
 
 

 

  
Abstract—At macroscopic level, traffic can be described as a 

continuum flow. Lighthill Witham and Richards (LWR) have 
developed a traffic flow model based on the fluid dynamics 
continuity equation, which is known as the first order LWR 
traffic flow model. The resulting first order partial differential 
equation (PDE) can be analytically solved for some special 
cases, given initial and boundary conditions, and numerically 
using for example the finite element method (FEM).  

This paper makes use of the Galerkin FEM to solve the LWR 
model with constant speed. The road is divided into a number of 
road segments (elements) using the Galerkin FEM. Each 
element consists of two nodes. Each node has one degree of 
freedom (d.o.f.), namely the traffic density. The FEM provides a 
solution for the degrees of freedom, i.e. traffic densities of each 
node. The resulting simultaneous equations are solved at 
different time steps using the Euler backward time-integration 
algorithm. 

In Belgium and also in the Netherlands, there is a special 
technique that can be used in order to prevent traffic jams and 
increasing safety in situations with high volume of cars on the 
roads, i.e. block driving. It is a technique where cars drive in 
groups by order of the police when the roads are crowded. In 
this paper block driving is used as a practical example of the 
LWR model with constant speed. Thereby, it is simulated using 
the Galerkin FEM and the results are compared with the 
analytical solution. The FEM gives good results providing that: 
the road segments and time steps are small enough. A road with 
length 5000 m, constant speed of 25 m/s, segment length of 100 
m and time steps of 1 s gives good results for the studied case. At 
points of traffic density rate discontinuities, depending on the 
road segment size and time step size, the Galerkin FEM is 
accurate and requires reasonable computational effort. 

From the research work carried out in this paper, it is found 
that the Galerkin FEM is suitable for modelling traffic flow at 
macroscopic level. The element size and time step size are 
important parameters in determining the convergence of the 
solution in case of discontinuities in traffic density rate. 
Although this paper considers the case of constant speed, the 
technique can be extended in the future to include the case of 
non-constant speed, i.e. speed as a function of traffic density. 
 

Index Terms—Macroscopic traffic flow, Galerkin finite 
element method, LWR model, block driving.  
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I. INTRODUCTION 
  There has been a little bit research done in the literature 

concerned with macroscopic traffic flow modelling using the 
Galerkin finite element method (FEM). In [1], [2], and [3] a 
Galerkin FEM type is used to solve the macroscopic Lighthill 
Witham and Richards (LWR) [4], [5] traffic flow model in 
conjunction with Greenshields’ flow-density relationship [6]. 
A wavelet-Galerkin FEM is used in [7] to solve the 
macroscopic non-constant speed LWR traffic model. A 
discontinuous Galerkin FEM is used in [8] for solving 
red-and-green light models for the traffic flow. 

This paper presents a numerical solution (using a Galerkin 
FEM [9]) of the LWR traffic flow model with constant speed. 
The validation of results is done by using the analytical 
method of characteristics [10].  

The first section describes the most important parts of the 
macroscopic traffic flow theory. The LWR model is 
presented in details. A description of the analytical solution 
(using the method of characteristics) and the numerical 
solution (using the Galerkin FEM in combination with the 
Euler backward time-integration algorithm [9]) can be found 
in the next sections. The last section provides a numerical 
example, namely a block driving simulation. 

II. TRAFFIC FLOW THEORY 
There are several traffic flow models, which can be mostly 

divided in 4 categories: macroscopic, mesoscopic, 
microscopic and submicroscopic (listed with growing level 
of details).  

The first order LWR traffic flow model is a macroscopic 
continuum model. 

A. Macroscopic traffic flow parameters 
The most important macroscopic traffic flow parameters 

are: 
• Density (k): expressed in vehicles per kilometre 

(veh/km) 
• Flow (q): expressed in vehicles per hour (veh/h) 
• Speed (u): expressed in kilometres per hour (km/h) 

B. Fundamental relation 
The unique relation between the three macroscopic traffic 

flow parameters density, flow and speed is: 
 = ⋅q k u   (1) 

C. Fundamental diagrams 
Beside the fundamental relation, there are also 

experimental relations between the traffic flow parameters.  
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These relationships are called fundamental diagrams. They 
are obtained from measurements. 

The fundamental diagrams are: 
• Speed-density relationship: 

 (1 )= ⋅ −f
j

ku u
k

 (2) 

• Speed-flow relationship: 

 (1 )= ⋅ ⋅ −f
j

kq u k
k

 (3) 

• Flow-density relationship: 

 (1 )= ⋅ ⋅ −j
f

uq k u
u

 (4) 

Fig. 1, 2, and 3 give graphical overviews of the 
fundamental diagrams according to Greenshields [6].  

Traffic can have different regimes (characterized by 
variables related to the traffic state): 

• Free-flow traffic is characterized by a low density 
(high speed), which results in a free-flow speed 
uf. Mostly uf is the maximum allowed speed. 

• Capacity-flow traffic is characterized by a 
maximum flow which is called the capacity flow 
qc. 

