
Stability Analysis of the Mode-Locking Dynamics

in a Laser Cavity with a Passive Polarizer

Edwin Ding1 and J. Nathan Kutz2 ∗

Abstract—A low-dimensional model is constructed
via a variational formulation which characterizes the
mode-locking dynamics in a laser cavity with a passive
polarizer. The theoretical model accounts explicitly
for the effects of the passive polarizer with a Jones
matrix. In combination with the nonlinear inter-
action of the orthogonally polarized electromagnetic
fields, the evolution of the mode-locked state reduces
to the nonlinear interaction of the amplitude, width
and phase chirp. This model allows for an explicit
analytic prediction of the steady-state mode-locked
state (fixed point) and its corresponding stability.
The stability analysis requires a center manifold re-
duction which reveals that the solution decays to the
mode-locked state on a timescale dependent on the
gain bandwidth and the net cavity gain. Quantitative
and qualitative agreement is achieved between the full
governing model and the low-dimensional model, thus
providing for an excellent design tool for characteriz-
ing and optimizing mode-locking performance.
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1 Introduction

It has been approximately two decades since it was first
established experimentally that stable and robust mode-
locking could be achieved using a passive polarizer as an
effective saturable absorber in a laser cavity [1]. The de-
velopment of such sources of ultrashort light pulses has
had major scientific impact in that it has enabled direct
observation of ultra-fast processes in nature and studies
of matter under extreme conditions. The generation of
ultrashort light pulses has been the critical technology
in driving these ultrafast science studies. A mode-locked
laser cavity with a passive polarizer is a prime example of
a technologically promising and commercially developed
ultrafast device. And despite its wide-spread commercial
and academic usage, the underlying theory quantifying
the mode-locking stability and dynamics remains incom-
plete. In this manuscript, we further advance the theo-
retical understanding of the mode-locking dynamics with
a passive polarizer by first demonstrating that the laser
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cavity can be accurately represented by a low-dimensional
model that captures the nonlinear amplitude, width and
phase chirp dynamics, and second, explicitly calculat-
ing the stability of the mode-locked solutions and their
global-attracting nature within the context of the low-
dimensional model. The model can also easily capture
the full intracavity pulse fluctuations which are critical in
driving the underlying mode-locking dynamics. It is to
our knowledge, the first analytic calculation of the stabil-
ity of the mode-locked solution in a model which explic-
itly accounts for the polarization dynamics and which in-
cludes the decay rate to the attracting mode-locked state.

A common feature to all mode-locked lasers is the inten-
sity discrimination which is achieved by the mode-locking
mechanism [1, 2]. Such intensity discrimination, which
can be also thought of as saturable absorption, is the
underlying mechanism responsible for Kerr lens mode-
locking. The focus here will be strictly on the intensity
discrimination achieved in a cavity with intra-cavity po-
larization rotation in conjunction with a passive polarizer
(see figure 1). Incorporation of the full nonlinear polariza-
tion dynamics is hard to handle from a theoretical stand-
point. Certainly, there are no difficulties in simulating
the full system with polarization rotation [3, 4], but ex-
tracting analytic results remains a mathematically chal-
lenging proposition. This has led to the consideration of
reduction techniques which allow for simplification of the
governing equations while retaining the key polarization
rotation elements. However, unlike previous work [5],
the gain saturation dynamics and full Jones matrix for a
non-ideal polarizer is included in our analysis here. This
not only gives a more physically meaningful model, but
it also allows for an explicit calculation of the decay rate
(global attraction) to the mode-locked solution. Thus the
present work greatly extends the theoretical framework
and fundamental understanding of the laser cavity with a
passive polarizer and further circumvents the analytically
intractable results of previous work.

2 Governing Equations

To accurately quantify the evolution of the electromag-
netic field, the dominant physical effects in the laser cav-
ity must be included. Specifically, the leading order dy-
namics must include the effect of chromatic dispersion,
self-phase modulation, cross-phase modulation for the or-
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Figure 1: Experimental configuration of a ring laser cav-
ity that includes a passive polarizer, Erbium-doped am-
plification, output coupler and polarization ears. The
polarization ears can be used to tune the cavity birefrin-
gence. For a short cavity, the polarizer suppresses the
polarization rotation and phase-slip generated from the
birefringence so that stable mode-locking is achieved.

thogonal components of the polarization vector in the
fast- and slow-fields, gain saturation, cavity attenuation
and the Jones matrix rotation model for the passive po-
larizer. A passive polarizer is applied periodically in the
governing equations since its effects are experienced once
per round trip in the cavity. These effects are a crit-
ical component determining the mode-locking dynamics
and stability. Figure ?? illustrates a basic experimentally
realizable laser cavity configuration. Such an experimen-
tal configuration has been the subject of experimental,
computational and theoretical investigations for approx-
imately two decades.

