
 
 

 

                    
Abstract— This paper is focused on solving the problem of the 
2D compressible subsonic fluid flow around an obstacle using 
BEM with higher order boundary elements, with special 
consideration regarding to the treatment of singulatities. The 
2D problem of a compressible fluid flow around an obstacle is 
equivalent with a singular boundary integral, obtained in terms 
of primary variables of the problem, the components of the 
velocity field. This singular boundary integral equation is 
solved by using quadratic isoparametric boundary elements. 
The problem is finally reduced to a linear system of equations. 
Aspects regarding the evaluation of the matrix coefficients are 
presented and a special attention is given to the treatment of 
integrals of singular kernels. A method based on the definition 
of the Cauchy Principal Value of an integral is developed. The 
method described is implemented into a computer code made in 
MathCAD and numerical results are obtained for different 
types of obstacles. We validate the computer through an 
analytical checking, made by comparing the numerical results 
with the exact solutions that exist in some particular cases, 
which are in very good agreement. 
 

Index Terms—boundary element method, compressible fluid 
flow, linear boundary elements, singular boundary integral 
equation, singular kernels.  
 
 

I. INTRODUCTION 
 The 2D problem of the compressible fluid flow around 

an obstacle, that represents in fact the problem of an infinite 
span airfoil in a subsonic flow, is solved in this paper using a 
BEM with quadratic boundary elements.  

This problem has been studied by many authors by using 
different types of numerical methods, as finite differences, 
finite elements, Galerkin collocation methods, and other 
techniques, but mostly as considering the incompressible 
case only, and using the potential or stream function as initial 
unknowns of the problem. Even when BEM was applied the 
velocity and pressure field are found after finding the 
potential or stream function, through a differentiation 
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technique, and therefore new errors are introduced at this 
stage.  

The Boundary Element Method (BEM) is a powerful 
numeric technique used to solve many kinds of problems of 
continuum mechanics with boundary values, which consists 
in two big steps [1], [2], [3]. First, a boundary integral 
formulation equivalent with the mathematical model of the 
problem must be obtained, and then this boundary integral, 
that is usually a singular one, must be solved. 

In paper [4] a boundary integral formulation in terms of 
velocity field is deduced and so, directly solving this singular 
boundary integral we can find the perturbation velocity,  
without using a differentiation technique, so with less errors. 
In a such approach errors arise only at the discretization 
stage, and when evaluating matrix coefficients using 
numerical integration. We propose in this paper a solution 
based on higher order boundary elements for the singular 
boundary integral equation, to ensure a global continuity for 
the unknown function.  

The problem to solve is so reduced to a linear system of 
equations, the unknowns being the nodal values of the 
functions to be found. 

The calculation of the matrix coefficients requires several 
evaluations of integrals with singular and non-singular 
kernels. An efficient and accurate method of computing the 
non-singular integrals is to employ Gaussian integration 
schemes, but the treatment of the singular integrals is more 
difficult to carry out.  

An integral whose integrand reaches an infinite value at 
one or more points in the domain of integration, named 
singular integral, is in general, defined by eliminating a small 
space including the singularity, and then taking the limit as 
this small space disappears. It is said that integral can 
converges, and in this case, it is said to exist. A singular 
integral can be understood in the sense of Cauchy Principal 
Value or in Hadamard sense [5]. 

 Integral of singular kernels evaluation is one of the most 
important and difficult step in solving problems with BEM 
and has a big influence on the numerical solutions accuracy. 
Their evaluation needs a special attention and has a great 
practical importance, because they lead to the dominant and 
concentrated near the diagonal matrix coefficients, and they 
are very important for a well-conditioned behavior of the 
matrix.  

For the bi dimensional steady subsonic ideal 

An Efficient Technique to Treat Singularities 
when Applying BEM with Quadratic Boundary 
Elements to the Problem of Compressible Fluid 

Flow 
Ion Vladimirescu, Luminita Grecu 

Proceedings of the World Congress on Engineering 2009 Vol II
WCE 2009, July 1 - 3, 2009, London, U.K.

