can be cast in the form of two linear nonhomoge-
neous systems for the unknowns A31, C31, B31 and D31:

α11 A31 + β11 C31 = γ11 (40)

α12 A31 + β12 C31 = γ12 (41)

and

α21 B31 + β21 D31 = γ21 (42)

α22 B31 + β22 D31 = γ22 (43)

where the α’s and β’s are coefficients which depend only
upon c0 and Ω. It can be shown that

α21 β22 − β21 α22 =
e−νc0

4
δ(Ω) = 0

α11 β12 − β11 α12 =
e−νc0

4
δ(Ω) = 0,

where the last equalities follow from (21). Therefore,
the associated homogeneous systems admit nontrivial so-
lutions and we must require that the nonhomogeneous
terms in (40)-(43) be orthogonal to the solution of the ad-
joint homogeneous promlem. This gives the consistency
conditions

γ11 + ν γ12 = 0 (44)

γ21 + ν γ22 = 0 (45)

After some algebraic steps, which we carried out with
a symbolic manipulation program, (44) and (45) can be
cast in the form of a system of coupled ordinary differen-
tial equations for A11 and B11 as functions of T :

B′

11(T ) = ∆ sin σT − Λ (A3
11 + A11 B2

11) (46)

A′

11(T ) = −∆ cosσT + Λ (A2
11 B11 + B3

11) (47)

where ∆ and Λ are constants which depend upon c0 and
the chosen primary resonant frequency Ω. These two
equations can be solved by transforming into polar vari-
ables by setting

A11(T ) = Γ(T ) cosΘ(T )

B11(T ) = Γ(T ) sin Θ(T ).

Substituting into (46) and (47) we obtain after few steps

−∆sin(σT + Θ(T )) + ΛΓ3(T ) + Γ(T )Θ′(T ) = 0

∆cos(σT + Θ(T )) + Γ′(T ) = 0.

We introduce χ(T ) = σT + Θ(T ) and look for solutions
which correspond to steady-state oscillations, namely Γ =
Γ0 = const. and χ = χ0 = const. We then obtain the
system

∆cosχ0 = 0

−∆sinχ0 − σΓ0 + ΛΓ3
0 = 0

This gives two solutions, χ0 = ±π/2, for which sinχ0 =
±1. In turn, this gives two values for σ as function of Γ0,
namely

σ1 =
−∆ + ΛΓ3

0

Γ0
(48)

σ2 =
∆ + ΛΓ3

0

Γ0
(49)

Equations (48) and (49) are the desired expressions for
the bending of the resonance curves (“backbone”) near
primary resonances in the case Ω < 1/2.
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Figure 2: The backbones for c0 = 15 and Ω = 0.196
(black line) and Ω = 0.392 (red line).
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Figure 3: The backbones for the lowest primary resonant
frequency for c0 = 15 (black line), 10 (red line) and 6
(green line).

In Figure (2) we show σ1 and σ2 as functions of Γ0 for
c0 = 15; in this case, the dispersion relation (21) gives
two resonant frequencies below Ω = 1/2, namely Ω =
0.196 (black lines) and Ω = 0.392 (red lines). Figure (2)
shows σ1 and σ2 as functions of Γ0 for the lowest resonant
frequency corresponding to three different values of c0:
c0 = 15, with Ω = 0.196 (black lines), c0 = 10, with Ω =
0.285 (red lines) and c0 = 6, with Ω = 0.446 (green lines).
The bending appears to be larger at higher frequencies
(for the same value of c0) and at lower values of c0 (for
the first resonant frequency).

4 Conclusions and Future Work

We have analyzed the occurrence of nonlinear resonances
for a system governed by the wave equation in a semi-
infinite domain. The system is subjected to a harmonic
displacement applied to the finite boundary, which in-
duces nonlinear forced oscillations. A small parameter ε
is introduced, which measures the deviation of the am-

plitude of the forcing term with respect to a constant
average value. In two earlier papers, [8] and [9], we have
analyzed the first- and second-order perturbative solu-
tions, obtaining the resonant response of the system. In
this work, we have adopted a different scaling of the ex-
ternal excitation with respect to ε in order to describe
the bending of the resonant curves (backbones) near a
primary resonant frequency.

As a material for future work, we leave some numerical
comparisons and a stability analysis of the solutions.
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