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Abstract—In this paper, we establish a weighted
Ostrowski - Grüss type inequality for twice differen-
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1 INTRODUCTION

In 1938, Ostrowski first proclaimed his inequality for dif-
ferentiable mappings. Many years ago, Newton-Cotes
type quadrature rules have been examined extensively.
Dragomir and Wang [9], have investigated the mid-point,
trapezoid and Simpson rules with the aim of obtaining
bounds on the quadrature rules in terms of a variety
of Lebescue spaces involving, at most, the first deriva-
tive. In addition, the current approach of obtaining the
bounds, for a particular quadrature rule, have depended
on the use of peano kernel. The general approach in the
past has involved the assumption of bounded derivatives
of degree greater than one. The partitioning is halved
until the desired accuracy is obtained [4]. The work by
Dragomir and Wang [9] aims at obtaining a priori esti-
mates of the partition required in order to obtain a partic-
ular bound on the error. In [6], the authors emphasized,
with the help of the modern theory of inequalities and
by the use of peano kernels, the methods and some re-
sults of obtaining bounds for quadrature rules consisting
of, at most, three points and depending on the second
derivative.

In this paper, our aim is to generalize the results obtained
in [6], by the use of weighted peano Kernel [5]. In this
way, we can get a wide variety of results.

In 1938, Ostrowski [3, p.468] proved the following integral
inequality:

Theorem 1.1 Let f : I ⊆→ � → � be a differentiable
mapping on I0 ( I0 is the interior of I), and let a, b ∈ I0
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with a < b. If f ′ : (a, b)→ � is bounded on (a, b) , i.e

‖f ′‖∞ = sup
t∈[a,b]

|f ′ (t)| < ∞

then we have the inequality

∣∣∣∣∣∣ f(x)− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
⎡
⎣1
4
+

(
x− a+b

2

b− a

)2
⎤
⎦

(b− a) ‖f ′‖∞

for all x ∈ [a, b]. The constant 1
4 is sharp in the sense

that it can not be replaced by a smaller one.

The integral inequality that establishes a connection be-
tween the integral of the product of two functions and
the product of the integrals is known in the literature as
the Grüss inequality (see for example [2, p.296] ). The
inequality is as follows:

Theorem 1.2 Let f, g : [a, b] → � be integrable func-
tions such that ϕ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ, for
all x ∈ [a, b] ,

where ϕ, Φ, γ, Γ are constants. Then we have

∣∣∣∣∣∣
1

b− a

b∫
a

f(x)g(x)dx− 1
b− a

b∫
a

f(x)dx.
1

b− a

b∫
a

g(x)dx

∣∣∣∣∣∣ ≤
1
4
(Φ− ϕ)(Γ− γ). (1)

where the constant 1
4 is sharp.

In [8], S. S. Dragomir and S. Wang proved the following
Ostrowski type inequality in terms of lower and upper
bounds of the first derivative.

Theorem 1.3 Let f : [a, b]→ � be continuous on [a, b]
and differentiable on (a, b), and the first derivative satis-
fies the condition:

γ ≤ f ′ (x) ≤ Γ for all x ∈ [a, b] ,
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Then ∣∣∣∣∣∣f(x)−
1

b− a

b∫
a

f(t)dt−
(

f(b)− f(a)
b− a

)
(

x− a+ b

2

)∣∣∣∣ ≤ 1
4
(b− a) (Γ− γ) , (2)

for all x ∈ [a, b] .

In [6, p.25 ], S. S. Dragomir and N. S. Barnett, proved
the following inequality.

Theorem 1.4 Let f : [a, b]→ � be continuous on [a, b]
and twice differentiable function on (a, b), whose second
derivative f ′′ : (a, b) → � is bounded on (a, b). Then we
have the inequality∣∣∣∣∣∣f(x)−

1
b− a

b∫
a

f(t)dt−
(

f(b)− f(a)
b− a

)

(
x− a+ b

2

)∣∣∣∣ ≤ 1
2

⎧⎨
⎩
[(

x− a+b
2

)2
(b− a)2

+
1
4

]2

+
1
12

⎫⎬
⎭

(b− a)2 ‖f ′′‖∞ (3)

for all x ∈ [a, b] .

