
 
 

 

 
 
 
 
 
 
Abstract—Performances of speaker verification systems are 

superb in clean noise-free conditions but the reliability of the 
systems drop severely in noisy environments. Fusion of audio 
and visual information is one of the solutions to this limitation. 
However, this approach requires appropriate weighting for 
each biometric trait when the systems are implemented under 
inconsistent conditions. In this study, we propose a novel 
approach by introducing Support Vector Machine (SVM) as 
indicator system for audio reliability estimation. This approach 
directly validate the quality of the incoming (claimant) speech 
signal so as to adaptively change the weighting factor for fusion 
of both subsystems scores. It is important to priory check the 
speech signal quality because unreliable speech data give 
incorrect scores hence affect the accuracy of the total scores of 
the fusion systems. The effectiveness of this approach has been 
experimented to a multibiometric verification system that 
employs lipreading images as visual features. This verification 
system uses SVM as a classifier for both subsystems. Principle 
Component Analysis (PCA) technique is executed for visual 
features extraction while for the audio feature extraction; 
Linear Predictive Coding (LPC) technique has been utilized. In 
this study, we found that the SVM indicator system is able to 
determine the quality of the speech signal up to 99.66%. We 
then observed that by using the proposed adaptive fusion 
system, EER percentage in noisy condition (10dB) has been 
decreased to 0.27% compared to 9.3% for non-adaptive fusion  
system and 51.13% for audio only system. 
 

Index Terms—audio visual system, biometric verification 
system, reliability estimation, Support Vector Machine.  
 

I. INTRODUCTION 
Biometric speaker verification is a technology that utilizes 

behavioral and physiological information of speech signal for 
the purpose of authentication of individual for identity claim.  
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According to [1], [2], the advantages of using speech signal 
trait for biometric systems are that the signal is natural and 
easy to produce, requiring little custom hardware, has low 
computation requirement and is highly accurate (in clean 
noise-free conditions). However, in uncontrolled conditions, 
the reliability of the system drops severely as the signal to 
noise ratio (SNR) of the speech signal decreases. This 
becomes the main problem when utilizing speech signals for 
biometric systems. Furthermore, since voice is categorized as 
a behavioral signal, the signal is likely to vary in time due to 
the change of speaking rates, health and emotional conditions 
of speakers. Different microphones and channels also affect 
the accuracy of the system performance. Consequently, the 
implementation of biometric systems has to appropriately 
discriminate the biometric features from one individual to 
another, and at the same time, the systems also need to deal 
with the distortions of the features.  

One of the solutions to overcome these limitations is by 
implementing fusion approach to the biometric system [3]. 
Reference [4] reported the fusion of scores produced 
independently by speaker recognition system and face 
recognition system using a weighted merged score. The 
optimal weight was found by maximizing the performance of 
the integrated system on one of the available training sets. 
The identification of 51% was achieved for the speech only 
system and 92% for the face only system. Performance of the 
integration system using the optimal weight is observed up to 
95%.  

 In another case, a weighted product approach to fuse 
two voice features i.e. static and dynamic and three face 
features i.e. eye, noise and mouth was evaluated [5]. The 
tan-estimators were used for score normalization and 
weighted geometric average was used for score combination. 
The correct identification rate of the integrated system is 98% 
which represents a significant improvement with respect to 
the 88% and 91% rates provided by the speaker and face 
recognition systems respectively. Reference [5] combined 
different biometric cues i.e. voice, lip motion and face image. 
The EER performance of face recognition, voice recognition 
and integrated face and voice recognition are obtained as 3%, 
3.4% and 1.5% from this experiment. 

Reference [6] integrated the scores of speech and lip 
modality using weighted summation fusion. The 
performance of the integrated system outperformed each 
subsystem and reduced the false acceptance rate of the 
speech subsystem from 2.3% to 0.5%. In another experiment, 
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information from speaker verification system (SVS) and 
profile verification system (PVS) using a weighted 
summation fusion was combined [7]. A weighting factor 

is fixed between 0 and 1. Fusion system using 
gives verification rates of 95.57% (40dB) and 

72.82% (5dB) while performances of 90.31% (40dB) and 
78.75% (5dB) are then observed using .  

w
33.0=w

5.0=w
In [9], a novel fuse-HMM that integrates the audio and 

visual features of speech was reported. In this method, the 
learning algorithm maximizes the two HMMs separately and 
consequently fuse the HMM by Bayesian fusion method. The 
experimental results showed that the fuse-HMMs constantly 
performed better than the unimodal method under clean and 
low noise conditions. But under stronger noise level, the 
performance of the fusion systems is worse compared to the 
speech only system. 

