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Abstract—In this study, we present a direct
method to solve nonlinear two-dimensional Volterra-
Hammerestein integral equations in terms of two-
dimensional piecewise constant block-pulse functions
(2D-PCBFs). Properties of these functions and oper-
ational matrix of integration together with the prod-
uct operational matrix are presented and used to
transform the integral equation to a matrix equation
which corresponds to a system of nonlinear algebraic
equations with unknown block-pulse coefficients. An
error analysis is given and numerical examples illus-
trate efficiency and accuracy of the proposed method.
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1 Introduction

Consider the following nonlinear two-dimensional
Volterra integral equation of the form

u(t1, t2) = f(t1, t2)+

∫ t1

0

∫ t2

0

K(t1, t2, s1, s2)g(s1, s2, u(s1, s2)) ds1ds2, (1)

where (t1, t2) ∈ D = [0, T1) × [0, T2), u(t1, t2) is
an unknown function and the functions f(t1, t2) and
K(t1, t2, s1, s2) are given continuous functions defined, re-
spectively, on D and

W =
{

(t1, t2, s1, s2) : 0 ≤ s1 ≤ t1 ≤ T1, 0 ≤ s2 ≤ t2 ≤ T2

}
.

The existence, uniqueness, and stability of solutions to (1) is
given in [1, 2].
In this work, we apply two-dimensional block-pulse functions
(2D-BPFs), constructed on D to solve Eq. (1). Our method
consists of reducing (1) to a set of algebraic equations by ex-
panding unknown function as 2D-BPFs with unknown coef-
ficients. The representation error analysis is worked out and
method is tested with the aid of the some numerical examples.
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2 Two-dimensional BPFs

Block-pulse functions are a set of orthogonal functions with
piecewise constant values and are usually applied as a useful
tool in the analysis, synthesis, identification and other prob-
lems of control and systems science. This set of functions was
first introduced to electrical engineers by Harmuth in 1969,
and have been extensively applied -due to their simple and
easy operations- for one dimensional problems [3, 4, 5, 6]. A
complete details for 1D block-pulse functions is given in [3, 4].
These discussions can also be extended to the 2D block-pulse
functions.

2.1 Definition and properties

An (m1m2)-set of 2D block-pulse functions φi1,i2(t1, t2) (i1 =
1, 2, . . . , m1;
i2 = 1, 2, . . . , m2) is defined in the region of t1 ∈ [0, T1) and
t2 ∈ [0, T2) as:

φi1,i2(t1, t2) =

{
1 , (i1 − 1)h1 ≤ t1 < i1h1 and

(i2 − 1)h2 ≤ t2 < i2h2,
0, otherwise.

(2)

where m1, m2 are arbitrary positive integers, and h1 =
T1
m1

, h2 = T2
m2

.
Similar to the 1D case, There are some properties for 2D-
BPFs, the most important properties are disjointness, orthog-
onality, and completeness.
The 2D block pulse functions are disjoined with each other:

φi1,i2(t1, t2)φj1,j2(t1, t2) =

{
φi1,i2(t1, t2) , if i1 = j1 and

i2 = j2,
0, otherwise

(3)
and are orthogonal with each other:

∫ T1

0

∫ T2

0

φi1,i2(t1, t2)φj1,j2(t1, t2)dt2dt1

=

{
h1h2 , for i1 = j1 and i2 = j2,
0, otherwise

(4)
in the region of t1 ∈ [0, T1) and t2 ∈ [0, T2), where i1, j1 =
1, 2, . . . , m1 and i2, j2 = 1, 2, . . . , m2.
The other property is completeness. For every f ∈ L2([0, T1)×
[0, T2)) when m1 and m2 approaches to the infinity, Parseval’s
identity holds:

∫ T1

0

∫ T2

0

f2(t1, t2)dt1dt2 =

∞∑
i1=1

∞∑
i2=1

f2
i1,i2‖φi1,i2(t1, t2)‖2,

(5)
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where

fi1,i2 =
1

h1h2

∫ T1

0

∫ T2

0

f(t1, t2)φi1,i2(t1, t2)dt1dt2. (6)

The set of 2D block-pulse functions may be written as a vector
Φ(t1, t2) of dimension m1m2:

Φ(t1, t2) = [φ1,1(t1, t2), . . . , φm1,m2(t1, t2)]
T (7)

where (t1, t2) ∈ [0, T1)× [0, T2).
From the above representation and disjointness property, it
follows:

Φ(t1, t2)Φ
T(t1, t2) =




φ1,1(t1, t2) 0 · · · 0
0 φ1,2(t1, t2) · · · 0
...

