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Abstract— The rigorous Method of Regularization
is applied to the problem of electromagnetic scat-
tering of plane waves by a finite array of partially-
shielded circular cylinders. A set of ill-posed dual se-
ries equations is resulted from imposing the mixed
boundary conditions on the surface of each of the
cylinders. Each of the M sets of dual series equations
are treated separately using the Method of Regular-
ization and transformed analytically to an infinite sys-
tem of linear algebraic equations of the second kind.
These M systems of equations are then solved simul-
taneously by the truncation method. The computed
solution has properties of guaranteed accuracy and
fast convergence.
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1 Introduction

The problem of electromagnetic (EM) scattering of an in-
cident plane wave from an array of parallel circular cylin-
ders has been studied extensively over the years. Various
techniques have been developed to solve for the scattering
problem. A comparison of some of the basic treatments
to the multiple scattering problem is given in [1]. How-
ever, in most of the previous work, substantial assump-
tions have been made on the cylinders. The cylinders
are assumed to either have the same size or are made
of the same material. A few of the papers have focused
on the scattering problem for a combination of dielec-
tric and conducting circular cylinders but the surface of
each of these cylinders is taken to be either purely dielec-
tric or purely perfectly conducting (PEC). The scattering
problem from a finite array of partially-shielded dielectric
cylinders has not been considered before.

This paper demonstrates the feasibility of using the math-
ematically rigorous Method of Regularization (MoR)
in solving the scattering problem by a finite array of
partially-shielded dielectric cylinders. The MoR has been
used extensively in the frequency domain solution of scat-
tering by single canonical structure, such as the open
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spheroidal shell, toroidal shell and slotted cylinder [2, 3].
In contrast to purely-numerical methods, such as the
Method of Moments applied to the electrical field inte-
gral equation, the computed solution converges to the
exact solution as the truncation number increases. The
present paper extends the work by investigating the scat-
tering problem from a finite array of dielectric circular
cylinders of arbitrary radii and positions, where each of
these cylinders is partially-shielded with a PEC strip of
arbitrary size.

The analysis starts by representing the scattered and
transmitted field components from each of the M cylin-
ders due to the incident plane wave by an infinite series
of cylindrical harmonic functions with unknown coeffi-
cients. By enforcing the mixed boundary conditions on
the surface of each cylinder, M sets of dual series equa-
tions (DSEs) are derived. The values of the unknown
coefficients can be derived from these M sets of DSEs. A
direct matrix inversion of these ill-conditioned DSEs does
not guarantee a convergent solution. The MoR analyt-
ically converts these first kind singular series equations
to a second kind Fredholm matrix equation. The system
is then solved numerically using the truncation method.
Only the detailed derivation for the TM case is given as
the result can be easily extended to the TE case.

The solution computed in this paper is semi-analytic and
the effects of multiple scattering between different cylin-
ders are included in the analysis. Some numerical exam-
ples are given. The near field is calculated to prove the
satisfaction of the boundary conditions on each of the
surface of the cylinders.

2 Problem Formulation

The geometry of the EM scattering problem considered
is as shown in Fig. 1. M infinitely-long circular cylinders
are illuminated by a time harmonic plane wave that im-
pinges normally on the z-axis and makes an angle of φinc

with respect to the x-axis of the global coordinate system.
The cylinders are assumed to be parallel to each other
and to the z-axis of the global coordinate system. The
gth cylinder is positioned with center located at (rg, ϕg)
of the global polar coordinates (ρ, θ). The value of its
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Figure 1: Cross-sectional view of the cylinders

radius is denoted as Rg. It is filled with homogeneous
dielectric material with relative permittivity εg and rel-
ative permeability μg. An infinitely-thin, PEC strip of
angular size 2φg is placed on the surface of each of the
gth cylinder as shown. The surrounding medium is taken
to be free space with permittivity ε0 and permeability
μ0. Time dependence of e−jωt is assumed and omitted
everywhere throughout this paper.

The time harmonic Maxwells equations are solved in po-
lar coordinates. For a TM polarized incident wave, the
governing equation for the electric field component is a
Helmholtz equation in polar coordinates

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ
U

)
+

1
ρ2

∂2

∂θ2
U + k2U = 0 , (1)

where U denote the z-component of the electric field.