Multistage information fusion by taking both feature 
fusion and decision fusion approach was implemented in 
[10]. The study observed that the multistage system achieves 
significant improvement over both feature fusion and 
decision fusion system at different SNR levels.  

  Studies on audio reliability estimation are also reported in 
literatures. This method is performed either relying on the 
statistics-based reliability measure or directly based on the 
quality of the speech signal. Here, the weight for fusion 
scheme is adapted correspondingly to the quality of the 
current input (claimant) speech signal instead of using the 
optimum weight that is estimated from the available training 
set. This approach is more advantageous especially when the 
system is implemented in uncertain environment conditions.  

Two methods have been proposed for the statistics based 
reliability measures i.e. entropy of a posteriori probabilities 
and dispersion of a posteriori probabilities. The reliability 
information can be obtained by the shape of a posteriori 
probabilities distribution of HMM states, GMM and MLP as 
studied in [11], [12] and [13], respectively. A high entropy 
interprets low confidence hence signifies very unreliable 
input. Consequently, a mapping function between the 
entropies and the corresponding weight is calculated.  

On the other hand, study on reliability estimation based on 
the quality of the speech signal was reported in [13]. This 
study described the use of voicing index as audio reliability 
measure. Implementation of the degree of voicing index as 
reliability measure is also reported in [14]. 

In this study, we propose a novel approach by introducing 
Support Vector Machine as indicator system for audio 
reliability measure. The development of this system is made 
up of 3 modules i.e. an audio front-end module, a visual 
front-end module and a fusion and verification module. For 
audio front-end module, a vector of LPC coefficients is 
computed from the autocorrelation vector using Durbin 
recursion method. The LPC-derived cepstral coefficients 
(cepstrum) are then extracted.  

For the visual front-end module, lipreading features are 
employed to the system. Lipreading features are the sequence 
of lip images while the speaker utters the words for example, 
zero to nine. The advantages of utilizing lipreading features 
together with speech signals include the simple process of 
data collection and the cost effective factor since they can be 
simultaneously captured using the same hardware, i.e., digital 

video camera. In addition, the use of lip features, compared 
with face, can also minimize the storage capacity and 
increase the speed of computation as well. Several researches 
using lip information as features to recognition systems have 
been reported. As in [15], shape and intensity information 
from a person’s lip were used in a speaker recognition 
system. The utilization of geometric dimension such as 
height, width and angle of speaker’s mouth as features was 
also investigated [16]. Apart from lip contour-based features, 
pixel-based features i.e. Discrete Cosine Transform (DCT) 
has also been experimented as features for person recognition 
in [17].        

Finally, two tasks are executed for the fusion and 
verification module. In the first task, the SVM indicator 
system is developed for audio reliability measure. The 
weighting factor for score integration is then decided in the 
second task accordingly to the audio reliability estimation 
result. The overall architecture of the proposed adaptive 
weight fusion system is illustrated in Fig. 1.  
 

 
Fig. 1  Adaptive weight fusion systems 

 
The first objective of this study is to examine the 

performance of the SVM indicator system for audio 
reliability estimation. Secondly, it evaluates the performance 
of the proposed adaptive fusion scheme in clean noise-free 
condition and under noisy conditions. Different levels of 
signal to noise ratios (SNRs) of speech signals, ranging from 
clean to 10dB are experimented so as to simulate the real life 
conditions. Finally, we also compare the performances of the 
adaptive fusion system with non-adaptive fusion system and 
audio only system at different levels of SNR. 

The database used in this study is the Audio-Visual Digit 
Database (2001) [18]. The database consists of video and the 
corresponding audio recording of people reciting digits zero 
to nine. The video recording of each person is stored as a 
sequence of JPEG images with a resolution of 512 x 384 
pixels while the corresponding audio recording provided is a 
monophonic, 16 bit, 32 kHz, WAV format. This paper is 
organized as follows. In section II, the Support Vector 
Machine classifier is explained. Section III and IV describe 
the audio verification module and visual verification 
modules, respectively. Fusion and verification module is then 
represented in section V. In section VI, we discuss our results 
and finally, some conclusions are summarized in section VII. 
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II. SUPPORT VECTOR MACHINE CLASSIFIER 
Support vector machine (SVM) classifier in its simplest 

form, linear and separable case is the optimal hyper plane that 
maximizes the distance of the separating hyper plane from 
the closest training data point called the support vectors [19], 
[20]. 