...
. . .

...
0 0 · · · φm1,m2(t1, t2)


 , (8)

ΦT(t1, t2)Φ(t1, t2) = 1 (9)

and

Φ(t1, t2)Φ
T(t1, t2)V = Ṽ Φ(t1, t2) (10)

where V is an m1m2-vector and Ṽ = diag(V ). Moreover, it
can be clearly concluded that for every (m1m2) × (m1m2)
matrix A:

ΦT(t1, t2)AΦ(t1, t2) = ÂTΦ(t1, t2), (11)

where Â is an m1m2-vector with elements equal to the diag-
onal entries of matrix A.

2.2 2D-BPFs expansions

A function f(t1, t2) defined over [0, T1) × [0, T2) may be ex-
panded by the 2D block-pulse functions as

f(t1, t2) '
m1∑

i1=1

m2∑
i2=1

fi1,i2φi1,i2(t1, t2) = FTΦ(t1, t2), (12)

where F is an (m1m2)× 1 vector given by

F = [f1,1, . . . , f1,m2 , . . . , fm1,1, . . . , fm1,m2 ]
T, (13)

and Φ(t1, t2) is defined in (7).
The block-pulse coefficients, fi1,i2 , are obtained as

fi1,i2 =
1

h1h2

∫ i1h1

(i1−1)h1

∫ i2h2

(i2−1)h2

f(t1, t2) dt2dt1. (14)

Similarly a function of four variables, k(t1, t2, s1, s2), on
([0, T1)× [0, T2)× [0, T3)× [0, T4)) may be approximated with
respect to BPFs such as:

k(t1, t2, s1, s2) ' ΦT(t1, t2)KΨ(s1, s2) (15)

where Φ(t1, t2) and Ψ(s1, s2) are 2D-BPF vectors of dimension
m1m2 and m3m4 respectively, and K is the (m1m2)×(m3m4)
2D block-pulse coefficient matrix.

2.3 Operational matrix of integration

The integration of the vector Φ(t1, t2) defined in (7) can be
approximately obtained as

∫ t1

0

∫ t2

0

Φ(τ1, τ2) dτ1dτ2 ' P Φ(t1, t2),

= [E(m1×m1) ⊗ E(m2×m2)]Φ(t1, t2), (16)

where t1 ∈ [0, T1), t2 ∈ [0, T2) and P is the (m1m2)× (m1m2)
operational matrix of integration for 2D-BPFs where E is the
operational matrix of 1D-BPFs defined over [0, T ) with h = T

m

and T = T1 = T2 as follows

E =
h

2




1 2 2 . . . 2
0 1 2 . . . 2
0 0 1 . . . 2
...

...
...

. . .
...

0 0 0 . . . 1




. (17)

In (16), ⊗ denotes the Kronecker product defined as

A⊗B = (aijB).

In the next sections, it is assumed that T1 = T2 = 1, so 2D-
BPFs is defined over [0, 1)× [0, 1), and h1 = 1

m1
, h2 = 1

m2
.

3 Method of solution

In this section,we solve two-dimensional nonlinear Volterra-
Hammerstein integral equations of the form in (1) using 2D
block-pulse functions. For this purpose,we first assume

V(t1, t2) = g(t1, t2, u(t1, t2)), (t1, t2) ∈ [0, 1)× [0, 1).
(18)

Approximating functions u(t1, t2),V(t1, t2) and
f(t1, t2), K(t1, t2, s1, s2) with respect to 2D-BPFs by
the way mentioned in section 2 gives

u(t1, t2) = UTΦ(t1, t2),

V(t1, t2) = ΦT(t1, t2)Λ,

f(t1, t2) = FTΦ(t1, t2),

K(t1, t2, s1, s2) = ΦT(t1, t2)ΘΦ(s1, s2), (19)

where the vectors U , Λ, F , and matrix Θ are BPFs coefficients
of u(t1, t2), V(t1, t2), f(t1, t2) and K(t1, t2, s1, s2), respectively
and Φ(t1, t2) is defined in (7). In (19), U and Λ are (m1m2×1)
unknown vectors.
To approximate the integral part in (1), from Eqs. (18) and
(19) we get

