
 

 

 

  
Abstract— The Finite Transfer Method used to solve a system 

of linear ordinary differential equations is extended by adding 

the boundary equations involved in the problem. A Runge-Kutta 

scheme could be chosen, for example, to obtain Finite Transfer 

expressions. The use of a recurrence strategy in these equations 

permits one to relate different points in the domain where 

boundary equations could be defined. A final algebraic system of 

equations is annotated and solved. The method could be applied 

to determine the structural behaviour of a spatially curved beam 

element. An example is given to show the procedure exposed. 

 
Index Terms— Finite Transfer Method, differential system, 

boundary equations, curved beam, Frenet-Serret formulas, 

transfer matrix. 

 

I. INTRODUCTION 

The problem to solving a system of linear ordinary 

differential equations (ODE) with boundary conditions can be 

approached by using analytic or numerical strategies. Since it 

is not always possible to use exact methods, approximate 

procedures have been resorted to [1]. In last decades, several 

numerical methods have arisen to solve these boundary value 

problems; see for example, the Shooting Method [2], Finite 

Differences [3], Finite Element Analysis [4] and the 

Boundary Element [5] methods. 

There exists much literature on modelling arbitrary curved 

beam elements [6], [7]. Traditionally, the laws governing the 

mechanical behaviour of a curved warped beam (applying the 

Euler-Bernuolli and Timoshenko theories) are defined by 

static equilibrium and kinematics [8], [9] or dynamic motion 

equations [10]. Some authors present this definition by means 

of compact energy equations [11], [12], [13]. These 

interpretations have permitted to reach accurate results, for 

some types of beams: for example, a circular arch element 

loaded in plane [14], [15], [16], [17], [18] and loaded 

perpendicular to its plane [19], parabolic and elliptical beams 

loaded in plane [20], [21], [22] or a helix uniformly loaded 

[23]. 
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In this paper, the Finite Transfer Method (FTM) [24] is 

followed and applied to a system of differential equations, 

obtaining an incremental equation based on the transfer 

matrix. Fourth order Runge-Kutta approximation is adopted. 

Using the preceding finite expression as a recurrence scheme, 

both extremes are related, reaching a system of algebraic 

equations with constant dimension p regardless of the number 

of intervals. 

The establishment of the problem is completed when the p 

boundary equations are incorporated. A final algebraic system 

of 2p order is reached and solved. Once values at the initial 

point are known, values at any point of the domain can be 

obtained. 

The authors apply the FTM on the arbitrary curved beam 

model, by means of a unique system of twelve ordinary 

differential equations with boundary conditions [25]. 

An example is given to show the procedure exposed. 

II. THE DIFFERENTIAL PROBLEM 

Let’s define the system of p ODE of first order, which 

represents the differential problem to solve: 
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In vector notation it can be written as 
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is the matrix of variable coefficients and 

{ }1 2( ) , , ,
T

pt b b b=b …  

is the independent vector term. 

Full definition of the problem is complete when adding p 

boundary equations in the domain. 
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They can be expressed as follows: 

[ ] [ ]( ) ( )t t+ =I I II II I,IIB x B x b  (3) 

Where [ ]IB , [ ]IIB  and 
I,IIb  are known. 

A particular case of the above expression is when boundary 

equations are all given at an initial point, meaning initial 

conditions, thus [ ] [ ]=IIB 0 ; therefore, boundary equations 

would be: 

[ ] ( )t =I I IB x b  (4) 

The structure of these sets of equations is linear resulting 

,when FTM is applied, in a linear system of algebraic 

equations. 

III. FTM WITH BOUNDARY EQUATIONS 

In this part of the paper, the establishment of the FTM with 

boundary equations is carried out. Fourth order Runge-Kutta 

approximation will be used [24]. 