• Jammed traffic is characterized by a maximum 
density (low or no speed) called the jam density 
kj. 

In practice, transitions occur in time from one regime to 
another. 

D. First order LWR model 
Lighthill, Witham and Richards considered that traffic was 

an inviscid but compressible fluid (fluid-dynamic model). 
Densities, speed values and flows were defined as continuous 
variables in each point in time and space (continuum, 
macroscopic model). The first order partial differential 
equation (PDE) from this model is: 

 0∂ ∂
+ =

∂ ∂
k q
t x

 (5) 

 Crucial to the approach of Lighthill, Witham and Richards 
was the fundamental hypothesis (see section II.B), i.e. flow is 
a function of density and speed: 

 ( ) 0∂ ∂ ⋅
+ =

∂ ∂
k k u
t x

 (6) 

Lighthill and Witham assumed that the fundamental 
hypothesis holds at all traffic densities, not just for 
light-density traffic but also for congested traffic conditions. 
Using the fundamental diagrams (see section II.C) to relate 
the two dependent variables in the left-hand side of (5) 
(density k and flow q) to one another, it is possible to solve 
the partial differential equation, given initial and boundary 
conditions.  

Equation (6) can be made simpler by assuming a constant 
speed. In this paper a constant speed is assumed, i.e. 0=u u : 

 0( )
0

∂ ⋅∂
+ =

∂ ∂
k uk

t x
 (7) 

Therefore, (7) becomes 

 0 0∂ ∂
+ ⋅ =

∂ ∂
k ku
t x

 (8) 

It is worth mentioning that Lighthill, Witham and Richards 
noted that because of the continuity assumption, the theory 
only holds for a large number of vehicles (long crowded 
roads). 

III. ANALYTICAL SOLUTION: METHOD OF CHARACTERISTICS 
Equation (8) is a first order partial differential equation 

(more specific: the first order wave equation with speed 0u ).  
The method of characteristics [10] can be used to find a 

solution for the initial boundary value problem. An initial 
boundary value problem assumes (beside the differential 
equation) two extra equations (continuous or discontinuous): 

• Initial values: the density values at time 
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0 ( ( ,0) ( ))= =t k x f x   
• Boundary values: the density values at distance 

0 ( (0, ) ( ))= =x k t g t  
The general form of the solution from the first order partial 

differential equation (8) with constant speed 0u , density k , 
initial condition ( ,0) ( )=k x f x  and boundary condition 

(0, ) ( )=k t g t is: 

 
0 0

0
0

( )
( , )

( )

− ⋅ ≥ ⋅⎧
⎪= ⎨ − ≤ ⋅⎪⎩

f x u t x u t
k x t xg t x u t

u
 (9) 

IV. NUMERICAL SOLUTION: GALERKIN FEM 
Application of the Galerkin FEM to (8) gives: 

 0( ) 0δ ∂ ∂
⋅ + ⋅ =

∂ ∂∫
V

k kw u dV
t x

 (10) 

Galerkin sets the weight function δ w equal to the shape 
function vector [ ]N : 

 [ ] 0( ) 0∂ ∂
⋅ + ⋅ =

∂ ∂∫
V

k kN u dV
t x

 (11) 

where V is the element volume.  
For a linear homogeneous element dV can be replaced 

by dx and the integration can be done over x : 

 [ ] 0( ) 0∂ ∂
⋅ + ⋅ =

∂ ∂∫
x

k kN u dx
t x

 (12) 

A. Single element matrices 
This section gives the derivation of the matrices of a single 

element with length L  and two nodal densities 1k and 2k . 
Fig. 4 gives a graphical representation of a single traffic flow 
element.  

The traffic density in the element as a function of the nodal 
densities, degree of freedom (d.o.f.), is given by 

 [ ] 1
1 1 2 2 1 2

2

⎧ ⎫
= ⋅ + ⋅ = ⋅ ⎨ ⎬

⎩ ⎭

k
k N k N k N N

k
 (13) 

The differentiation of the density with respect to the time 
t is given by 

 [ ]
1

1 2
1 2 1 2

2

∂⎧ ⎫
⎪ ⎪∂ ∂∂ ⎪ ⎪∂= ⋅ + ⋅ = ⋅ ⎨ ⎬∂∂ ∂ ∂ ⎪ ⎪
⎪ ⎪∂⎩ ⎭

k
k kk tN N N N

kt t t
t

 (14) 

The differentiation of the density with respect to the 
position x is given by 

 11 2 1 2
1 2

2

⎧ ⎫∂ ∂ ∂ ∂∂ ⎡ ⎤= ⋅ + ⋅ = ⋅ ⎨ ⎬⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎩ ⎭

kN N N Nk k k
kx x x x x

 (15) 

The shape functions 1N and 2N are 

 [ ] [ ]1 2 1⎡ ⎤= = −⎢ ⎥⎣ ⎦

x xN N N
L L

 (16) 
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Substituting (13), (14), (15) in (12) gives: 

 
[ ]