ISBN:978-988-18210-1-0 WCE 2009



 
 

 

compressible fluid flow around a body the boundary integral 
equation, obtained by applying an indirect technique with a 
distribution of sources on the boundary, has the form (see 
[4]):  
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where 00 , yx nn  are the components of the normal unit vector 

outward the fluid (inward the body) in the point 

0x , 21 M−=β (for the subsonic flow, M= Mach number), 
and f is the unknown function, the intensity of the sources, 
presumed to satisfy a hölder condition. The sign " ' " denotes 
the Cauchy principal value of the integral. 

II. QUADRATIC ISOPARAMETRIC BOUNDARY ELEMENTS 
When we use quadratic isoparametric boundary elements 

to solve the singular boundary integral equation (1), the 
geometry and the unknown, have local a quadratic variation, 
on each of the boundary elements obtained after the 
discretization of the boundary. In paper [6] constant and  
linear boundary elements are used, and in [7] also quadratic 
ones, but the treatment of singularities was carried out in a 
different manner.  

So we consider that the boundary is divided into N 
unidimensional quadratic boundary elements, noted iL , each 
of them with three nodes: two extreme nodes and an interior 
one. Considering that the discrete equation is satisfied in 
every node, we obtain:   
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(2) 
 For describing the geometry and the behavior of the 

unknown f , on a boundary element, we use a quadratic 
model, with the same set of basic functions, noted 

321 ,, NNN . Using a local system of coordinates (the 
intrinsic system) we have: 
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(4) 
[ ]N  is a matrix with a single line, [ ] ( )321 NNNN = , 

( ) ( ) ( ) ( ) ( ) [ ]1,1,
2
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{ } { }ii yx ,  the column matrices made with the global 

coordinates  of the nodes of the boundary element iL .  

There are used two systems of notation: a global and a 
local one (global- jf  is the value of f for the node number 

j, Nj 2,1= -and local- Nilf i
l ,1,3,1, ==  is the value for 

the node number l of element i).  
Returning to the global system of notation, we obtaine the 

following linear algebric system:  
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       j
xj nB πβ2= .                                       (11) 

{ }f  being the column matrix made with  the nodal values of 
the unknown function 

After solving this system, which has usually a big number 
of unknowns and equations, using therefore a 
preconditionary technique, we find the intensity nodal values 
and then the components of the other fields of interest. But, 
first we have to evaluate matrix coefficients in order to obtain 
the system. 

 

III. THE EXPRESSIONS OF THE COEFFICIENTS OF MATRIX A 
AND THE EVALUATION OF THE NONSINGULAR INTEGRALS 

 For getting the matrix [ ]A  we need to evaluate the 
integrals that appeare. One of them are usual integrals, but the 
other are singular integrals.  
Denoting by: 
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we obtaine the following expressions for the coefficients: 
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 (9) 
For 12,2,12 +−≠ iiij  this integrals are nonsingular 

integrals ( ) 3,2,1=∀ l , and they can be evaluated with usual 
numerical integration techniques, or with a math software, 
using a computer. 
 

IV. A METHOD BASED ON CAUCHY PRINCIPAL VALUE OF AN 
INTEGRAL FOR SINGULAR INTEGRALS EVALUATION 

We give special attention to the treatment of singular 
integrals. Errors due to them have a high influence on the 
numerical solutions accuracy as results for example from 
papers [8], [9]. If we apply a truncation method which 
consists of isolating the singularity while using a Gauss 
quadrature method, for evaluating the singular integrals k

ijI , 

12,2,12 +−= iiij , the numerical results are not 
satisfactory and large errors appear.  

Another method we have applied, is based on the 
definition of Cauchy Principal Value of an integral, and 
allows us to obtain very small errors between the numerical 
and the exact solution of the problem, when the latter exists.  

We start applying this method using the following 
expressions for coefficients 3,2,1, =lal

ij : 
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where  
 ( ) ξξξξξ ijijijij DCBAP +++= 234 ,  

( ) ijijijii edcbaQ ++++= ξξξξξ 234                          (13)          

For 12 −= ij , the integrals have singularities at the first 
node of element number i,  node corresponding to the 
intrinsic  coordinate (-1). 

 After some manipulations, we can write that: 
( ) ( ) ( )ξξξ 11 PP +=   , ( ) 011 ≠−P , ( ) 01 ≠ξP  

( ) ( ) ( )ξξξ 1
21 QQ +=  ( ) 011 ≠−Q , ( ) 01 ≠ξQ , [ ]1,1−∈∀ξ . 

