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Implementation of Boundary Equations
in the Finite Transfer Method

Lazaro Gimena, Pedro Gonzaga and Faustino N. Gimena

Abstract— The Finite Transfer Method used to solve a system
of linear ordinary differential equations is extended by adding
the boundary equations involved in the problem. A Runge-Kutta
scheme could be chosen, for example, to obtain Finite Transfer
expressions. The use of a recurrence strategy in these equations
permits one to relate different points in the domain where
boundary equations could be defined. A final algebraic system of
equations is annotated and solved. The method could be applied
to determine the structural behaviour of a spatially curved beam
element. An example is given to show the procedure exposed.

Index Terms— Finite Transfer Method, differential system,
boundary equations, curved beam, Frenet-Serret formulas,
transfer matrix.

I. INTRODUCTION

The problem to solving a system of linear ordinary
differential equations (ODE) with boundary conditions can be
approached by using analytic or numerical strategies. Since it
is not always possible to use exact methods, approximate
procedures have been resorted to [1]. In last decades, several
numerical methods have arisen to solve these boundary value
problems; see for example, the Shooting Method [2], Finite
Differences [3], Finite Element Analysis [4] and the
Boundary Element [5] methods.

There exists much literature on modelling arbitrary curved
beam elements [6], [7]. Traditionally, the laws governing the
mechanical behaviour of a curved warped beam (applying the
Euler-Bernuolli and Timoshenko theories) are defined by
static equilibrium and kinematics [8], [9] or dynamic motion
equations [10]. Some authors present this definition by means
of compact energy equations [11], [12], [13]. These
interpretations have permitted to reach accurate results, for
some types of beams: for example, a circular arch element
loaded in plane [14], [15], [16], [17], [18] and loaded
perpendicular to its plane [19], parabolic and elliptical beams
loaded in plane [20], [21], [22] or a helix uniformly loaded
[23].

Manuscript received April 21, 2008.

L. Gimena is with the Public University of Navarra, Dpt of Engineering
Projects, Campus Arrosadia, Pamplona, Navarra, CP 31006, Spain
(@: +34 94816 9233, fax: ext. 9644; D<: lazaro.gimena@unavarra.es ).

P. Gonzaga is with the Public University of Navarra, Dpt of Engineering
Projects, Campus Arrosadia, Pamplona, Navarra, CP 31006, Spain
(B<: pedro.gonzaga@unavarra.es).

F. Gimena is with the Public University of Navarra, Dpt of Engineering
Projects, Campus Arrosadia, Pamplona, Navarra, CP 31006, Spain
(P<: faustino@unavarra.es).

ISBN:978-988-18210-1-0

In this paper, the Finite Transfer Method (FTM) [24] is
followed and applied to a system of differential equations,
obtaining an incremental equation based on the transfer
matrix. Fourth order Runge-Kutta approximation is adopted.
Using the preceding finite expression as a recurrence scheme,
both extremes are related, reaching a system of algebraic
equations with constant dimension p regardless of the number
of intervals.

The establishment of the problem is completed when the p
boundary equations are incorporated. A final algebraic system
of 2p order is reached and solved. Once values at the initial
point are known, values at any point of the domain can be
obtained.

The authors apply the FTM on the arbitrary curved beam
model, by means of a unique system of twelve ordinary
differential equations with boundary conditions [25].

An example is given to show the procedure exposed.

II. THE DIFFERENTIAL PROBLEM

Let’s define the system of p ODE of first order, which
represents the differential problem to solve:

dx
1 —_
—tax, t apx, +..t  a,x =b
dt
dx, -
a, X, +E+a22x2 +..+ a,x, =b M
Xp -
a,x a,x, +..+ % +ta,x, =b,
In vector notation it can be written as
dx(t)
= = A@®) |x() +b(2)> (2)
= [ A0 [x+b()
where

x(0) ={ % 0.5, x, (z)}T

is the vector of the unknown functions,

a, a ...q,,
a,, a,, ...a
21 22 2

[A(z)]:— : e
a, a,,...a,,

is the matrix of variable coefficients and
T
b(r) :{bl,bz,...,bp}

is the independent vector term.
Full definition of the problem is complete when adding p
boundary equations in the domain.
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They can be expressed as follows:
[By]x(e) +[By ] x(tyy) =byyy
Where [Bl]’ [Bu] and b,,, are known.

