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Abstract—In this paper, we study the spatial

disorder of coupled discrete nonlinear Schrödinger

(CDNLS) equations with piecewise-monotone nonlin-

earities. By the construction of horseshoes, we show

that the CDNLS equation possesses a hyperbolic in-

variant Cantor set on which it is topological conjugate

to the full shift on N symbols. The CDNLS equation

exhibits spatial disorder, resulting from the strong

amplitudes and stiffness of the nonlinearities in the

system. The complexity of the disorder is determined

by the oscillations of the nonlinearities.
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1 Introduction

In this paper, we study solitary wave solutions of the
time-dependent coupled discrete nonlinear Schrödinger
(CDNLS) equation⎧⎪⎨
⎪⎩

ι d
dtφ

(i)
n = −φ

(i)
n+1 + 2φ

(i)
n − φ

(i)
n−1 + f̃i(|φ(i)

n |)φ(i)
n

+
∑m

j=1 βij |φ(j)
n |2φ(i)

n ,

n ∈ Z, i = 1, . . . ,m,

(1.1)

where ι =
√−1, and f̃i ∈ C1 is piecewise-monotone.

This means that f̃i has a finite number of turning points.
Equation (1.1) is a discretization of the coupled nonlinear
Schrödinger (CNLS) equation

ι
∂

∂t
φi = −�φi + f̃i(|φi|)φi +

m∑
j=1

βij |φj |2φi, i = 1, . . . ,m.

The connection with the CNLS equations is clearer from
the alternative form of (1.1):⎧⎪⎨
⎪⎩

ι d
dtφ

(i)
n = −1

h2 (φ(i)
n+1 − 2φ

(i)
n + φ

(i)
n−1) + f̃i(|φ(i)

n |)φ(i)
n

+
∑m

j=1 βij |φ(j)
n |2φ(i)

n ,

n ∈ Z, i = 1, . . . ,m.

Systems of CNLS equations arise in many fields of
physics, including condensed matter, hydrodynamics, op-
tics, plasmas, and Bose-Einstein condensates (BECs) (see
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e.g. [1, 4, 8, 15]). The coupling constants βij are the in-
teraction between the i-th and the j-th component of the
system. The interaction is attractive if βij < 0 and repul-
sive if βij > 0. In the presence of strong periodic trapped
potentials, a CNLS equation can be approximated by a
CDNLS equation. Equation (1.1) describes a large class
of discrete nonlinear systems such as optical fibers [5, 6],
small molecules such as benzene [7], and, more recently,
dilute BECs trapped in a multiwell periodic potential
[2, 3, 18, 17].

The interplay between disorder and nonlinearity is a cen-
tral topic of nonlinear science. This raises a number of
mathematical questions related to the behavior of many
physical systems. Our principal focus is to study the
spatial disorder of solitary wave solutions of the CDNLS
equation (1.1). To obtain such solitary wave solutions,
we set φ

(i)
n (t) = e−ιωitu

(i)
n and transform (1.1) into the

time-independent coupled discrete nonlinear Schrödinger
equation{
−u

(i)
n+1 + fi(u

(i)
n )u(i)

n − u
(i)
n−1 +

∑m
j=1 βij(u

(j)
n )2u(i)

n = 0,

i = 1, . . . ,m,

(1.2)

where fi(u) = (2 − ωi)u + f̃i(|u|)u. To be more precise,
we observe that (1.2) can be written as an iteration of
the map (ū, v̄) = F(u,v), u and v ∈ R

m, defined by

F :

{
ūi = fi(ui)− vi +

∑m
j=1 βiju

2
jui,

v̄i = ui,
(1.3)

for i = 1, . . . ,m, or equivalently, in the vector form{
ū = f(u)− v + diag(u)Bu©2 ,

v̄ = u,
(1.4)

where f(u) = (f1(u1), . . . , fm(um)), B = (βij) ∈ R
m×m

and u©2 = u ◦ u. Here ◦ denotes the Hadamard prod-
uct (the elementwise product). We further assume the
CDNLS equations (1.2) and (1.3) satisfy the following
assumptions:

(A1) Denote c
(i)
1 < c

(i)
2 < · · · < c

(i)
ti

the turning points of
fi. Assume there exist b > 0, and closed intervals
I
(i)
j , for i = 1, . . . ,m and j = 0, . . . , ti, such that

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



−b < I
(i)
0 < c

(i)
1 < I

(i)
1 < c

(i)
2 < · · · < c

(i)
ti

< I
(i)
ti

< b,
and

(fi ± b2‖B‖∞)(I(i)
j ) ⊃ [−2b, 2b],

for all i, j. Here (fi ± b2‖B‖∞)(u) = fi(u) ±
b2‖B‖∞u. Also, by c

(i)
j < I

(i)
j < c

(i)
j+1 with I

(i)
j =

[d(i)
j , e

(i)
j ], we mean that c

(i)
j < d

(i)
j and e

(i)
j < c

(i)
j+1.