A. Finite Transfer Equation of fourth order RK 

approximation 

Applying the fourth order approximation: 

1 1 2 3 4( ) ( ) ( ) 2 2( )

6

i i it t td t

dt t t

∆
∆ ∆

+ − + + +≅ = =x x x k k k kx ɶ ɶ ɶ , (5) 

where 

[ ]1 ( )i i it= +k A x bɶ  

[ ]2 1 2 1 1 2( ) 2i i it t∆+ + = + + k A x k bɶ  

[ ]3 1 2 2 1 2( ) 2i i it t∆+ += + +  k A x k bɶ  

[ ][ ]4 1 3 1( )i i it t∆+ += + +k A x k bɶ  

and approximated functions 
1 1( ) ( )i it t+ +≅x xɶ ; ( ) ( )i it t≅x xɶ . 

Therefore, the Finite Transfer Equation that relates two 

consecutive point of the domain is: 
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B. Recurrence scheme 

Using the above Finite Transfer Equation, a recurrence 

scheme could be applied to write the expression of the 

functions at a general point ti+1 in terms of the initial point tI 
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with ( ) ( )t t≅I Ix xɶ ; which represent the General Solution. 

Establishing n intervals, the two end points I and II of the 

domain are related by next equation, where the boundary 

equations could be applied (see Fig. 1). 
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with ( ) ( )t t≅II IIx xɶ . 
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Figure 1. Approximated function and variables in the domain. 

C. Boundary conditions 

Let’s implement the boundary equations to define and 

complete the extended problem. 

Assuming that boundary equations (Eq. 3) are applied at 

the approximation functions 
1 1( ) ( )i it t+ +≅x xɶ ; ( ) ( )i it t≅x xɶ : 

[ ] [ ]( ) ( )t t+ =I I II II I,IIB x B x bɶ ɶ  (9) 

A new algebraic system of  2p order is reached: 

( ) [ ]

[ ] [ ]
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t t t tt
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 −  −    =    
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ɶ
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 (10) 

Solutions at the extremes I y II are directly obtained: 
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D. Initial conditions 

A particular case is when boundary conditions are given at 

the initial point (Eq. 4), so that the approximated function is: 

[ ] ( )t =I I IB x bɶ  (12) 

An algebraic system of 2p equations is written in matricial 

form: 
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Solution will be expressed for the point i+1 in function of 

the values given at the initial point I, as follows: 
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E. General solution 

Once values at the initial point of the problem are known, 

either of the above problems of boundary or initial conditions, 

applying the Finite Transfer Equation General Solution 

 (Eq. 7), values at any point i+1 can easily be determined: 

[ ]1

00 1

( ) ( ) ( ) ( ) ( )
j i j i k i

i j k j

jj k j

t t t t t
= = =

+
== = +

  
 = +    

     
∑∏ ∏T I T Tx A x A bɶ ɶ  (15) 

In the limit, when the increment tends to cero 0t∆ → , the 

above expression tends to the analytical solution [24]: 

[ ]( ) [ ]( )( ) exp ( ) exp
t t t

t t t
t dt t dt dt

 = + −  ∫ ∫ ∫
I I I

Ix A x A b  (Z) 
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IV. DIFFERENTIAL SYSTEM FOR SPATIALLY CURVED BEAMS 

A curved beam is generated by a plane cross section whose 

centroid sweeps through all the points of an axis curve. The 

vector radius r = r(s) expresses this curved line, where s (arc 

length of the centroid line) is the independent variable. 

The reference system used to represent the intervening 

known and unknown functions is the Frenet frame. Its unit 

vectors tangent t, normal n and binormal b are: 

t rD= ; 2 2D D=n r r ; = ∧b t n  

where, D d ds=  is the derivative with respect to the 

parameter s. 

The natural equations of the centroid line are expressed by 

the flexion curvature 2 2D Dχ = ⋅r r  and the torsion 

curvature ( ) ( )2 3 2 2D D D D Dτ = ∧ ⋅ ⋅r r r r r . 

The Frenet-Serret formulas are [26]. 