2 MAIN RESULTS

In this section we review the weighted version [1] of (3)
and in section 3 apply the result in numerical integration.

We assume that the weight function w : (a, b) −→ [0,∞)
is integrable, non negative and

b∫
a

w(t)dt < ∞.

The domain of w may be finite or infinite and w may
vanish at the boundary points. We denote

m(a, b) =

b∫
a

w(t)dt.

We now give our main theorem.

Theorem 2.1 Let w be as defined above and f : [a, b]→
� be continuous on [a, b] and twice differentiable function
on (a, b) whose second derivative f ′′ : (a, b) → � is
bounded on (a, b). Then we have the inequality∣∣∣∣f(x)− 1

m (a, b)
w (x) (b− a)

(
x− a+ b

2

)
f ′ (x)

− 1
m (a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣ ≤
1
2
‖f ′′‖w,∞

⎧⎨
⎩
((

x− a+b
2

)2
(b− a)2

+
1
4

)2

+
1
12

⎫⎬
⎭ (b− a)4

m2 (a, b)
(4)

for all x ∈ [a, b] .

Proof The following weighted integral inequality is
proved in [1].

f(x) =
1

m(a, b)

b∫
a

Pw(x, t)f ′(t)dt+
1

m(a, b)

b∫
a

f(t)w(t)dt

(5)
for all x ∈ [a, b] .

In [6, p.24], N. S Bernett, P. Cerone, S. S. Dragomir,
J. Roumeliotis and A. Sofo used the peano kernel P :
[a, b]2 −→ � is given by

P (x, t) =

{
t− a if t ∈ [a, x]
t− b if t ∈ (x, b]

where t ∈ [a, b] .

but here we use the weighted peano Kernel, P (., .) :
[a, b]2 −→ � is given by

Pw(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

t∫
a

w(u)du if t ∈ [a, x]

t∫
b

w(u)du if t ∈ (x, b]

for all t ∈ [a, b] .

Applying the identity (5) for f ′(.), we can state

f ′(t) =
1

m(a, b)

b∫
a

Pw(t, s)f ′′(s)ds+
1

m(a, b)

b∫
a

f ′(s)

w(s)ds.
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Substituting f ′(t) in the right hand side of (5), we obtain

f(x) =
1

m(a, b)

b∫
a

Pw(x, t)

⎡
⎣ 1

m(a, b)

b∫
a

Pw(t, s)

f ′′(s)ds+
1

m(a, b)

b∫
a

f ′(s)w(s)ds

⎤
⎦ dt

+
1

m(a, b)

b∫
a

f(t)w(t)dt

=
1

m2(a, b)

b∫
a

b∫
a

Pw(x, t)Pw(t, s)f ′′(s)dsdt+

1
m2(a, b)

b∫
a

Pw(x, t)dt

b∫
a

f ′(s)w(s)ds+

1
m(a, b)

b∫
a

f(t)w(t)dt.

(6)

Now by using First Mean Value Theorem for Integration,
we get

b∫
a

f ′(s)w(s)ds = f ′(x)m (a, b)

and
b∫

a

Pw(x, t)dt = w(x) (b− a)
(

x− a+ b

2

)
.

Thus (6) becomes

f(x) =
1

m(a, b)
w(x) (b− a)

(
x− a+ b

2

)
f ′(x) +

1
m(a, b)

b∫
a

f(t)w(t)dt+
1

m2(a, b)

b∫
a

b∫
a

Pw(x, t)

Pw(t, s)f ′′(s)dsdt. (7)

for all x ∈ [a, b] .

Now using the identity (7), we get∣∣∣∣f(x)− 1
m(a, b)

w(x) (b− a)
(

x− a+ b

2

)
f ′(x)−

1
m(a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣
≤ 1

m2(a, b)

b∫
a

b∫
a

|Pw(x, t)| |Pw(t, s)| |f ′′(s)| dsdt.