(A2) Let a = min
1≤i≤m

⎧⎨
⎩|f ′i(u)|

∣∣∣∣∣∣ u ∈
ti⋃

j=0

I
(i)
j

⎫⎬
⎭. Assume

a− 3b2‖B‖∞ ≥
√

5.

Our first theorem concerns the topological conjugacy of
F to the full shifts.

Theorem 1.1. Suppose assumptions (A1)and (A2)hold.
The map F introduced in (1.3) possesses a hyperbolic in-
variant Cantor set on which F is topological conjugate to
the full shift on

∏m
i=1(ti + 1) symbols.

We see in Theorem 1.1 that the strong amplitudes (As-
sumption (A1)) and stiffness (Assumption (A2)) of the
nonlinearities in fi lead the CDNLS equation (1.2) to ex-
hibit spatial disorder. The complexity of this disorder is
determined by the oscillations (number of turning points)
of the nonlinearities. More precisely, the spatial entropy
of the CDNLS equation (1.2) equals to

∑m
i=1 log(ti + 1).

In this paper, we also consider the CDNLS equation with
the Kerr-like nonlinearity [1], that is,

−u
(i)
n+1 − ωiu

(i)
n − u

(i)
n−1 + αi(u(i)

n )3 +
m∑

j=1

βij(u(j)
n )2u(i)

n = 0,

(1.5)

for i = 1, . . . , m. In the decoupled case (with m = 1), lo-
calized solutions (homoclinic/hetroclinic orbits) of (1.5)
have been extensively studied by many researchers, espe-
cially the existence for localized solutions (see e.g., [14]
and the references cited therein). The chaotic behavior of
(1.5) when m = 1 as well as its synchronization is stud-
ied by [13]. For the two-coupled case, bifurcation analysis
of (1.5) for the ground state solutions is studied by [11].
Recently, it is reported by [12] that the phase separa-
tion of the ground state solutions of the CDNLS equa-
tion in higher-dimensional lattices occurs as the coupling
constants βij are sufficiently large. The construction of
horseshoes of (1.2) is studied by [16]. Our second theorem
concerns the spatial disorder and patterns of localized so-
lutions for the CDNLS equation (1.5).

Theorem 1.2. Let γ = b2‖B‖∞. Suppose

ωi − 3γ >
√

5 ,

ωi + 2 + γ

b2
< αi <

ωi − 3γ −√5
3

(
2ωi +

√
5

6b

)2

;

(1.6a)

or

ωi + 3γ < −
√

5 ,

ωi − 2− γ

b2
> αi >

ωi + 3γ +
√

5
3

(
2ωi −

√
5

6b

)2

;

(1.6b)

for all i = 1, . . . ,m. Then CDNLS equation (1.5)
possesses a hyperbolic invariant Cantor set on which
it is topological conjugate to the full shift on 3m sym-
bols. Moreover, there exist disjoint intervals I−1, I0,
and I1, where 0 ∈ I0, such that for given finite se-
quences k

(1)
n , k

(2)
n , . . . , k

(m)
n ∈ {−1, 0, 1}, |n| ≤ N , there

is a unique localized solution to (1.5) satisfying

u(i)
n ∈

{
I
k
(i)
n

, |n| ≤ N,

I0, |n| > N,
(1.7a)

and

lim
|n|→∞

u(i)
n = 0 exponentially, (1.7b)

for all i = 1, . . . ,m.

2 Construction of horseshoe and its hy-
perbolicity

Let B denote the box [−b, b]× · · · × [−b, b] in R
m.

Definition 2.1. A μ-horizontal surface is the graph of
a differentiable function v = h(u), u ∈ B, satisfying
‖Dh(u)‖ ≤ μ. A μ-horizontal strip in B × B is the set

H = {(u,v)|h1(u) ≤ v ≤ h2(u), u ∈ B},
where h1 < h2 are μ-horizontal surfaces. Similarly, a μ-
vertical surface is the graph of a differentiable function
u = g(v), v ∈ B, satisfying ‖Dg(v)‖ ≤ μ. A μ-vertical
strip in B × B is the set

V = {(u,v)|g1(v) ≤ u ≤ g2(v), v ∈ B},
where g1 < g2 are μ-horizontal surfaces. The widths of
the horizontal and the vertical strips are defined, respec-
tively, as

d(H) = max
u∈B

||h1(u)− h2(u)|| ,

d(V) = max
v∈B

||g1(v)− g2(v)||.