 

D

D

D

χ
χ τ

τ

=
= − +
= −

t n

n t b

b n

 (16) 

 

Assuming the habitual principles and hypotheses 

(Euler-Bernoulli and Timoshenko classical beam theories) 

and considering the stresses associated with the normal 

cross-section (σ, τn, τb), the geometric characteristics of the 
section are: area A(s), shearing coefficients αn(s), αnb(s), 
αbn(s), αb(s), and moments of inertia It(s), In(s), Ib(s), Inb(s). 
Longitudinal E(s) and transversal G(s)  elasticity moduli give 
the elastic properties of the material. 

Applying equilibrium and kinematics laws to an 

infinitesimal element of the curve, the system of differential 

equations governing the structural behaviour of a spatially 

curved beam can be obtained [25] (Equation 17 in this page at 

the top of next column). 

The first six rows of the system (Eq. 17) represent the 

equilibrium equations. 

The functions involved in the equilibrium equation are: 

Internal forces  

n b n b
A A A

N V V dA dA dAσ τ τ+ + = + +∫ ∫ ∫t n b t n b  

Internal moments 

( )n b b n
A A A

T M M n b dA bdA ndAτ τ σ σ+ + = − + −∫ ∫ ∫t n b t n b  

Load force t n bt n bq q q+ +  

Load moment 
t n bm m m+ +t n b  

The last six rows of the system (Eq. 17) represent the 

kinematics equations. 

Rotations 
t n bθ θ θ+ +t n b  

Displacements t n bu v w+ +  

Rotation load t n bt n bΘ Θ Θ+ +  

Displacement load t n bt n b∆ ∆ ∆+ +  
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Equation 17.Differential System for Spatially Curved Beams. 

 

The above differential system (Eq. 17) can be expressed in 

the vector form as follows: 

( )
( ) ( ) ( )

d s
s s s

ds
 = + 

e
T e q  (18) 

Where 

{ }) , , , , , , , , , , ,
T
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s N V V T M M u v wθ θ θ=e(  

is the state vector )se(  of internal forces and deflections at 

a point s of the beam element, named effect at the section, 
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is the Infinitesimal Transfer Matrix, and 

{ }) , , , , , , , , , , ,
T

t n b t n b t n b t n bs q q q m m m Θ Θ Θ ∆ ∆ ∆= − − − − − −q(

is the applied load. 

 

Therefore, twelve boundary equations are needed to solve this 

structural problem, and they can be expressed as (see Eq. 3): 

[ ] [ ]( ) ( )s s+ =I I II II I,IIB e B e b  (19) 

 

For the particular case where the supports are fixed in both 

ends, the set of boundary equations will be: 

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

0 0 0
( ) ( )

0 0 0
s s

   
+ =   

   
I II

I
e e 0

I

 (20) 

 

Other example, when the initial support is clamped and the 

other end is free with a punctual load Q applied, the set will 

be: 

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ] { }0 0 0

( ) ( ) ,
0 0 0

T
s s

   + =   
   

I II

I
e e 0 Q

I
 (21) 
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being { }, , , , ,t n b t n bQ Q Q M M M= II II II II II II
Q . 

A. Applying the FTM of fourth order RK 

The approximation of the differential system (Eq. 18) is 

given by [27]: 

1 1 2 3 4( ) ( ) ( ) 2 2( )

6

i i is s sd s

dt s s

∆
∆ ∆

+ − + + +≅ = =e e e k k k ke ɶ ɶ ɶ  (22) 

being 

[ ]1 ( )i i is= +k T e qɶ  

[ ]2 1 2 1 1 2( ) 2i i is s∆+ + = + + k T e k qɶ  

[ ]3 1 2 2 1 2( ) 2i i is s∆+ += + +  k T e k qɶ  

[ ][ ]4 1 3 1( )i i is s∆+ += + +k T e k qɶ  

Assuming that approximated functions are: 

1 1( ) ( )i is s+ +≅e eɶ ; ( ) ( )i is s≅e eɶ  

Thus, the Finite Transfer Equation (Eq. 6) of four order is: 
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Applying the recurrence scheme (see Eq. 7): 
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with ( ) ( )s s≅I Ie eɶ . 