3)

A particular case of the above expression is when boundary
equations are all given at an initial point, meaning initial
conditions, thus [Bn] =[0] ; therefore, boundary equations
would be:

[B.]x(t) =1, @)

The structure of these sets of equations is linear resulting
,when FTM is applied, in a linear system of algebraic
equations.

III. FTM WITH BOUNDARY EQUATIONS

In this part of the paper, the establishment of the FTM with
boundary equations is carried out. Fourth order Runge-Kutta
approximation will be used [24].

A. Finite Transfer Equation of fourth order RK
approximation

Applying the fourth order approximation:

ax(t) Dﬂi(ti) _ X)) —X(4) _ Ky +2K) +2k; +k, (5)
dt At At 6
where

Kk, =[A;] %) +b,

Ky =[ Ay |[R() +K, 4/2] +b,,
Ky =[ Ay, |[RG) +k, 41/2] +b 4y
k, =[A4][X() +k341] +b,y,

and approximated functions x(z,,,) OX(,,,) 5 x(¢,) OX(t,) -
Therefore, the Finite Transfer Equation that relates two
consecutive point of the domain is:

$(t) = [0+ [ A ] +4[ A ] +[A] a1/ +
+ [[AM][AI.H/Z]+[Ai+l/2T +[Ai+1/2][Ai]JAt2/6+
+ [[Ai+l][Ai+l/2]2 A ] [AiﬂAt3/12+
+ [A,.ﬂ][A,.H/z]z[Ai]Az4/24}i(zi)+
+ (a1 +4byy +b; ) A1/6+
+ ([Au]byaya [ Arvyo [biays +[ Ay by )82 [+
+ ([A,.ﬂ][A,.+1/2]1),.+1/2 +[A,.+1/2]2 b,.)At3/1z+

+ [Ai+1] [Am/z ]2 b, At4/24 =
= [Ap ()] () +by(t)

(6)

B. Recurrence scheme

Using the above Finite Transfer Equation, a recurrence
scheme could be applied to write the expression of the
functions at a general point ¢ in terms of the initial point 4

() = [H[ATU )]}c(wz{ |‘| [ATuk)]}bT(z )= (7)

J j=0| k=j+

= [AT It )] X(7) +by (tI7 i+1)
with x(¢,) O%(¢) ; which represent the General Solution.
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Establishing » intervals, the two end points I and II of the
domain are related by next equation, where the boundary
equations could be applied (see Fig. 1).

—n 1| k=n—
X(ty) = I: I_l [AT(tj)]:|x(tI)+ { I_l [AT(tk)]:|bT(tj):(8)
=0 i=0 | kzj+
= [AT (tI’tII)]i(tI)+bT (t.tu)
with x(7;) OX(ty) -

j=n-1

X)X

x(ty)

I %
Figure 1. Approximated function and variables in the domain.

C. Boundary conditions

Let’s implement the boundary equations to define and
complete the extended problem.

Assuming that boundary equations (Eq. 3) are applied at
the approximation functions X(t,4) OX(t,4,) 5 x(¢,) OX(t,)

[By] X(a) +[By ] X(ty) = by ©)
A new algebraic system of 2p order is reached:
[Ar(t.0y)] -] M (1) } b, (tl,tu)} (10)
[B,] [By] LX) byu
Solutions at the extremes I 'y II are directly obtained:
_i(fl)}zlz[AT(fptn)] -] { by (tI’tII):| (11)
| X(#y) [B] [BH]_ by

D. Initial conditions

A particular case is when boundary conditions are given at
the initial point (Eq. 4), so that the approximated function is:

[B/]%(2) =D, (12)
An algebraic system of 2p equations is written in matricial
form:

)

Solution will be expressed for the point i+1 in function of
the values given at the initial point I, as follows:

Pt S [t

E. General solution

(13)

(14)

Once values at the initial point of the problem are known,
either of the above problems of boundary or initial conditions,
applying the Finite Transfer Equation General Solution

(Eq. 7), values at any point i+1 can easily be determined:

J=1
X(t,4)) = [n[ NG )]}x(zlﬁz{ |‘| [AT(tk)]}bT(t y (15)
7=0 =0 k=j+1

In the limit, when the increment tends to cero Ar — 0, the
above expression tends to the analytical solution [24]:

x(1) = exp(jt:[A] dt)[x(tl) +j: exp(—j:[A] dt)bdt} 2)
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IV. DIFFERENTIAL SYSTEM FOR SPATIALLY CURVED BEAMS

A curved beam is generated by a plane cross section whose
centroid sweeps through all the points of an axis curve. The
vector radius r = r(s) expresses this curved line, where s (arc
length of the centroid line) is the independent variable.

The reference system used to represent the intervening
known and unknown functions is the Frenet frame. Its unit
vectors tangent t, normal n and binormal b are:

t=Dr; n:DZr/|D2r|; b=t0On

where, D =d/ds is the derivative with respect to the

parameter s.
The natural equations of the centroid line are expressed by

the flexion curvature y=+/D’r[D’r and the torsion
curvature 7 = pr 0(D’r ’r)/(D*r D7r).
The Frenet-Serret formulas are [26].

Dt = xn
Dn = —xt +7b (16)
Db = —-In

Assuming the habitual principles and hypotheses

(Euler-Bernoulli and Timoshenko classical beam theories)
and considering the stresses associated with the normal
cross-section (g, T, T,), the geometric characteristics of the
section are: area A(s), shearing coefficients a,(s), @(s),
Qpu(s), ap(s), and moments of inertia I(s), 1,(s), I;(s), Ls(s).
Longitudinal E(s) and transversal G(s) elasticity moduli give
the elastic properties of the material.

Applying equilibrium and kinematics laws to an
infinitesimal element of the curve, the system of differential
equations governing the structural behaviour of a spatially
curved beam can be obtained [25] (Equation 17 in this page at
the top of next column).

The first six rows of the system (Eq. 17) represent the
equilibrium equations.

The functions involved in the equilibrium equation are:

Internal forces

Nt+V,n+¥,b={ gddt+| r,dAn+] 7,d4b

Internal moments

Te+M,n+M,b=[ (r,n-1,p)ddt+| obdAn~[ onddb

Load force ¢ t+gn+gq,b

Load moment st +m, n+mb

The last six rows of the system (Eq. 17) represent the
kinematics equations.
Rotations § t+6 n+6,b

Displacements yt + vn + wb
Rotation load © t+©, n+0,b
Displacement load At+A4 n+4b

ISBN:978-988-18210-1-0

DN= xV, +q,=0
XN+ DV, - 1V, +q,=0
W' + DV, +q. =0
DT- XM, (20 +m =0
-V, +xT+ DM, - 1M, +m, =0
v, + ™ + DM, +m, =0
T
“or +D8-8, -6,=0
_ Mnlh _ Mhlnn +)(91 +D9” - Tgh —QH =0
EI:Inlh _I:h] E[lulh _Inzh}
oM, M, +16,+D6, -9,=0
EI:IUIh _131,1 E[IIII,' _Inﬂ
N
- Du-xv -4,=0
i ) . X '
_ary, _a,h, -6, +yut+tDv-tw-4,=0
Gx"i/ G‘é
_OV _ AV +6 +rv+Dw-4,=0
G4 G4

Equation 17 .Differential System for Spatially Curved Beams.