(8)

By using Second Mean Value Theorem for Integration,
we get

b∫
a

|Pw(t, s)| ds =
1
2
w(t)

[
(t− a)2 + (b− t)2

]

and

A : =

b∫
a

|Pw(x, t)|
[
1
2
w(t)

(
(t− a)2 + (b− t)2

)]
dt

=
1
2
w(t)

⎡
⎣ x∫

a

⎧⎨
⎩

t∫
a

w(u)du

⎫⎬
⎭
(
(t− a)2 + (b− t)2

)
dt

+

b∫
x

⎧⎨
⎩

b∫
t

w(u)du

⎫⎬
⎭
(
(t− a)2 + (b− t)2

)
dt

⎤
⎦

=
1
2
w(t)

⎡
⎣ x∫

a

w(t) (t− a)
(
(t− a)2 + (b− t)2

)

+ dt

b∫
x

w(t) (b− t)
(
(t− a)2 + (b− t)2

)
dt

⎤
⎦

=
1
2
( w(t))2

⎡
⎣ x∫

a

(
(t− a)3 + (t− a) (b− t)2

)
dt

+

b∫
x

(
(b− t)3 + (b− t) (b− t)2

)
dt

⎤
⎦ .

Note that
x∫

a

(t− a)3 dt =
(x− a)4

4
,

b∫
x

(b− t)3 dt =
(x− b)4

4
,

x∫
a

(t− a) (b− t)2 dt = −1
3
(x− a) (b− x)3 − 1

12

(b− x)4 +
1
12

(b− a)4 ,

and
b∫

x

(b− t) (t− a)2 dt = −1
3
(b− x) (x− a)3 − 1

12

(x− a)4 +
1
12

(b− a)4 .

Consequently, we have

A=
1
12

(w (t))2[
(x− a)4 + (b− x)4 − 2 (x− a) (b− x)3

−2 (b− x) (x− a)3 + (b− a)4

]
.
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Now observe that

(x− a)4 + (b− x)4 =
[
(x− a)2 + (b− x)2

]2
− 2 (x− a)2

(b− x)2

and

−2 (x− a) (b− x)3 − 2 (b− x) (x− a)3 =

2 (x− a) (b− x)
[
(x− a)2 + (b− x)2

]

Then

B = 12A =
[
(x− a)2 + (b− x)2 − (x− a) (b− x)

]2
−3 (x− a)2 (b− x)2 + (b− a)4 .

However, a simple calculation shows that

(x− a)2 + (b− x)2 =
1
2
(b− a)2 + 2

(
x− a+ b

2

)2

and as

(x− a)2 + (b− x)2 + 2 (x− a) (b− x) = (b− a)2 ,

we get

2 (x− a) (b− x) = (b− a)2 −
[
(x− a)2 + (b− x)2

]
,

i.e

(x− a) (b− x) =
1
2
(b− a)2 − 1

2

[
(x− a)2 + (b− x)2

]

=
1
4
(b− a)2 −

(
x− a+ b

2

)2

.

Consequently

B = 6
(

x− a+ b

2

)2

+ 3 (b− a)2
(

x− a+ b

2

)2

+

7
8
(b− a)4 ,

and then

A =
1
12

[
6
(

x− a+ b

2

)2

+ 3 (b− a)2
(

x− a+ b

2

)2

+

7
8
(b− a)4

]
.

Now using the inequality (8) and simple algebraic manip-

ulations, we get

∣∣∣∣f(x)− 1
m(a, b)

w(x) (b− a)
(

x− a+ b

2

)
f ′(x)

− 1
m(a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣ ≤
1

12m2(a, b)[
6
(
x− a+b

2

)2
+ 3 (b− a)2

(
x− a+b

2

)2
+ 7

8 (b− a)4

]

sup
t∈[a,b]

(w(t))2 |f ′′(t)|

=
1
2
‖f ′′‖w,∞

⎡
⎣{(x− a+b

2

)2
(b− a)2

+
1
4

}2

+
1
12

⎤
⎦ (b− a)4

m2(a, b)
.

Remark 2.2 The inequality (4) is a modified inequality.
For w(t) = 1, in (4), we get (3). If we put another value
of w(t), it may result in some other inequalities.