From Eqn.(1), the series representations of the scattered
and transmitted fields for each of the cylinders, with re-
spect to the gth coordinate system (ρg, θg), which is cen-
tered at (rg, ϕg), are obtained as

U (g)
sc (ρg, θg) = E0

∑
n∈Z

a(g)
n Hn(k0ρg)ejnθg , (2)

U
(g)
tr (ρg, θg) = E0

∑
n∈Z

b(g)
n Jn(kgρg)ejnθg , (3)

where E0 is the amplitude of the incident electric field
component, Jn(z) and Hn(z) are respectively the Bessel
function and Hankel function of the first kind (with the
superscript omitted for simplicity), of order n and with
argument z, k0 = ω

√
ε0μ0 = 2π/λ is the wavenumber of

the free space and kg = k0
√

εgμg is the wave number of
the dielectric material inside the gth cylinder. Without
loss of generality, we set E0 = 1.

Here, U
(g)
sc denotes the z-component of the scattered elec-

tric field resulting from the gth cylinder and U
(g)
tr denotes

the z-component of the transmitted electric field inside
the gth cylinder. a

(g)
n and b

(g)
n are the unknown coeffi-

cients to be determined by imposing the mixed boundary
conditions on each of the cylinder surfaces. It is worth
noting that the expressions above satisfy the Sommerfeld
radiation condition. The Meixner finite energy condi-
tion must be imposed to guarantee a unique solution. It
places an additional constraint on the unknown coeffi-
cients, which after some rescaling lie in �2.

The plane wave impinging normally on the z-axis, with
source lying outside of the scatterer, has the form

Uinc(ρ, θ) = E0e
−jk0ρ cos(θ−φinc) , (4)

in the global coordinate system. In terms of the gth local
coordinate system, the incident plane wave on the gth
cylinder can be expressed as

U
(g)
inc (ρg, θg) = e−jk0rg cos(ϕg−φinc) × e−jk0ρg cos(θg−φinc)

=
∑
n∈Z

Z(g)
n ejnθg , (5)

where Z
(g)
n = e−jk0rg cos(ϕg−φinc)(−j)nJn(k0ρg)e−jnφinc .

The mixed boundary conditions on the surface of the gth
cylinder are given by

U
(g)
inc +

M∑
h=1

U (h)
sc = 0 , (6)

U
(g)
tr = 0 , (7)

for ρg = Rg, |θg| ≤ φg; that is, the tangential components
of total electric fields vanish on the PEC strip, and

U
(g)
inc +

M∑
h=1

U (h)
sc = U

(g)
tr , (8)

1
μ0

∂

∂ρ

[
U

(g)
inc +

M∑
h=1

U (h)
sc

]
=

1
μg

∂

∂ρ
U

(g)
tr , (9)

for ρg = Rg, |θg| > φg; that is, the tangential fields are
continuous across the dielectric interface.

Both the scattered field and the transmitted field associ-
ated with each of the cylinders are based on its local coor-
dinate system. However, to enforce the mixed boundary
conditions on the gth cylinder, taking into account the
interaction between the M cylinders, the scattered fields
of all the other cylinders need to be expressed in terms of
the gth coordinate system. The additional theorem for
Bessel functions is used to transfer from one local coordi-
nate system to another. The transformation from (ρh, θh)
to (ρg, θg) of the Hankel function is given by

Hn(kρh) ejnθh =
∑
m∈Z

Jm(kρg)Hm−n(kdg,h)

× e−j(m−n)θg,hejmθg . (10)
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Here, dg,h =
√

r2
g + r2

h − 2rgrh cos(ϕg − ϕh) and θg,h =

± cos−1
(

rh cos ϕh−rg cos ϕg

dg,h

)
, where ‘−’ is taken when

rh sinϕh < rg sinϕg.