From [19], the solution of a linearly separable case is given 
as follows. Consider a problem of separating the set of 
traini ors belonging to two separate classes, ng vect

( ) ( ){ }LL yxyxD ,,..., 11= ,          (1)
  

{ 1,1, −−∈ℜ∈ yx n }

with a hyperplane,   

0, =+ bxw                   (2) 
The hyperplane that optimally separates the data is the one 

that minimizes 
2

2
1)( ww =φ                   (3) 

which is equivalent  to minimizing an upper bound on VC 
dimension. The solution to the optimization problem (3) is 
given by the saddle point of the Lagrange functional 
(Lagrangian) 
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where are the Lagrange multipliers. The Lagrangian has 
to be minimized with respect to  and maximized with 
respect to  . Equation (3) is then transformed to its dual 
problem. Hence, the solution of the linearly separable case is 
given by, 
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Subsequently, consider a SVM as a non-linear and 
non-separable case. Non-separable case is considered by 
adding an upper bound to the Lagrange multipliers and 
non-linear case is considered by replacing the inner product 
by a kernel function. The solution of the non-linear and 
non-separable case is given as: 
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Non-linear mappings (kernel functions) that can be 
employed are polynomials, radial basis functions and certain 
sigmoid functions. 

 

III. AUDIO FRONT-END SUBSYSTEM 
Linear Predictive Coding is a time domain analysis that 

approximates a speech sample as a linear combination of past 
speech samples. A unique set of predictor coefficients are 

determined by minimizing the sum of the squared differences 
between the actual speech samples and the linearly predicted 
ones [21], [22]. The steps for obtaining Linear Predictive 
Coding (LPC) are summarized in Fig. 2. The parameter 
values that have been used at each stage of the experiment are 
also indicated. A set of feature vector computed from each 
frame consists of 14 cepstrum coefficients. 

Experiments for clean condition systems use clean data for 
training and testing. For the noisy condition experiment, 
clean data are used for training while for testing; the speech 
signal data have been corrupted by decreasing the signal to 
noise ratio (SNR) into 30dB, 20dB and 10dB using white 
Gaussian noise.  

For both clean and noisy condition experiments, we fix the 
number of client training data to 20. For the classifier to be 
trained discriminatively, each speaker is trained on 20 client 
data and 720 (20x36) imposter data. Consequently, each 
speaker is tested on 40 client test data and 1440 (40x36) 
imposter test data. Since we have 37 speakers in the database, 
we have constructed 37 SVM models for the experiment. 

 

 
Fig. 2  LPC processing 

 

IV. VISUAL FRONT-END SUBSYSTEM 
In order to locate the lips on a face, techniques for face 

detection and lip localization have been used in this study [23], 
[24]. In the first task, we implement a color-based technique 
and template matching algorithm to segment human skin 
regions from non-skin color. For the lip localization task, 
hue/saturation color thresholding has been employed in order 
to differentiate the lip area from the face [23], [24]. As 
demonstrated in [25], the detection of the lip in hue/saturation 
color is much easier owing to its robustness under  a wide 
range of lip colours and varying illumination condition. From 
the hue-saturation image, a binary image is then computed 
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followed by morphological image processing so as to 
determine lip region. The lip regions of 64 x 64 pixels are then 
extracted for evaluation. Our lipreading database has 22200 
images in total size 64x64 pixels from 37 persons. For each 
person, 60 sequences of images (with 10 images per 
sequence) have been utilized.  

Consequently, Principle component analysis (PCA) 
technique or also known as Karhunen-Loeve method is used 
for dimensionality reduction. This statistical method aims to 
obtain an optimum linear subspace from a covariance matrix 
of a set of samples [26]. This technique executes linear 
projection on the original samples that maximizes the scatter 
(variance) of all projected samples. This technique is 
beneficial for reducing storage capacity because the 
projected features are presented in a lower dimensionality 
space compared to the original sample space. The overall 
feature extraction process using PCA technique is 
summarized in Fig. 3.  