Let E ⊂ Z
m be the set of m-tuples defined by

E = {k = (k1, . . . , km)| ki = 0, . . . , ti},
where ti denotes the number of turning points for fi. For
a given k ∈ E, let Bk = I

(1)
k1
×· · ·×I

(m)
km

. Here I
(i)
ki

are the
closed intervals given in (A1). We define the horizontal
and vertical strips

Hk = B × Bk = {(u1, . . . , um, v1, . . . , vm) ∈ (B × B)| v ∈ Bk},
Vk = Bk × B = {(u1, . . . , um, v1, . . . , vm) ∈ (B × B)| u ∈ Bk}.
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Theorem 2.1. Let μ = (ã − √ã2 − 4)/2 with ã = a −
3‖B‖b2 and k ∈ E be given. If S is a μ-horizontal surface
then F(S∩Vk)∩(B×B) is a μ-horizontal surface contained
in Hk. If S is a μ-vertical surface, then F−1(S ∩ Hk) ∩
(B × B) is a μ-vertical surface contained in Vk.

From Theorem 2.1, we see that F(Vk) ∩ (B × B) ⊂ Hk

and F−1(Hk) ∩ (B × B) ⊂ Vk form a μ-horizontal strip
and a μ-vertical strip, respectively. Let

H∗k = F(Vk) ∩ (B × B) , V∗k = F−1(Hk) ∩ (B × B).
(2.1)

Thus the resulting surfaces in Theorem 2.1, F(S ∩ Vk) ∩
(B × B) and F−1(S ∩ Hk) ∩ (B × B), can be accord-
ingly rewritten as F(S)∩H∗k and F(S)∩V∗k, respectively.
We have the following immediate consequence of Theo-
rem 2.1.

Corollary 2.2. Let μ be the constant given in Theorem
2.1 and k ∈ E be given. If H is a μ-horizontal strip, then
F(H)∩H∗k is also a μ-horizontal strip. If V is a μ-vertical
strip, then F−1(V) ∩ V∗k is also a μ-vertical strip.

In Corollary 2.2, we see that F (resp., F−1) maps a μ-
horizontal strip (resp., μ-vertical strip) to

∏m
i=1(ti + 1)

μ-horizontal strips (resp., μ-vertical strips). In the next
theorem, we will see that every strip becomes thinner
under the mapping by a factor less than 1.

Theorem 2.3. Let μ be be the constant given in Theorem
2.1 and k ∈ E be given. Suppose H is a μ-horizontal
strip and V is a μ-vertical strip. If H̄ = F(H) ∩ H∗k and
Ṽ = F−1(V) ∩ V∗k, then

d(H̄) ≤ μ

1− μ2
d(H) , d(Ṽ) ≤ μ

1− μ2
d(V).

Proof of Theorem 1.1. Let N =
∏m

i=1(ti + 1) and μ be
the constant defined in Theorem 2.1. Define

Λ−1 =
⋃

k−1∈E

H∗k−1
, Λ0 =

⋃
k0∈E

V∗k0
,

where H∗k−1
and V∗k0

are defined in (2.1). By Corollary
2.2, an inductive argument shows that the sets

Λ−n−1 = Λ−1 ∩ F(Λ−1) ∩ · · · ∩ Fn(Λ−1),

Λn = Λ0 ∩ F−1(Λ0) ∩ · · · ∩ F−n(Λ0),

respectively, consist of Nn+1 μ-horizontal and Nn+1 μ-
horizontal strips. Hence, we may set

Λ−n−1 =
⋃

k−j∈E

j=1,...,n+1

H∗k−1,k−2,...,k−n−1
and

Λn =
⋃
kj∈E

j=0,...,n

V∗k0,k1,...,kn
,

where

H∗k−1,...,k−n−1

= {(u,v) ∈ B × B| F−j(u,v) ∈ H∗k−j−1
, j = 0, . . . , n}

and

V∗k0,k1,...,kn
= {(u,v) ∈ B×B| Fj(u,v) ∈ V∗kj

, j = 0, . . . , n}.

It follows from Theorem 2.3 that

d
(
H∗k−1,k−2,...,k−n−1

)
≤
(

μ

1− μ2

)n

d(H∗k−1
) ,

d
(V∗k0,k1,...,kn

) ≤ ( μ

1− μ2

)n

d(V∗k0
).