3 Solution Method

We now have 2M sequences of unknown coefficients a
(g)
n

and b
(g)
n (g = 1, . . . ,M) to be determined from imposing

the mixed boundary conditions on each of the cylinders.
Due to the continuity condition, by matching the fields
across each of the surfaces, everyone of the unknown b

(g)
n

can be expressed as a linear combination of all the a
(h)
n

for h = 1, . . . , M . The mixed boundary conditions on the
gth cylinder lead to the following DSEs

0 =
∑
n∈Z

ejnθg

⎡
⎣c(g)

n + Z(g)
n +

∑
h�=g

∑
m∈Z

c(h)
m A(g,h)

n,m

⎤
⎦ , (11)

for |θg| ≤ φg, and

0 =
∑
n∈Z

ejnθg

⎡
⎣c(g)

n p(g)
n + d(g)

n + q(g)
n

∑
h�=g

∑
m∈Z

c(h)
m A(g,h)

n,m

⎤
⎦ ,

(12)

for |θg| > φg.
∑

h�=g denotes the summation for h =
1, . . . , g − 1, g + 1, . . . ,M . The notations used above are

c(g)
n = a(g)

n Hn(k0Rg) , (13)

d(g)
n =

k0

μ0
Z
′(g)
n − kg

μg
Z(g)

n

J
′
n(kgRg)

Jn(kgRg)
, (14)

p(g)
n =

k0

μ0

H
′
n(k0Rg)

Hn(k0Rg)
− kg

μg

J
′
n(kgRg)

Jn(kgRg)
, (15)

q(g)
n =

k0

μ0

J
′
n(k0Rg)

Jn(k0Rg)
− kg

μg

J
′
n(kgRg)

Jn(kgRg)
, (16)

A(g,h)
n,m =

Hn−m(k0dg,h)Jn(k0Rg)
Hm(k0Rh)

ej(m−n)θg,h . (17)

By examining the asymptotic behaviours of the Bessel
function and the Hankel function, the following parame-
ters for n �= 0 are introduced

r(g)
n = 1 +

Rgμ0μg

μ0 + μg

p
(g)
n

|n| , (18)

s(g)
n =

q
(g)
n

|n| . (19)

They are asymptotically small as n → ∞, both having

the order of O
(

k2
gR2

g

n2

)
. With the introduction of the

asymptotically small parameters, the gth set of the DSEs

now takes the following form

0 =c
(g)
0 + Z

(g)
0 +

∑
h�=g

∑
m∈Z

c(h)
m A

(g,h)
0,m

+
∑
n�=0

ejnθg

⎡
⎣c(g)

n + Z(g)
n +

∑
h�=g

∑
m∈Z

c(h)
m A(g,h)

n,m

⎤
⎦ (20)

for |θg| ≤ φg, and

0 =κg

⎡
⎣p

(g)
0 c

(g)
0 + d

(g)
0 + q

(g)
0

∑
h�=g

∑
m∈Z

c(h)
m A

(g,h)
0,m

⎤
⎦

+
∑
n�=0

ejnθg |n|
(

c(g)
n

[
1− r(g)

n

]
+ κg

d
(g)
n

|n|

+κgs
(g)
n

∑
h�=g

∑
m∈Z

c(h)
m A(g,h)

n,m

⎞
⎠ (21)

for |θg| > φg, where κg = −Rgμ0μg

μ0+μg
.

The Meixner finite energy condition constrains the
rescaled unknown c

(g)
n so that

∑
n∈Z

n|c(g)
n |2 < ∞, for all

g = 1, . . . ,M . Hence, the operations of term-by-term in-
tegration and differentiation in the regularization process
that follows are justified and valid.

It may be shown with the ideas of [2], that the gth set of
DSEs above can be transformed to two connected infinite
systems of linear algebraic equations (ISLAEs) in terms
of x

(g)
n = c

(g)
n + c

(g)
−n and y

(g)
n = c

(g)
n − c

(g)
−n, by the MoR.

The ISLAE for x
(g)
n has the form of

√
mx(g)

m

[
1− r(g)

m

]
+
∑
n∈N

√
nx(g)

n r(g)
n T (g)

m,n

= 2κg

[
p
(g)
0 Z

(g)
0 − d

(g)
0

]
τ (g)
m − κg

√
mf (g)

m

+
∑
n∈N

√
n
[
κgf

(g)
n − e(g)

n

]
T (g)

m,n −
∑
h�=g

c
(h)
0 H(g,h)

m

+
∑
h�=g

∑
n∈N

[√
nx(h)

n U (g,h)
m,n +

√
ny(h)

n V (g,h)
m,n

]
(22)

where P̂
(α,β)
n (z) is the normalized Jacobi polynomial of

degree n, argument z. The notations adopted are detailed
in the Appendix. They are parameters that can be ex-
plicitly calculated in terms of the geometry and physical
quantities of the problem.