Corollary 2.3 Let f be as in Theorem (2.1), then we
have perturbed mid-point inequality:

∣∣∣∣∣∣f(
a+ b

2
)− 1

m (a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣
≤ 7

96
(b− a)4

m2 (a, b)
‖f ′′‖w,∞ (9)

Corollary 2.4 Let f be as in Theorem (2.1), then we
have the following perturbed trapezoid inequality:

∣∣∣∣f(a) + f(b)
2

+
1

2m (a, b)
(b− a)

(
a− b

2

)
[w (b)

f ′ (b)− w (a) f ′ (a)]− 1
m (a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣
≤ 1

6
(b− a)4

m2 (a, b)
‖f ′′‖w,∞ (10)

Proof Put in (4), x = a and x = b to get

∣∣∣∣f(a)− 1
m (a, b)

w (a) (b− a)
(

a− b

2

)
f ′ (a)

− 1
m (a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣ ≤
1
6
(b− a)4

m2 (a, b)
‖f ′′‖w,∞
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and ∣∣∣∣f(b) + 1
m (a, b)

w (b) (b− a)
(

a− b

2

)
f ′ (b)

− 1
m (a, b)

b∫
a

f(t)w(t)dt

∣∣∣∣∣∣
≤ 1

6
(b− a)4

m2 (a, b)
‖f ′′‖w,∞

respectively.

Summing the above two inequalities, using the triangle
inequality and dividing by 2, we get (10) .

3 Applications in Numerical Integra-
tion.

Let In : a = x0 < x1 < x2 < .... < xn−1 <
xn = b be a division of the interval [a, b] , ξi ∈ [xi, xi+1]
(i = 0, 1, ...., n− 1) a sequence of intermediate points
hi := xi+1 − xi (i = 0, 1, .....n− 1). We have the fol-
lowing quadrature formula:

Theorem 3.1 Let f : [a, b] → � be continuous on
[a, b] and a twice differentiable on (a, b), whose second
derivative f ′′ : (a, b) → � is bounded on (a, b), then we
have the quadrature formula for all x ∈ (a, b)

b∫
a

w (t) f(t)dt = A(f, ξ, In) +R(f, ξ, In), (11)

where

A (f, I, w, ξi) =
∑n−1

i=0
m (xi, xi+1) f (ξi)

−
∑n−1

i=0
[w (ξi)

(
ξi − xi + xi+1

2

)
hif

′ (ξi)
]
(12)

and the remainder RG(f, ξ, Ih) satisfies the estimation

|R(f, f ′, ξ, In)| ≤ 1
2
‖f ′′‖w,∞

∑n−1

i=0

⎧⎪⎨
⎪⎩
⎛
⎜⎝
(

ξi − xi+xi+1
2

)2

(hi)
2

+
1
4

)2

+
1
12

}
h4

i

m (xi, xi+1)
, (13)

for all ξi as above.

Proof

Apply Theorem (2.1) on the interval [xi, xi+1],

(i = 0, 1, ....n− 1) , to obtain∣∣∣∣f(ξi)m (xi, xi+1)− w (ξi) (hi)
(

ξi − xi + xi+1

2

)

f ′ (ξi)−
xi+1∫
xi

f(t)w(t)dt

∣∣∣∣∣∣ ≤
1
2
‖f ′′‖w,∞

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝
(

ξi − xi+xi+1
2

)2

(hi)
2 +

1
4

⎞
⎟⎠

2

+
1
12

⎫⎪⎪⎬
⎪⎪⎭

h4
i

m (xi, xi+1)

for all ξi ∈ [xi, xi+1], where hi = xi+1 − xi,
(i = 0, 1, ....n− 1) .

Summing over i from 0 to (n− 1) and using the gener-
alized triangular inequality, we get the desired inequality
(13).

Remark 3.2

If we choose ξi = xi+xi+1
2 , we recapture the weighted

mid-point quadrature formula

b∫
a

w (t) f(t)dt = AM (f, ξ, In) +RM (f, ξ, In)

where,

AM (f, ξ, In) =
∑n−1

i=0
m (xi, xi+1) f

(
xi + xi+1

2

)

and the remainder |RM (f, ξ, In)| satisfies the estimation:

|R(f, ξ, In)| ≤ 11
96

∑n−1

i=0

h4
i

m (xi, xi+1)
‖f ′′‖w,∞ .
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