The above differential system (Eq. 17) can be expressed in
the vector form as follows:

L9 = [19)]ets) +a(s) (18)
Where
&NV, V,. T. M,. M,. 6.6, 6, uv.n}

is the state vector e(s) of internal forces and deflections at
a point s of the beam element, named effect at the section,

[0 x 0 0 0 0 000000
x 0 7 0 0 0 000000
0 -1 0 0 0 0 000000
00 0 0 % 0 000000
00 1 -y 0 r 000000
0-10 0 - 0 000000
00 0 0 0 0 x00 00
GI.
00 0 0 Ly Lo yo07000
[T(S)]_ E|:1711b _Inzb:l E|:Inlb _Inzb:l
00 0 0 Ly 0 -100 00
E|:1)1]b_171b:| E[lrllb_lflb:|
Lo 0 0 0 0 0000 x0
Ed
0 2w g 0 0 001-yo0r
GA GA
0 I 0 0 0 -10 0 -70
GA GA ]

is the Infinitesimal Transfer Matrix, and
T
Q(S):{_qx’ ~q,, 4y, ~m,, ~m,,~m,, 6,,6,,6,,4,4,, Ab}
is the applied load.

Therefore, twelve boundary equations are needed to solve this
structural problem, and they can be expressed as (see Eq. 3):

[Bl]e(sl)"'[BH]e(Sn) =byy (19)

For the particular case where the supports are fixed in both
ends, the set of boundary equations will be:

[o] [1] [o] [o] _
|:[0] [O]:|e(sl)+|:[0] [I]:|e(sll)_0

(20)

Other example, when the initial support is clamped and the
other end is free with a punctual load Q applied, the set will
be:

[o] [1] [0] [o] o
[[o] [ol}(sl){[l] [o]}e(Sn)—{o,Q} 1)
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being Q :{Q,II,Q,:I,Q;I,M,H,M;I,MIP} :

A. Applying the FTM of fourth order RK

The approximation of the differential system (Eq. 18) is
given by [27]:

de(s) | J(s,) _¥(s)=8(s) _ki 2k, 42 +Ky (2
dt As As 6
being

ki =[T e +a,
k, = [Tm/z ] [&(s) + K As/2] + 1
k; = |:Ti+1/2:|[é(si) +k, As/2] + 442

[ +1][e(s )+k3AS] +q;4

Assuming that approximated functions are:
e(s;41) Le(s;4) 5 e(s;) Le(s;)
Thus, the Finite Transfer Equation (Eq. 6) of four order is:

&5.) = [0+ [T ] +4[ T J+[1] ] 45/6+
([ Tga ] [T T +[ T ]I | 2526+
([T T [T TIT] 2512
a
+(
+

23
+1][ z+1/2] [T]As4/24}e(s)+ (23)

Qs T4, +qz)AS/6 +
[Ti] iy * [i+1/2]ql'+1/2+[Tz+1/2Jql')A52/6+
([ +1][ ,+1/2]q,+1/2 [ i+1/2}2ql‘)4|53/12+

+ [T+1][ ,+1/2] q; 4s* )24 =
= [Tr(s)]eCs) +an(s)
Applying the recurrence scheme (see Eq. 7):
=i j=il k=i
&(s;) = {[][1}(;0]}6(&)4-23{ M [T&(skﬂ}qT(s,)=(24)
=0 j=0| k=j+1
= |:TT (SI’Si+1):|é(SI) +qr (51,5:41)
with e(sy) Dé(sy) -
Establishing 7 intervals, the two end points I and II of the
curved line can be related (see Eq. 8):

—n 1| k=n-1
€(sy) = I: |: I_l [TT(Sk)]:|qT(Sj): (25)

J=0 | k=j+
= I:TT (Slasn)]é(sl)*"h (SI’SII)
Here [T(sl

Jj=n-1

M [TT(S,-)]}(SIﬁ

J=0

S”)] is the Transfer Matrix and q, (sl,sn) the

load transfer vector [28],
With the approximated value at the final end e(s;;) Dé(sy;) -

Finally, boundary equations are applied to solve the
problem:
[B1]é(sp) +[Bu]ésu) =biy (26)
An algebraic system of twenty four equations is reached
and can be written in matricial form as follows:

Rl S el

bl,ll

27)
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Therefore, the values at both ends I y II are determined:

oo i ] [

brn
Once values at the initial point §(s;) are known, general

(28)

solution (see Eq. 15) at any point i+1 is directly written as:

&s;0) = [n[ms >]}<s1>+z[ M [mn]}qﬂs ) (29)

J =0| k=j+1

V. EXAMPLE.

A. Bending in a beam. General solution.

For simplicity, the example to be considered here is a
particular case of the full structural problem of the curved
beam, given in Eq. 17, but the procedure to solve the whole
problem is the same exposed formerly.