Hence, for any sequences (k−1,k−2 . . .) and (k0,k1, . . .) ∈
E

N,

∞⋂
n=1

H∗k−1,k−2,...,k−n
,

∞⋂
n=0

V∗k0,k1,...,kn
(2.2)

are decreasing to m-dimensional surfaces, say
H∗k−1,k−2,... = {v = h(u)} and V∗k0,k1,... = {u = g(v)}.
Here we note that h and g may be not differentiable.
However, the uniform convergency of the upper and lower
surfaces in (2.2) implies they satisfy a Lipschitz condition
with Lipschitz constant μ; i.e., for any u1,u2,v1,v2 ∈ B,

‖h(u1)− h(u2)‖ ≤ μ‖u1 − u2‖ ,

‖g(v1)− g(v2)‖ ≤ μ‖v1 − v2‖.

Since |μ| < 1, by the contraction mapping theorem, the
equation {v = h(u), u = g(v)} has a unique solu-
tion in B × B. This means H∗k−1,k−2,... = {v = h(u)}
and V∗k0,k1,... = {u = g(v)} have a unique intersection.
Hence, the invariant set Λ = Λ−∞ ∩ Λ∞ is a Cantor set.
To see F|Λ is topological conjugate to the full shift, σ, on
N symbols, we define the function

φ(p) = (. . . ,k−1|k0,k1, . . .),

where p = Hk−1,k−2,... ∩ Vk0,k1,.... It is easy to see that
φ is a homeomorphism from Λ to ΣN . We only need to
show that φ(F(p)) = σ(φ(p)). From the construction of
V∗k0,k1,..., we have

F(V∗k0,k1,...) = V∗k1,k2,.... (2.3)

On the other hand, p ∈ H∗k−1,k−2,...∩V∗k0
⊂ H∗k−1,k−2,...∩

Vk0 . From Theorem 2.1, it implies F(p) ∈ H∗k0,k−1,k−2,....
Together with (2.3), this shows

φ(F(p)) = φ(H∗k0,k−1,k−2,... ∩ V∗k1,k2,...)

= (. . . ,k−1,k0|k1, . . .) = σ(φ(p)).

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



We also show that the map F satisfies the hyperbolicity.
Before proving the hyperbolicity of Λ, we shall adopt the
following theorem in [10, p. 266].

Theorem 2.4. A compact F-invariant set Λ is hyperbolic
if there exist ν > 1 such that for every p ∈ Λ there is
a decomposition TpM = Sp ⊕ Tp (in general, not DF
invariant), a family of the horizontal cones Hp ⊃ Sp,
and a family of vertical cones Vp ⊃ Tp associated with
the decomposition such that

DF(p)Hp ⊂ Int HF(p),

DF−1(p)Vp ⊂ Int VF(p), (2.4)

and

‖DF(p)ζ‖ ≥ ν‖ζ‖ for ζ ∈ Hp,

‖DF−1(p)ζ‖ ≥ ν‖ζ‖ for ζ ∈ VF(p). (2.5)

Proof of Theorem 1.1: The hyperbolicity of Λ. We shall
prove the hyperbolicity by verifying the conditions in
Theorem 2.4. First, let

Sp = {
[

0
η

]
∈ R

2m| η ∈ R
m},

Tp = {
[

ξ
0

]
∈ R

2m| ξ ∈ R
m},

and

Hp = {
[

ξ
η

]
∈ R

2m| ‖η‖ ≤ μ‖ξ‖},

Vp = {
[

ξ
η

]
∈ R

2m| ‖ξ‖ ≤ μ‖η‖}.

It is easy to see that Sp ⊂ Hp and Tp ⊂ Vp. Now, let

p = (u,v) ∈ Λ and ζ =
[

ξ
η

]
∈ Sp be given. Hence,

p ∈ Vk for some k ∈ E. Moreover, there exists a μ-
horizontal surface S = {v = h(u)} containing p such that
ζ is a tangent vector to S at p, i.e. η = Dh(p)ξ. Since
F(p) ∈ Λ ⊂ B × B, it follows from Theorem 2.1 that the
connected component of F(S)∩ (B×B) containing F(p),
denoted by S̄, is also a μ-horizontal surface. Suppose S̄
is the graph of v̄ = h̄(ū). Consequently, ζ̄ =

[
ξ̄
η̄

]
:=

DF(p)ζ is a tangent vector to S̄ at F(p). From the result
of Step 3 in the proof of Theorem 2.1, we conclude that

‖η̄‖ = ‖Dh̄(ū)ξ̄‖ < μ‖ξ̄‖.

This proves the first invariance condition in (2.4). The
second can be similarly obtained. Letting ν = 1/μ, the
Contraction and Expansion condition (2.5) follows from
the previous argument directly. This completes the proof.
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