∫ t1

0

∫ t2

0

K(t1, t2, s1, s2)g(s1, s2, u(s1, s2)) ds1ds2

'
∫ t1

0

∫ t2

0

ΦT(t1, t2)ΘΦ(s1, s2)Φ
T(s1, s2)Λ ds1ds2,

= ΦT(t1, t2)Θ

(∫ t1

0

∫ t2

0

Φ(s1, s2)Φ
T(s1, s2)Λ

)
ds1ds2,
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Using Eq. (10) follows:

= ΦT(t1, t2)Θ

∫ t1

0

∫ t2

0

Λ̃Φ(s1, s2) ds1ds2,

= ΦT(t1, t2)ΘΛ̃

∫ t1

0

∫ t2

0

Φ(s1, s2) ds1ds2,

Using operational matrix P in Eq. (16) gives

∫ t1

0

∫ t2

0

K(t1, t2, s1, s2)g(s1, s2, u(s1, s2)) ds1ds2

' ΦT(t1, t2)ΘΛ̃PΦ(t1, t2),

in which ΘΛ̃P is an (m1m2) × (m1m2) matrix. Eq. (11)
follows:

∫ t1

0

∫ t2

0

K(t1, t2, s1, s2)g(s1, s2, u) ds1ds2 ' Λ̂TΦ(t1, t2)

(20)

where Λ̂ is an (m1m2)-vector with components equal to the

diagonal entries of matrix ΘΛ̃P .
Applying (18)-(20) in (1), we get

UTΦ(t1, t2)− Λ̂TΦ(t1, t2) ' FTΦ(t1, t2) (21)

Replacing ' with =, Eq. (21) gives

U − Λ̂ = F. (22)

Equation (22) generates a set of m1m2 algebraic equations.
Since the total number of unknowns for vectors U and Λ
in (19) is 2(m1m2), we collocate the following equation in

(t1i , t2i) = (
i− 1

2
m1m2

,
i− 1

2
m1m2

), i = 1, 2, . . . , m1m2,

g(t1, t2, U
TΦ(t1, t2)) = ΛTΦ(t1, t2). (23)

The resulting equations (22) and (23) generate a system of
2(m1m2) nonlinear equations which can be solved using New-
ton’s iterative method.

4 Error analysis

In this section, we analyse the representation error (or the
residual error) when a differentiable function f(t1, t2) is repre-
sented in a series of 2D-BPFs over the region D = [0, 1)×[0, 1).
For convenience, we put m1 = m2 = m, so h1 = h2 = 1

m
. We

need the following theorem.

Theorem 1 Suppose that f maps a convex open set D ⊂ R2

into R, f is differentiable in D, and there is a real number M
such that

‖f ′(t)‖ ≤ M

for every t ∈ D. Then

|f(b)− f(a)| ≤ M |b− a|

for all a ∈ D,b ∈ D (See [7]).

Now, we assume that f(t1, t2) is a differentiable function on
D = [0, 1)× [0, 1) such that

‖f ′(t1, t2)‖ ≤ M.

We define the representation error between f(t1, t2) and its
2D BPFs expansion, f(t1, t2), over every subregion Di1,i2 as
follows:

ei1,i2(t1, t2) = fi1,i2φi1,i2(t1, t2)− f(t1, t2),

= fi1,i2 − f(t1, t2), (t1, t2) ∈ Di1,i2 ,

where

Di1,i2 =
{

(t1, t2) :
i1 − 1

m
≤ t1 <

i1
m

,
i2 − 1

m
≤ t2 <

i2
m

}
.

It can be shown that

‖ei1,i2‖2 =

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

e2
i1,i2(t1, t2) dt2dt1,

=

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

(fi1,i2 − f(t1, t2))
2dt2dt1,

=
(fi1,i2 − f(η1, η2))

2

m2
, (η1, η2) ∈ Di1,i2 (24)

where we used mean value theorem for 2D integrals. Using
Eq. (14) and the mean value theorem we have

fi1,i2 = m2

∫ i1
m

i1−1
m

∫ i2
m

i2−1
m

f(t1, t2) dt2dt1,

= m2.
1

m2
f(ξ1, ξ2),

= f(ξ1, ξ2), (ξ1, ξ2) ∈ Di1,i2 . (25)

Substituting (25) into (24) and using theorem 1 we obtain:

‖ei1,i2‖2 =
1

m2
(f(ξ1, ξ2)− f(η1, η2))

2,

≤ 1

m2
((ξ1, ξ2)− (η1, η2))

2,

≤ 2

m4
M2. (26)

This leads to

‖e(t1, t2)‖2 =

∫ 1

0

∫ 1

0

e2(t1, t2) dt1dt2,

=

∫ 1

0

∫ 1

0

( m∑
i1=1

m∑
i2=1

ei1,i2(t1, t2)
)2

dt1dt2,

=

∫ 1

0

∫ 1

0

m∑
i1=1

m∑
i2=1

e2
i1,i2(t1, t2) dt1dt2 +

+2
∑

i1<j1

∑
i2<j2

∫ 1

0

∫ 1

0

ei1,i2(t1, t2) ej1,j2(t1, t2) dt1dt2.

Then

‖e(t1, t2)‖2 =

m∑
i1=1

m∑
i2=1

∫ 1

0

∫ 1

0

e2
i1,i2(t1, t2) dt1dt2,

=

m∑
i1=1

m∑
i2=1

‖ei1,i2‖2,

≤ m2 2

m4
M2, (27)
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Table 1: Absolute values of error for Example 1.
Errors with

(t1, t2) = 2−i m = 16 m = 32 m = 64
i = 1 4.4D−1 2.1D−1 1.1D−1
i = 2 2.1D−1 1.0D−1 6.4D−3
i = 3 1.4D−1 7.0D−2 2.5D−2
i = 4 1.2D−1 5.8D−2 3.5D−2
i = 5 8.7D−4 5.3D−2 3.5D−2
i = 6 5.1D−2 2.1D−4 4.3D−4

hence, ‖e(t1, t2)‖ = O( 1
m

), where

e(t1, t2) = f(t1, t2)− f(t1, t2).

5 Numerical examples

In this section, we applied the method presented in this
paper for solving some test problems that are selected
from different references. The numerical experiments are
carried out for the selected grid points which are proposed
as (2−i, i = 1, 2, 3, 4, 5, 6) and m2 terms of the 2D-BPFs series.

Example 1. Consider the linear two-dimensional inte-
gral equation

u(t1, t2) = e3t1+2t2 + et1+t2 − e3t1+t2

−
∫ t1

0

∫ t2

0

2et1+t2u(s1, s2) ds1ds2,

where (t1, t2) ∈ [0, 1)× [0, 1).
Exact solution of this problem is u(t1, t2) = et1+2t2 . Table 1
presents the absolute errors for the selected grid points using
the present method. As shown in table 1, the computational
error decreases as the number of 2D-BPFs increases.

Example 2. As the second example, consider the following
nonlinear two-dimensional integral equation

u(t1, t2) = f(t1, t2) +

∫ t1

0

∫ t2

0

u2(s1, s2) ds1ds2,

(t1, t2) ∈ [0, 1)× [0, 1)

with

f(t1, t2) = t21 + t22 − 1

45
t1t2(9t41 + 10t21t

2
2 + 9t42),

and the exact solution u(t1, t2) = t21 + t22. Table 2 illustrates
the numerical results for Example 2.

6 Conclusion

Two-dimensional integral equations are usually difficult to
solve analytically. In many cases, it is required to obtain the
approximate solutions, for this purpose the presented method
can be proposed. In this paper, the method based on 2D-
BPFs and its operational matrix has been used for the ap-
proximate solution of 2D integral equations. This approach

Table 2: Absolute values of error for Example 2.
Errors with

(t1, t2) = 2−i m = 8 m = 16 m = 32
i = 1 1.3D−1 2.1D−2 1.1D−2
i = 2 7.3D−2 1.0D−2 6.4D−4
i = 3 4.1D−2 7.0D−3 2.5D−3
i = 4 2.6D−3 5.8D−3 3.5D−3
i = 5 8.4D−3 5.3D−4 3.5D−4
i = 6 9.9D−3 2.1D−3 4.3D−5

transformed a nonlinear 2D Volterra integral equation to a
matrix equation which corresponds to a system of nonlinear
equations with unknown coefficients. Finally, by using this
system, we find the approximate solution of the 2D integral
equations. This method can be easily extended and applied to
2D Volterra integral equations of the first kind and Fredholm
2D integral equations of the first and second kind.
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