2.1 Intra-cavity fiber propagation

We start by considering the propagation of the electro-
magnetic field in a birefringent optical fiber. The intra-
cavity evolution of the slowly varying envelope of the
electric field in an optical fiber subjected to chromatic
dispersion, Kerr nonlinearity, polarization effects, atten-
uation, and bandwidth limited gain is given by the system
of coupled nonlinear Schrödinger equations (CNLSs):
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HereG(z) models the saturating gain dynamics [1, 2] with
bandwidth τ . The gain (pumping) strength and loss of
the fiber are represented by the parameters 2g0 and γ re-
spectively. They are both non-negative constants where
2g0 > γ in order for cavity net-gain to exist and mode-
locking to occur. This system models linearly polarized
light propagating in a birefringent optical fiber in nondi-
mensionalized form for which the U and V fields are or-
thogonally polarized components of the electric field. The
birefringence strength parameter,K, determines the rela-
tive phase velocity difference between the U and V fields.
The material properties of the optical fiber determine the
values of nonlinear coupling parameters A and B. These
parameters satisfy A + B = 1 by axisymmetry and, for
the physical system considered here, take on the specific
values A = 2/3 and B = 1/3.

2.2 Polarization dynamics

In addition to the cavity propagation effects, a linear po-
larizer is added to the cavity to filter the polarization
state of the mode-locked pulse every roundtrip. In prin-
ciple, the mode-locking works as follows: a propagating
pulse experiences an intensity dependent polarization ro-
tation as governed by (1). Upon propagating over the
length of the cavity, the pulse is then subjected to the
polarization filtering effect generated from the linear po-
larizer. Specifically, only the polarization state aligned
with the linear polarizer’s principle axis is not attenu-
ated. Thus the intensity-dependent rotation in conjunc-
tion with the linear polarizer act to select a specific pulse
intensity, i.e. the mode-locked pulse solution.

In the ideal case, the pulse coming out from the polarizer
will be linearly polarized so that the phase difference be-
tween the orthogonal polarization components U and V
will be exactly zero. For a non-ideal polarizer, there will
be some leakage of the orthogonal component, and this
can be modeled with a Jones matrix [6]:

(
U+

V +

)
=

(
c2 + αs2 (1 − α)sc
(1− α)sc αc2 + s2

) (
U−

V −

)
(4)

Here the superscript ± denotes the state of the compo-
nents before (-) and after (+) passage through the po-
larizer. The parameters c = cos θ and s = sin θ where θ
is the angle between the cavity fiber’s fast axis and the
polarizer’s principle axis. The parameter α is a constant
between 0 and 1 that measures the imperfectness (leak-
age) of the polarizer (α = 0 represents an ideal polarizer).
For α = 1, the Jones matrix reduces to the identity ma-
trix so that the polarizer produces no effect upon the
pulse propagation.

Figure 2 demonstrates the ideal mode-locking behavior
expected in the cavity. This clearly shows that the initial
white-noise condition settles to the ideal mode-locked so-
lution on a timescale of thousands of round trips. The

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



−15
0

15
0

5000
0

0.4

T
Z

|U|

−15
0

15
0

5000
0

0.4

T
Z

|V|

Figure 2: Ideal mode-locking behavior in the laser cav-
ity with a passive polarizer. Here, the white-noise initial
condition settles to the attracting mode-locked solution
on the order of thousands of round trips. For this com-
putation, g0 = 0.1, τ = 0.1, γ = 0.1, K = 1 and α = 0.01
with the polarizer set so that θ = 0.28π.

well-known and often studied mode-locking behavior de-
picted in these two figures persists over a wide range
of parameter space. Indeed, its robustness to changes
in the parameters are what make the mode-locked laser
with a passive polarizer such a promising commercial de-
vice. The simplicity of the solution form that develops in
the mode-locking process is what makes the laser cavity
amenable to a low-dimensional reduction via the varia-
tional method. It is the low-dimensional model that is
the focus of this manuscript.

3 Low-Dimensional Dynamics

The CNLS system (1) with (4) doesn’t admit exact so-
lution and therefore analysis remains a mathematically
challenging proposition. A low-dimensional model is con-
structed via a variational formulation. This is a common
practice in a wide variety of engineering, physical, and
biological systems and applications. The general proce-
dure used here was first used by Bondeson et al. [7] in
the context of soliton perturbation theory.