The ISLAE for y
(g)
n is similar to that of x

(g)
n and is omitted

here for reason of space. Together with the two ISLAEs
obtained, an expression for c

(g)
0 is derived, which has been

isolated from the ISLAEs for x
(g)
n and y

(g)
n ,

c
(g)
0 = −

∑
h�=g

c
(h)
0 ag,h + Ψg . (23)
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This expression is obtained by making use of the fact that
x

(g)
n , y

(g)
n belong to �2 and the continuity at z = zg. The

expression Ψg is given in terms of all the unknowns x
(h)
n

and y
(h)
n as follows. Other notations adopted are param-

eters that can be calculated explicitly (see Appendix).

Ψg = λg +
M∑

h=1

∑
n∈N

[√
nx(h)

n F (g,h)
n +

√
ny(h)

n G(g,h)
n

]
. (24)

For the scattering problem involving only single cylinder,
the ISLAEs for x

(1)
n and y

(1)
n are disjoint. They can read-

ily and separately be solved by matrix inversion. When
there are M cylinders involved, the resulting 2M sys-
tems are all connected to one another. Some manipula-
tions are required before the systems can be solved nu-
merically by truncation method. All the unknowns c

(g)
0

(g = 1, . . . , M) need to be eliminated from each of the 2M
systems. This is achieved by solving the 2M expressions
of the form of Eqn.(23) by Cramer’s rule. An explicit ex-
pression for the c

(g)
0 that is independent of all the other

c
(h)
0 (for h = 1, . . . , i− 1, i + 1, . . . ,M) is obtained as

c
(g)
0 =

M∑
h=1

ΨgΦg,h , (25)

where the coefficients can be computed from

Φg,h =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,h−1 a1,h+1 . . . a1,M

...
...

...
...

. . .
...

ag−1,1 . . . ag−1,h−1 ag−1,h+1 . . . ag−1,M

ag+1,1 . . . ag+1,h−1 ag+1,h+1 . . . ag+1,M

...
...

...
...

. . .
...

aM,1 . . . aM,h−1 aM,h+1 . . . aM,M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 . . . a1,M

...
...

...
aM,1 . . . aM,M

∣∣∣∣∣∣∣
(26)

Once the values for the unknowns x
(g)
n and y

(g)
n (g =

1, . . . , M) are computed, all the unknowns c
(g)
0 can be

readily calculated, for g = 1, . . . ,M . These expressions
for c

(g)
0 , g = 1, . . . , M , in the form of Eqn.(25) are then

substituted back into each of the 2M infinite systems.
For the unknown x

(g)
n , the following ISLAE is obtained

K(g)
m =

√
mx(g)

m

[
1− r(g)

m

]

+
M∑

h=1

∑
n∈N

[√
nx(h)

n I(g,h)
m,n +

√
ny(h)

n J (g,h)
m,n

]
. (27)

The expressions for I
(g,h)
m,n , J

(g,h)
m,n and K

(g)
m,n are given in

the Appendix. A similar ISLAE can be obtained for

y
(g)
n . These ISLAEs can now be written as a single ma-

trix equation in the operator form of (I + H)�x = �b. By
truncating the infinite system of equations to Ntrunc, the
problem is solved by taking matrix inversion. Here, I is
the (2NtruncM × 2NtruncM) identity matrix, H is a com-
pact 2M × 2M block matrix in �2 where each of these
block matrices is of size Ntrunc × Ntrunc, �b is a known
vector and �x is the vector consisting of the unknown co-
efficients x

(g)
n and y

(g)
n . It is worth noting that this is

a Fredholm matrix equation of the second kind. By in-
creasing Ntrunc, the accuracy of the computed solution
can be improved.