 
We deduce that: 
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We try to separate the above integrals into two parts, one 

regular and the other with a singularity.  We consider for this 
the following relation: 
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We further obtain relation:  
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And we finally deduce that: 
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So, as we can see, only the second integral still has a 

weakly singularity, and only for its evaluation we use the 
method that isolates the singularity. As shown in paper [10] 
this method offers good results for improper integrals 
numerical evaluations, integrals in which the integrand 
doesn’t quickly oscillate near the singularity. We get: 
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(14) 
Applying the same idea we obtain, in this case, for the 

other coefficients the following expressions: 
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 (15)             

 For ij 2= , case in which the singularity arises 

when 0=ξ , doing like before, we have the following 
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expressions for 3,2,1, =lal
ij : 
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(16)            
 For 12 += kj , with singularity for 1=ξ , analogous, 

we have: 
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The coefficients of the velocity's components are 

evaluated in a same manner.  
After solving system (11) and finding the nodal values of 

the intensities we can compute the components of the 
velocity on the boundary and then the local pressure 
coefficient: 
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if 0≠M , or in case of an incompressible fluid flow with 
relation:  

uvuCp 222 −−−=  

For showing the effectiveness of the method proposed in 
this paper, especially as regarding the singular coefficients 
evaluation, we made a computer code in MATHCAD. 

Numerical results can be obtained for different types of 
obstacles with a smooth boundary. For making the analytical 
checking we consider a particular case - an incompressible 
ideal fluid flow ( 1=β ) and a circular obstacle. In this case 
the problem has an exact solution. The analytical expressions 
for the dimensionless components of the velocity and the 
local pressure coefficient are given by the following 
relations, see [11]: 
  θθ 2sin,2cos −=−= vu , θ2cos21+−=cp . 

The computer code ofers the numerical results presented in 

Fig.1, where a comparison between the numerical solution 

and the analytical one is made too 
We have choosen for ε  the value 0.09, and 20 nodes for 

the boundary discretization. 
As we can see from the graphic below, the error between 

the numerical and the exact solution is very small indeed. 
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Fig.1. Numerical and exact solution for 1=β and a 

circular obstacle - 20 nodes on the boundary  
 

We have also considered another smooth obstacle, the 
elliptical obstacle, and an incompressible ideal fluid flow, 
because in this case the problem has an exact solution too   

In [11] the problem of an incompressible fluid flow 
around an elliptical object is exactly solved. The 
expression of the perturbed fluid velocity is obtained using 
the complex potential, given by the following expression: 
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The components of the velocity field are in this case:  
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         We consider an elliptical profile with a=2 and b=1. 

    Another computer code in MATHCAD gives us the 
solution for this case. These computer codes can be run for 
any number of nodes used for the boundary discretization.  
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         In Fig.2, a comparison between the numerical solution 

and the analytical one is made. We have choosen for ε  the 

value 0.001, and 32 nodes for the boundary discretization. 
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Fig.2. Numerical and exact solution for 1=β and an 

elliptical obstacle - 32 nodes on the boundary. 
 
As we can see, for the elliptical obstacle, the numerical 

results are in very good agreement with the exact ones too. 

V. CONCLUSIONS 
As we have shown in this paper when applying BEM to 

solve problems of 2D compressible fluid flow good 
numerical results can be obtained even when using a small 
number of nodes for the boundary discretization if a good 
technique for singular coefficients evaluation is applied.  

The Boundary Element Method (BEM) is an efficient 
numerical technique, which can be used to solve the problem 
of a 2D compressible fluid flow around obstacles, and 
generally for solving boundary value problems for systems of 
partial differential equations.  

The principal advantage of the BEM over other numerical 
methods is the ability to reduce the problem dimension by 
one, leading to improved computational efficiency.  

The equivalent boundary integral formulation is usually a 
singular boundary integral equation, and after solving it   the 
numerical solution of the problem can be found.  

The type of boundary elements used to solve the 
boundary integral equations plays an important role in 
applying BEM, because the accuracy of the numerical 
solution is affected by the approximation models brought into 
solving through them, but numerical solutions accuracy 
depends also on other factors too, like the treatment of 
singularities, which is one of the most important sources of 
errors in applying BEM. If suitable techniques as quadrature 
schemes, changes of coordinates, or other regularization 
techniques are used we can obtain a high degree of accuracy.  
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