Establishing n intervals, the two end points I and II of the 

curved line can be related (see Eq. 8): 
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Here ( ),
I II

T s s    is the Transfer Matrix and ( ),T I IIq s s  the 

load transfer vector [28], 

With the approximated value at the final end ( ) ( )s s≅II IIe eɶ . 

Finally, boundary equations are applied to solve the 

problem: 

[ ] [ ]( ) ( )s s+ =I I II II I,IIB e B e bɶ ɶ  (26) 

An algebraic system of twenty four equations is reached 

and can be written in matricial form as follows: 
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Therefore, the values at both ends I y II are determined: 

( ) [ ]

[ ] [ ]
( )1

, ,( )

( )

s s s ss

s

−
 −  −    =     

      

T I II T I III

I,IIII I II

T I qe

be B B

ɶ

ɶ

 (28) 

Once values at the initial point ( )sIeɶ  are known, general 

solution (see Eq. 15) at any point i+1 is directly written as: 
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j i j i k i

i j k j
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s s s s s
= = =

+
== = +
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V. EXAMPLE. 

A. Bending in a beam. General solution. 

For simplicity, the example to be considered here is a 

particular case of the full structural problem of the curved 

beam, given in Eq. 17, but the procedure to solve the whole 

problem is the same exposed formerly. 

The beam will be straight and the intervening coefficients 

constant along the axis line. Load will produce flexion effects. 

Figure 2 shows these considerations. 

I II

 
Figure 2. Beam with flexion load. 

The differential system will be particularized as: 
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Annotating the above system in matricial form (see Eq. 18): 
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Applying the Finite Transfer Equation (Eq. 23), yields: 
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With the recurrence scheme (Eq. 24), it is obtained: 
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Relation between the end points I and II (see Eq. 25) of the 

unknown functions are established: 
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B. Clamped-clamped 

Let’s consider the case when both support are fixed, as 

shown in the next figure: 
 

I II

 
Figure 3. Clamped-clamped flexion beam. 

Following the procedure given in Eq. 20, the boundary 

equations are: 
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The final algebraic system (see Eq. 27X) to be solved is 

composed in this case by eight linear equations: 
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Solution (see Eq. 28) at both ends I and II will be: 
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Thus, initial values are: 
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C. Clamped-free with a punctual load. 

Let’s consider the case when initial support is fixed and the 

other is free with a punctual load, as shown in the figure 4: 
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Figure 4. Clamped-free with punctual load, flexion beam. 

 

Following the procedure given in Eq. 21, the boundary 

equations are: 
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The final algebraic system (see Eq. 27) to be solved is 

composed in this case by eight linear equations: 
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Solution (see Eq. 28) at both ends I and II will be: 
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VI. CONCLUSIONS 

Boundary Equations are added to extend the presented 

Finite Transfer Method (FTM) that solves systems of linear 

ODE’s. Applying a proper numerical approximation, Finite 

Transfer Equations are obtained. The fourth order 

Runge-Kutta scheme offers accurate results. The use of a 

recurrence strategy permits obtaining the General Solution 

that relates unknown functions at different point of the 

domain where boundary equations could be applied. 

These boundary equations are notated in matricial form and 

incorporated to the algebraic system. The dimension of the 

resultant algebraic system is always constant and equal to the 

double of the number of functions in the system, regardless of 

the intervals adopted, without the need of defining a mesh. 

The showed method is general, consistent and easy to 

implement in a software application. 

The FTM could solve either initial or boundary conditions. 

The procedure is suitable to determine the structural 

behaviour of the classical problem of an arbitrary curved 

beam element. Normally this problem is formulated in a 

compact energy equation form, but here the research is 

approached in an extended system of differential equations. 

With this approach, there is no need to distinguish between 

statically determinate or indeterminate beams, no need to 

define reactions in the extremes and no need of extra 

formulation (virtual work principle, Castigliano’s theorems, 

or energy formulation). An example of a beam under bending 

moment effect is presented to show the different steps of the 

procedure exposed. 
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