3.1 Variational reduction

Fundamental to the variational reduction considered here
is the selection of a specific solution form. Consistent
with numerical and experimental observations, we as-

sume an ansatz of the form:

(
U
V

)
=

(
exp(−iψ/2) cosP
exp(+iψ/2) sinP

)√
η sechω T exp[i(βT 2+φ/2)]

(5)
where the parameters η, ω, β, P , ψ and φ are functions
of Z representing the amplitude, pulse width, quadratic
chirp, polarizaion angle, phase difference and absolute
phase respectively. The generalized Euler-Lagrange equa-
tion of the CNLS system (1) gives the approximate intra-
cavity evolution of each of these parameters [7, 8, 9].
The ability of the generalized Euler-Lagrange equation
to incorporate the dissipative (non-Hamiltonian) terms
RU and RV is critical since dissipation often drives the
stability and dynamics of a given system. The absolute
phase φ is not coupled to any of the above equations
and hence its evolution is neglected. Thus the original,
infinite-dimensional evolution equation (1) reduces to a
5×5 nonlinear system of differential equations governing
the amplitude, width, chirp, polarization and phase-slip.

3.2 Locked Polarizaton and Phase-Slip

Although a low-dimensional description of the govern-
ing evolution equations (1) has been constructed, the
periodic polarizer dynamics and filtering remains to be
applied. The periodic application of polarizer, which is
modeled by the Jones matrix (4), induces discrete jumps
in the amplitude (η), polarization (P ) and phase-slip (ψ)
after every round-trip. This discrete nature of the prob-
lem makes stability calculations difficult. However a fun-
damental feature associated with the polarizer can be
identified from numerical simulations of the 5 × 5 low-
dimensional model: the polarizer controls the polariza-
tion state and the phase-slip between the U - and V - fields
of the pulse. Specifically, the periodic application of the
polarizer (4) maintains the polarization state near the set
value of θ (P (Z) ≈ θ). Furthermore, the phase-slip is re-
set to nearly zero (ψ(Z) ≈ 0) for a nearly ideal polarizer
(α � 1) upon passage through the polarizer according
to the Jones matrix (4). It is also noticed that the jump
in amplitude becomes insignificant (η+ ≈ η−) after tens
of round-trips. Thus as a leading-order approximation,
we can neglect the evolutions of polarization state P and
phase-slip ψ, as well as the discrete jumps in the ampli-
tude η. By incorporating the effects of the polarizer this
way, the discrete system (due to the periodic application
of the polarizer) can be approximated by a continuous
system of three differential equations. Essentially, such
an approximation averages into the governing equations
the polarization dynamics. The resulting 3× 3 system of
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Figure 3: Comparison of the full governing evolution
model (1) and (4) (dotted lines) with the three-degree
of freedom low-dimensional reduction (6) (solid lines).
The parameters are same as those used in figure 2. The
mode-locking dynamics in the laser cavity is accurately
captured with the three-degree of freedom system with
the primary difference being in a phase-slip that devel-
ops due to the slightly different periods of oscillation in
the two systems. Regardless, all the critical features of
the mode-locking process, including the oscillatory decay
and its associated timescales, are captured very well with
the low-dimensional model considered.

nonlinear equations is then given by

dη

dZ
=

1

15π2ω(2η + ω)
×[

2η(6g0τπ
4β2 − 30π2(γ + β)ηω

+15π2(2g0 − γ − β)ω2 − 10g0τ(12 + π2)ω4
]

(6a)

dω

dZ
=

32π2g0τβ
2 − 240g0τω

4 − 30π2βω(2η + ω)

15π2(2η + ω)
(6b)

dβ

dZ
=

6(2η+ω)
[
ω2(ω2−η)−π2β2

]−8(3+π2)g0τβω
3

3π2(2η+ω)
(6c)

The direct comparison of this low-dimensional model and
the full model (1) shows them to be qualitatively simi-
lar with very good quantitative agreement in the ampli-
tude, width and chirp of the achieved mode-locked solu-
tion (see figure 3). The primary difference between the
models is that the oscillation period of the fast scale dy-
namics is slightly different between the models, creating
a phase-slip between the quantities of interest. However,
this does not impact the quality and usefulness of the
low-dimensional (now a 3 × 3 nonlinear system) approx-
imation. Figure 4 demonstrates the excellent agreement
between the corresponding steady-state solutions for both
the CNLS and 3× 3 systems.