The beam will be straight and the intervening coefficients
constant along the axis line. Load will produce flexion effects.

Figure 2 shows these considerations.

CLLLLLLLiLLLLiLjIH>
| 1 | *

2 T

Figure 2. Beam with flexion load.

1

The differential system will be particularized as:

—z + =0
dx q.
- am . 0 30
_ ) m =
L : (30)
M, dé,
i B -0, =0
EI, dx 7
v+ 4 =g
dx
Annotating the above system in matricial form (see Eq. 18):
AR AR
d|M,|_| | M, | |o 31)
=l 6 |Tlo=—oo0la "o
dx| 6, El, 'y 0
"Jloo -0t "
Applying the Finite Transfer Equation (Eq. 23), yields:
R 0 0 0] _qAAXXZ
v Ax 1 0 0y —qT
z 2 z
AN S AN
6, r 6.1 | 6Er,
"o 6AXEI _;‘gl Rkl e s
L . 24EI
With the recurrence scheme (Eq. 24), 1t is obtamed
1 0 0 0 —q(1+12) iz
v (i+12)Ax2 1 0 0l _q%
A I GO Ga) I A (i+1) 4c'
A 2EI, EI 6, -q
» y ¥ 6EI
w | (#1) 4] (iv)ad w N
~(i+1)Ar 1 (i+1)" Ax
6E] 2EI
’ ’ 24EI,

Relation between the end points I and II (see iEq. 25) of tﬁe
unknown functions are established:
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! 0 0 0] _q’ﬁﬁz

v nde 1 0 0y —q 5
M, | | mAC ndy of M| .| war
6 2EI,  EI, 6 o
. 3 A3 2 Ax2 . y
T L —ndx1|E " n'Axt
| 6EI, 2EI, | 95, £l

B. Clamped-clamped

Let’s consider the case when both support are fixed, as
shown in the next figure:

LLLLILIITTITILS
! 1 I *
l T

|z

Figure 3. Clamped-clamped flexion beam.

Following the procedure given in Eq. 20, the boundary
equations are:

00107 V. 00007 V. 0
0001| M, 0000||M,| _|0
0000 &, 0010( 6 | |0
0000 w L0001 W 0

1
The final algebraic system (see Eq. 27X) to be solved is
composed in this case by eight linear equations:

1 0 0 0-1000 qndx
2 2
nlx 1 0 00-100 qnéb‘
2 2 - - 3 3
wAT - nd 000-101[7% g A
2EI,  EI, M, 6L,
343 242 444
A AT ac10 0 0 -1 | @ A
6EI, 2EI, w | || " 24E,
0 o 1000005l o
M,
9,
0 0 0 10000/, 0
L I
0 0 0 00010 0
0 0 0 00001 0

éolution (see Eq. 28) at both ends I and I1 will be:

- . Ax
o o SEL 1261, | 6E, 1260, e, 12e1, |
A A | nPA A A nPAX n*Ax*
00 2EI, G6EI, | 4EI, G6EI, 2EI, 6EI, | 4 )
- - ndx  n*Ax*i ndx  n*Ax’ ndx  n*dx* 3 /03
14 n
M, 00 0 0 1 0 0 0 "6kl
9)‘ _ n*Ax*
wl | 00 O 0 0 1 0 0 9 24EI,
V.l | 1o 6kl 12El, | 6EI, 12El, 6El, 12EI, 0
M, Ay’ A | nPA A A nPAx
6, o _y I, GEI | 2EI,_GEI, 4EI, GEI
ILw I ndx n’Ax* | ndx n’Ax’ ndx  n*Ax 0
00 O 0 0 0 1 0
0
00 O 0 0 0 0 1
L - 0
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-y _ A
Thus, initial values are: €(s;)= { gnix —