4 Numerical Result

To check the adequacy and the accuracy of the proposed
method, the scattering problem of five PEC cylinders as
described in [1] is solved. Five PEC cylinders of the
same size (Rg = 0.1λ) are considered. With the cen-
ter of the first cylinder located at the origin, the centers
of the remaining four cylinders are located 0.5λ away.
That is, at the points (0.5λ, 0), (0.5λ, π/2), (0.5λ, π) and
(0.5λ,−π/2) respectively. In Fig.2, the scattering cross
section σ(θ) of this problem is computed by making use of
the asymptotic expression of the Hankel function and the
far-field approximations ρg

∼= ρ−rg cos(ϕg−θ), as well as
θg
∼= θ. The result is compared with that in [1] and good

agreement is seen with the results calculated using the
hybrid exact-method of moments technique, the iterative
technique and the boundary value solution method.

Figure 2: The bistatic scattering cross section of five PEC
cylinders due to a TM plane wave incident at φinc = 180 ◦.

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



As another method to check the validity of this method
for slotted cylinders (when φg �= π), the computed val-
ues of the M coefficients c

(g)
n , (g = 1, . . . ,M) have been

substituted back to Eqn.(11) and Eqn.(12) to check the
validity of boundary conditions. Consider the scattering
of a TM plane wave incident on a pair of cylinders with
radius R1 = 2.5λ and R2 = 3.75λ. Both cylinders are
filled with dielectric material with ε1,2 = 2 and attached
with a PEC strip of size φ1 = 90 ◦, φ2 = 60 ◦ respec-
tively. The centers of the cylinders are located at (0, 0)
and (10, π/4). Fig.3 and Fig.4 confirm the mixed bound-
ary conditions given in Eqn.(6)-Eqn.(9) on the surface of
the first cylinder. In Fig.3, the computed values of the
transmitted electric field inside the first cylinder is com-
pared with the computed values of the superposition of all
the scattered electric fields and the incident field, on the
surface of the first cylinder. It can be seen that the total
electric field is continuous across the surface and vanishes
on the PEC strip. The difference between the computed
values of the transmitted tangential magnetic field inside
the first cylinder and that of the total tangential mag-
netic field outside the cylinder is displayed in Fig.4 and
Eqn.(9) is verified. Similar figures can be obtained on the
surface of the second cylinder but is omitted here. The
near field distribution resulting from the incidence wave
for such structures is shown in Fig.5.

Figure 3: Continuity of the tangential electric field across
the surface of the first cylinder. Here, φinc = 180 ◦, R1 =
2.5λ, R2 = 3.75λ, ε1,2 = 2, φ1 = 90 ◦, φ2 = 60 ◦, r1 = 0,
r2 = 10λ, ϕ1 = 0, ϕ2 = π/4.

After the problem formulation and the validation of the
method, the solution can now be computed numerically
and applied to actual analyses. However, there are a
number of parameters to choose from. Due to the limit of
space, it is not feasible to present a full range of features
of the structures. Fig.6 illustrates the near field distri-
bution of a TM plane wave incident at φinc = 180 ◦ on

Figure 4: Continuity of tangential magnetic field across
the dielectric surface of the first cylinder. The character-
istics of structures are described in Fig.3.

Figure 5: The near field distribution of a TM plane wave
incident on the two cylinders described in Fig.3.

a sawtooth-shaped PEC surface formed by joining slot-
ted cylinders. Consider such a surface constructed using
three cylinders of the same size, where Rg = 2.5λ and
εg = 1 (for g = 1, 2, 3).

5 Conclusion

A rigorous and accurate technique for the problem of two-
dimensional scattering from a finite array of partially-
shielded circular-cylinders has been presented. The tech-
nique is based on the MoR, and provide us with a con-
vergent solution to the scattering problem. The dielectric
constant, strip width, radius and location of each of the
cylinders can be varied to model for a range of scattering
problem, including a periodic array of fully- (or partially-
) shielded cylinders.
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Figure 6: The near field distribution of a TM plane wave
incident on a sawtooth-shaped surfaced, where φinc =
180 ◦, R1,2,3 = 2.5λ, ε1,2,3 = 1, φ1,2,3 = 90 ◦, r1 = 0,
r2,3 = 5λ, ϕ1 = 0, ϕ2 = π/2, ϕ3 = −π/2.