4 Results

The reduction of the laser cavity dynamics from an
infinite-dimensional system (1) with a periodic pertur-
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Figure 4: Comparison of the steady-state mode-locked
solution for the full governing evolution model (1)
and (4) (dotted lines) with the three-degree of free-
dom low-dimensional reduction (6) (solid lines). The
steady-state mode-locked solution of the 3 × 3 model
is achieved (after several thousand round trips) for
(η, ω, β) = (0.2421, 0.4921,−90 × 10−4), which should
be compared to the full evolution values of (η, ω, β) =
(0.1982, 0.4461,−14× 10−4) with parameter values same
as those used in figure 2. Thus the 3×3 system repro-
duces the pulsewidth and height to within ≈10% and
≈20% respectively. The comparison between the tran-
sient responses of both models is given in figure 3.

bation (4) to a nonlinear, three-degree of freedom of
system (6) allows for significant analytic progress to be
made. This variational reduction specifically allows for a
complete characterization of the stability dynamics and
an evaluation of the timescales necessary for the cavity
to mode-lock. Highlighted in the analytic calculations
is the dependence of the mode-locking stability on key
physical parameters in the laser cavity. In fact the mode-
locked pulse is a fixed point of the reduced system (6).
It is shown that this fixed point only depends on g0, τ
and γ, thus the same mode-locked state is achieved once
these parameters are fixed. Stability of the mode-locked
state is determined by performing a standard phase-plane
analysis of (6) around the fixed point. Without the fiber
loss and bandwidth-limited gain, the leading order system
exhibits oscillatory behavior, which agrees with previous
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Figure 5: Three-dimensional phase-plane evolution for
the low-dimensional model (6) (top) and the full gov-
erning equations (1) with (4) (bottom). The three-
dimensional approximation to the evolution dynamics is
remarkably good as the fixed point and oscillation period
of the decay is quantitatively close to the full evolution
equation aside from an initial transient behavior in the
full equations.

work [5]. The presence of dissipative terms perturbs the
eigenvalues associated with the linearization and gener-
ates terms with slightly negative real parts, but at differ-
ent orders of magnitude. Such a calculation is essentially
a center manifold reduction as it calculates the higher-
order corrections to the leading-order oscillatory modes.
It is also shown that the decay rates (eigenvalues) of dif-
ferent modes depend primarily on two quantities: the
bandwidth limit parameter τ and the amount of net cav-
ity gain 2g0 − γ. The larger these quantities, the more
quickly mode-locking occurs. This shows that the fun-
damental stability is driven by the gain/loss perturba-
tion. Figure 5 illustrates the mode-locking behavior for
both the full system (1) with (4) and the low-dimensional
model (6). In both cases the dynamics settles to the two-
dimensional center manifold. This center manifold is ex-
pected as the leading-order behavior is an oscillatory dy-
namics. The decay time to the fixed point (mode-locked
solution) is determined by the eigenvalues with negative
real parts.

The above results are independent of the orientation θ
of the polarizer provided that the reduction of the 5× 5
system to the 3 × 3 system (6) is justified. In this case
mode-locking can be achieved regardless of the polarizer’s
orientation relative to the fast- and slow-axis of the fiber.
This is a much stronger stability statement than the one
obtained in [5], where mode-locking is only possible when
θ ≈ 0 or π/2. Note that if the cavity length is very long,
or if the birefringence parameter K is large, the polarizer
may not be efficient to control the polarization state P
and to suppress the phase-slip ψ. In this case, a full
treatment of the original 5 × 5 model would need to be
considered.

5 Conclusion

This work advances the theoretical understanding of the
laser cavity by constructing a low-dimensional description
of the underlying dynamics. Indeed, it is shown that a
3×3 continuous system of differential equations modeling
the amplitude (η), width (ω) and chirp (β) fluctuations
is adequate to capture both qualitatively and quantita-
tively the mode-locking behavior. Such a tremendous
reduction in the system parameters allows for a complete
analytic characterization of the stability dynamics. It
is shown that the resulting mode-locked pulse is a fixed
point of the reduced system. This fixed point is at lead-
ing order, orbitally stable. A center manifold analysis
constructs the higher-order corrections and shows that
the system reduces to a two-dimensional stable manifold
whose oscillations period is determined by the net cavity
gain 2g0 − γ and whose decay time to the mode-locked
state is dependent primarily upon the gain bandwidth
and the net cavity gain. Quantitative agreement (within
≈ 20%) is achieved with the full governing system, val-
idating the explicit analytic formulas for the decay rate
and oscillation period. This is, to our knowledge, the first
set of analytic calculations for the mode-locking stability
as well as the first low-dimensional model to explicitly
include the loss and bandwidth-limited gain dynamics.

Although the results are restricted to the case of anoma-
lous dispersion, the technique we used provides excel-
lent framework for exploring mode-locking behavior in
fibers operating at the normal dispersion regime [10, 11],
which is modeled by the cubic-quintic complex Ginzburg-
Landau equation whose coefficients are related to the po-
larization settings of the cavity [12, 13].
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