 
  Fig. 3  Feature extraction using PCA processing 

Theory of PCA technique for feature extraction can be 
simply stated as follows. Given a set of N sample images , 

where each image in the set is lethographically 
re-ordered in L

ix
Mi ,,2,1 L=

2 dimensional space and belongs to one of the 
c classes . By considering a linear 
transformation mapping, the original sample in 

dimensional space are then transformed into a 

P-dimensional feature space, where 

{ cCCC ,,, 21 L }

2L
2LMP <<<< . The 

new transformed features ,  is known as 
subspace and the process of transforming is called projection. 
In PCA, the transformation process is executed by the 
following linear transformation: 

iy Mi ,,2,1 L=

i
T

i xUy = ,                        (10) Mi ,,2,1 L=

where  represents matrix of Eigen pictures in PLU  x 2
ℜ∈

PL x2  and P corresponding to the P largest Eigen values.  

The transformed lip features are then used for the 
verification process using SVM as classifier. In this 
experiment, we vary the number of training data from 3, 6, 10 
and 20 so as to evaluate the performance of the systems using 
a different number of training data. For the classifier to be 
trained discriminatively, each speaker is trained on 3, 6, 10 or 
20 client data and 720 (20x36) imposter data. Consequently, 
each speaker is tested on 40 client test features and 1440 
(40x36) imposter test features. As we have 37 speakers in the 
database, we have constructed 37 SVM models for the 
experiment. 

V. FUSION AND VERIFICATION SYSTEM 

A. SVM indicator system 
The architecture of the score level fusion using adaptive 

weight fusion scheme is illustrated in Fig. 4. Speech quality 
measurement is done by developing an indicator system 
which is based on SVM classification technique. By 
modeling the clean data features as sample type +1 and the 
noisy data features as sample type -1, the system is able to 
discriminate the incoming speech signal either as high quality 
or low quality speech signal. Modeling data are taken from 
the training data set (enrollment). After the speech quality 
measurement process is completed, the system will decide 
the weight for the fusion process.  

The indicator system is constructed to differentiate clean 
speech signal (high quality) from 30dB, 20dB and 10dB SNR 
speech signal (low quality). We have used 2960 training data 
and 5920 testing data for this task. This system is capable to 
achieve 99.66% accuracy.  

 

 
Fig. 4  The architecture of the score level fusion using 

adaptive weight fusion scheme 
 

B. Fusion system Verification 
The fusion system is a soft fusion system that uses raw 

scores from audio and visual subsystems. The first task is to 
normalize the values from each of the subsystems using 
min-max normalization by placing them in the [0,1] interval. 
The normalized values are then combined by using a 
weighted summation fusion as shown by the equation below. 

( ) speechlip wAVwF +−= 1                        (11) 

where is the score from visual subsystem, is 

the score from audio subsystem, 
lipV speechA

F is total weighted fusion 
score and W is a weighting factor which varied between 0 
and 1.  

Before the fusion process takes place, each audio testing 
data (current speech signal) is first checked for its quality by 
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the indicator system and the weight for the particular data is 
then determined. By using the weight defined from the 
indicator system, the normalized scores from both 
subsystems are then fused using (11). In order to calculate the 
optimum weight, , is varied from 0 to 1 in steps of  

0.2. The overall performance in each step is then evaluated 
and the optimum weight, is defined at which the weight, 

give the highest performance. We observed that the error 
curve performances hit the lowest point at weight equal to 
0.4.  

optw w

optw

w

 

VI. RESULTS AND DISCUSSIONS 
We first discuss the performance of the visual only 

systems that have been experimented based on 20, 10, 6 and 3 
training data. By increasing the number of training data to the 
systems, a great improvement in GAR is observed. The 100% 
GAR for 3, 6, 10 and 20 training data systems is found when 
the FAR is equal to 35%, 4%, 3% and 0.2%, respectively. 
System performances based on EER are shown in Table I. 