2 12
Once initial values are known é(sy) solution at any point

i+1 will be given by:

. 0 [ —g(i+1)Ax ]
. (i+1) Ax 1 0 0 # G
z . . 2
M, | (i+1) 4 (i+1)Ax 1 o n’Ax’ (i+1) ¢
6 2E1 El 4 -
, v 12 g
w | (i) 4] (iv) 4l 0 i
e -(i+1)Ax 1 0 (i+1)" Ax*
|7 24EL, |

C. Clamped-free with a punctual load.

Let’s consider the case when initial support is fixed and the
other is free with a punctual load, as shown in the figure 4:

1
JLLIJLLIJLLILl g

1 | X
}

Z

I

—4 NN

4

Figure 4. Clamped-free with punctual load, flexion beam.

Following the procedure given in Eq. 21, the boundary
equations are:

0010]| V. 0000]| V. 0
0001 || M, 0000||M,| _|0
0000] 6, 1000\l 6, | |0
0000 w | [0100] w | [0

The final algebraic system (see Eq. 27) to be solved is
composed in this case by eight linear equations:

1 0 0 0-1000 gndx
2 2
ndx 1 0 00-100 ”;‘x
2 2 - - 3 3
n-Ax nx 00 0-10 V. anx
2EI, EI, M, 6EI,
3 3 2 2 . 4 4
Ay _m A ero 0 0-1 |9 &
6EI, 2EI, w | || 724k
71
0 0 1 00000 M 0
HY
0 0 0 110000/, 0
| I
0 0 0 01000 0
0 0 0 00100 0
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Solution (see Eq. 28) at both ends I and II will be:

1 0 00 0 0 1 0 gndx
2 2
k1 00 0 0 -ndx 1 " ;‘x
- - 3 3
V. 0 0 00 1 0 0 0 g
M, 6EI,
404
6, 0 0 00 01 0 0 | -4
wol | 24EI,
7
M, 0 0 00 0 0 1 0 0
6,
" 0 0 00, 00 0 1 0
L I
2 2 2 2
_mh onde ol gonde ndx 0
2EI, K, 2Bl EI,
3 3 2 2 3 3 2 2
wly  nAx O—l—nAxlnAx _nAx 0
3EI, 2, 3EI, 2l
242 r
Thus, initial values are €(s, )={qnﬂx+Q, —q —-0On4x, 0, 0}

Once initial value is known g(s;) solution at any point i+1

will be given by:
) 0 0 0 —q(i+l)Ax
v (i+1) A 1 0 O gnaAx+Q . (”1)2' il
z U\ a2 . 242

M,| | ) acd ()ac o ;‘X -ondx |, (i+1) a0
6, 26, El, i i

vl | @y ae (m)ae 0 o2,
[ i e —(i+1)4x 1 0 (i+1)* ax*
6EI 26, YT

: : 24E],

VI. CONCLUSIONS

Boundary Equations are added to extend the presented
Finite Transfer Method (FTM) that solves systems of linear
ODE’s. Applying a proper numerical approximation, Finite
Transfer Equations are obtained. The fourth order
Runge-Kutta scheme offers accurate results. The use of a
recurrence strategy permits obtaining the General Solution
that relates unknown functions at different point of the
domain where boundary equations could be applied.

These boundary equations are notated in matricial form and
incorporated to the algebraic system. The dimension of the
resultant algebraic system is always constant and equal to the
double of the number of functions in the system, regardless of
the intervals adopted, without the need of defining a mesh.
The showed method is general, consistent and easy to
implement in a software application.

The FTM could solve either initial or boundary conditions.

The procedure is suitable to determine the structural
behaviour of the classical problem of an arbitrary curved
beam element. Normally this problem is formulated in a
compact energy equation form, but here the research is
approached in an extended system of differential equations.

With this approach, there is no need to distinguish between
statically determinate or indeterminate beams, no need to
define reactions in the extremes and no need of extra
formulation (virtual work principle, Castigliano’s theorems,
or energy formulation). An example of a beam under bending
moment effect is presented to show the different steps of the
procedure exposed.
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