6 Appendix

zg = cos(φg) (28)

T (g)
m,n = Q̂

(0,1)
m−1,n−1(zg)− κgp

(g)
0 (1 + zg)2

κgp
(g)
0 ln

(
1−zg

2

)
− 1

× P̂
(0,1)
m−1(zg)

m

P̂
(0,1)
n−1 (zg)

n (29)

Q̂(α,β)
m,n (z) =

∫ 1

z

(1− t)α(1 + t)βP̂ (α,β)
m (t)P̂ (α,β)

n (t)dt

(30)

τ (g)
n =

(1 + zg)√
2
[
κgp

(g)
0 ln

(
1−zg

2

)
− 1
] P̂

(0,1)
n−1 (zg)

n
(31)

f (g)
n = 1

n

(
d(g)

n + d
(g)
−n

)
(32)

e(g)
n = Z(g)

n + Z
(g)
−n (33)

H(g,h)
n = 2κg

[
q
(g)
0 − p

(g)
0

]
τ (g)
n A

(g,h)
0,0 + κgs

(g)
n B

(g,h)
n,0

+
∑
m∈N

[
1− κgs

(g)
m

]
B

(g,h)
m,0 T (g)

n,m (34)

U (g,h)
m,n = κg

[
p
(g)
0 − q

(g)
0

]
τ (g)
m B

(g,h)
0,n − κgs

(g)
m B(g,h)

m,n

−
∑
k∈N

[
1− κgs

(g)
k

]
T

(g)
m,kB

(g,h)
k,n (35)

V (g,h)
m,n = κg

[
p
(g)
0 − q

(g)
0

]
τ (g)
m C

(g,h)
0,n − κgs

(g)
m C(g,h)

m,n

−
∑
k∈N

[
1− κgs

(g)
k

]
T

(g)
m,kC

(g,h)
k,n (36)

B(g,h)
m,n = 1

2

√
m
n

[
A(g,h)

m,n + A
(g,h)
−m,n + A

(g,h)
m,−n + A

(g,h)
−m,−n

]
(37)

C(g,h)
m,n = 1

2

√
m
n

[
A(g,h)

m,n + A
(g,h)
−m,n −A

(g,h)
m,−n −A

(g,h)
−m,−n

]
(38)

γg =
1− κgq

(g)
0 ln

(
1−zg

2

)
κgp

(g)
0 ln

(
1−zg

2

)
− 1

(39)

λg =
Z

(g)
0 − κgd

(g)
0 ln

(
1−zg

2

)
κgp

(g)
0 ln

(
1−zg

2

)
− 1

−
∑
n∈N

√
n
[
κgf

(g)
n − e(g)

n

]
τ (g)
n (40)

ag,h =

{
1 , g = h

−
[
γgA

(g,h)
0,0 +

∑
n∈N

τ
(g)
n B

(g,h)
n,0

]
, g �= h

(41)

F (g,h)
n =

⎧⎪⎨
⎪⎩

τ
(g)
n r

(g)
n , g = h

1
2γgB

(g,h)
0,n , g �= h

+
∑

m∈N

[
1− κgs

(g)
m

]
τ

(g)
m B

(g,h)
m,n

(42)

G(g,h)
n =

⎧⎪⎨
⎪⎩

0 , g = h
1
2γgC

(g,h)
0,n , g �= h

+
∑

m∈N

[
1− κgs

(g)
m

]
τ

(g)
m C

(g,h)
m,n

(43)

I(g,h)
m,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r
(g)
n T

(g)
m,n +

∑M
q=1 F

(q,g)
n R

(g,q)
m , g = h

κgs
(g)
m B

(g,h)
m,n +

∑M
q=1 F

(q,h)
n R

(g,q)
m , g �= h

+
∑

k∈N

[
1− κgs

(g)
k

]
T

(g)
m,kB

(g,h)
k,n

+κg

[
q
(g)
0 − p

(g)
0

]
τ

(g)
m B

(g,h)
0,n

(44)

J (g,h)
m,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑M
q=1 G

(q,g)
n R

(g,q)
m , g = h

κgs
(g)
m C

(g,h)
m,n +

∑M
q=1 G

(q,h)
n R

(g,q)
m , g �= h

+
∑

k∈N

[
1− κgs

(g)
k

]
T

(g)
m,kC

(g,h)
k,n

+κg

[
q
(g)
0 − p

(g)
0

]
τ

(g)
m C

(g,h)
0,n

(45)

R(g,h)
n =

∑
p�=g

H(g,p)
n Φp,h (46)
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