Table I  EER performances for visual only systems  

No of training data 20 10 6 3 

EER 0.27 0.94 1.15 2.7 

 Performances of the adaptive fusion systems have been 
experimented in clean, 30db SNR, 20dB SNR and 10dB SNR 
conditions. Performances of non-adaptive fusion systems and 
audio only systems have also experimented in this study. For 
the non-adaptive fusion systems, the optimum weight 

 has been used for fusion of the scores.  4.0=w
Fig. 5 illustrates the performances of the verification 

systems using adaptive weight fusion and non-adaptive 
weight fusion in clean condition.  
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Fig. 5  System performance in clean condition 

The performance of the audio only system in clean condition 
is also illustrated for comparison. The 100% GAR 
performance is evaluated at FAR is equal to 0.004% for the 
adaptive weight fusion system and non-adaptive weight 
fusion system compared to 35% GAR performance for audio 
only system at the same percentage of FAR. It is observed 
that the audio only system reaches 100% GAR at FAR of 4%. 
System performances based on EER are observed as 0.067%, 
0.067% and 1.79% for adaptive weight fusion system, 
non-adaptive weight fusion system and audio only system, 
respectively. 

 
Performances of the verification systems using adaptive 

weight fusion and non-adaptive weight fusion based on 30dB 
SNR data are given in Fig. 6. The performance of the audio 
only system based on 30dB data is also illustrated for 
comparison. 100% GAR performance is evaluated for the 
adaptive weight fusion system at FAR equal to 0.3% 
compared to FAR equal to 1% for non-adaptive weight 
fusion system. The GAR performance at the FAR equal to 
0.3% for non-adaptive weight fusion is 96% meanwhile GAR 
performance for audio only system is 18% at the same FAR 
percentage. System performances based on EER are 
observed as 0.29%, 0.87% and 17.02% for adaptive weight 
fusion system, non-adaptive weight fusion system and audio 
only system, respectively. 
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Fig. 6  System performances at 30dB SNR level 

Fig. 7 illustrates the performances of the verification 
systems using adaptive weight fusion and non-adaptive 
weight fusion based on 20dB SNR data.  
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Fig. 7  System performances at 20dB SNR level 

The performance of the audio only system based on 20dB 
data is also illustrated for comparison. The 100% GAR is 
evaluated at FAR is equal to 0.3% for the adaptive weight 
fusion system compared to 60% GAR for non-adaptive 
weight fusion system at the same FAR percentage. In 
contrast, the non-adaptive weight fusion system reaches 
100% GAR at FAR equal to 11%. At the FAR 0.3%, the 
audio only system attains 4% GAR.  System performances 
based on EER are observed as 0.27%, 6% and 40.75% for 
adaptive weight fusion system, non-adaptive weight fusion 
system and audio only system, respectively. 

Performances of the verification systems using adaptive 
weight fusion and non-adaptive weight fusion based on 10dB 
SNR data are given in Fig. 8. Performance of audio only 
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system based on 10dB data is also given for evaluation. The 
100% GAR performance for adaptive weight fusion system is 
evaluated at FAR equal to 0.3% while for non-adaptive 
weight fusion system is found at FAR of 35%.  In contrast, 
the performance at FAR of 0.3% for non-adaptive weight 
fusion is 48% GAR meanwhile GAR performance for audio 
only system is evaluated as 0% at the same FAR percentage. 
System performances based on EER are observed as 0.27%, 
9.3% and 51.14% for adaptive weight fusion system, 
non-adaptive weight fusion system and audio only system, 
respectively. 

10-2 10-1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

False Acceptance Rate(%)

G
en

ui
ne

 A
cc

ep
ta

nc
e 

R
at

e(
%

)

LPC-PCA-SVM system performance at 10dB SNR level

adaptive weight non-adaptive weight audio only  
Fig. 8  System performances at 10dB SNR level  

 

VII. CONCLUSIONS 
The performances of the adaptive weight fusion systems, 

non-adaptive weight fusion systems and audio only systems 
at different SNR levels have been reported for comparison in 
this paper. The advantage of using the adaptive weight fusion 
approach instead of employing non-adaptive weight fusion is 
to avoid unreliable scores to be fused together in fusion 
systems that can spoil the accuracy of the total scores. We 
conclude that the adaptive weight fusion systems always 
outperform the other systems. By using the adaptive weight 
fusion approach, the performances of the verification systems 
can be further enhanced when high quality speech signal is 
obtained. Besides, in corrupted speech signal environment, 
the system performances can still be maintained by adjusting 
the fusion weight by using the visual only systems. However, 
the effectiveness of this approach depends on the 
performance of the indicator system as audio reliability 
estimation and visual only verification system. Future work 
will be devoted on all SNR levels and different types of 
noises.    
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