1

1
1 2

2 2

1 11 2
0

2 2

( )

( ) 0

∂⎧ ⎫
⎪ ⎪⎡ ⎤ ⎪ ⎪∂⋅ ⋅ ⎨ ⎬⎢ ⎥ ∂⎣ ⎦ ⎪ ⎪
⎪ ⎪∂⎩ ⎭

⎡ ⎤ ⎧ ⎫∂ ∂⎡ ⎤+ ⋅ ⋅ ⋅ =⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦ ⎩ ⎭

∫

∫

x

x

k
N tN N dx
N k

t
N kN Nu dx
N kx x

 (17) 

Simplifying the notation of (17) gives:  

 [ ] [ ] { } [ ] { }0( ) ( ) 0
∂ ∂

⋅ ⋅ + ⋅ ⋅ ⋅ =
∂ ∂

⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫

T T

x x

k N
N N dx u N k dx

t x
 (18) 

After derivation and integration of the shape functions, 
(18) becomes: 

 { }02 1 1 1
0

1 2 1 16 2
−⎡ ⎤ ⎡ ⎤∂⎧ ⎫⋅ ⋅ + ⋅ ⋅ =⎨ ⎬⎢ ⎥ ⎢ ⎥−∂⎩ ⎭⎣ ⎦ ⎣ ⎦

uL k k
t

 (19) 

Because of the time-dependency, there is a need for a 
time-integration algorithm. Application of the Euler 
backward time-integration algorithm [9] 

+Δ⎛ ⎞∂ −
=⎜ ⎟∂ Δ⎝ ⎠

t t tk k k
t t

results in: 

 
{ } { }

{ }0

2 1 2 1
1 2 1 26 6

1 1
0

1 12

+Δ

+Δ

⎡ ⎤ ⎡ ⎤
⋅ ⋅ − ⋅ ⋅⎢ ⎥ ⎢ ⎥⋅ Δ ⋅ Δ⎣ ⎦ ⎣ ⎦

−⎡ ⎤
+ ⋅ ⋅ =⎢ ⎥−⎣ ⎦

t t t

t t

L Lk k
t t

u
k

(20) 

Re-writing (20) gives: 
 [ ] [ ] { } [ ] { }+Δ⎡ ⎤+ ⋅ = ⋅⎣ ⎦

t t tA B k A k  (21) 

where 

 [ ] 2 1
1 26

⎡ ⎤
= ⋅ ⎢ ⎥⋅ Δ ⎣ ⎦

LA
t

 (22) 

 [ ] 0 1 1
1 12

−⎡ ⎤
= ⋅ ⎢ ⎥−⎣ ⎦

u
B  (23) 

 { } 1

2

+Δ
+Δ

+Δ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

t t
t t

t t

k
k

k
 (24) 

 { } 1

2

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

t
t

t

k
k

k
 (25) 

B. General solution for m time steps and n elements 

 
 

Given a road, which is divided in n  elements with 
uniform length L , initial conditions, at 0 s=t , 0

1k  to 0
1+nk  

(Fig. 5) and boundary conditions, at 0 m=x , 0
1k  to 1

⋅Δm tk  
(Fig. 5) then, the densities at all times and all positions can be 
calculated from: 

 { } [ ] [ ] [ ] { }1−+Δ ⎡ ⎤= + ⋅ ⋅⎣ ⎦
t t tk A B A k  (26) 

where 

 [ ]

2 1 0 0
1 4
0

06
4 1

0 0 1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⋅ Δ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

LA
t

 (27) 

 [ ] 0

1 1 0 0
1 0

0
02

0 1
0 0 1 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

v
B  (28) 

V. SIMULATION OF BLOCK DRIVING 
By choosing a practical traffic example, block driving, the 

Galerkin FEM solution method is tested on accuracy, 
convergence and computational needs. 

Block driving is a technique where cars drive in groups by 
order of the police, in order to prevent jams. 

When the traffic density of the road is high, a car of the 
police drives with a constant speed in the centre of the road. 
The vehicles drive behind the police car with the same 
constant speed. Because of this, acceleration and braking (the 
harmonica effect) are avoided. The chance of accidents 
reduces and traffic jams become shorter in distance. 

In this section block driving is simulated with the Galerkin 
FEM. 

It should be noted that all densities are expressed in 
vehicles per meter (veh/m), distances in meters (m) and times 
in seconds (s). 
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Figure 6: Boundary conditions at the beginning of the road – block driving 
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A. Details of the simulation 
The simulation is described in 5 time intervals (Fig. 6): 

• Case 1: no vehicles enters/on the road during 240 
seconds.  

• Case 2: 60 vehicles enter the road (at 1 vehicle per 
second driving at 25 m/s) during 60 seconds. This 
case is responsible for the creation of the first 
traffic wave. 

• Case 3: no vehicles enter the road. The 60 vehicles 
drive on the road and leave the road whereas the 
road becomes clear. The time between entering 
and leaving the road from one car is 200 s 
(travelling 5000 m with a speed of 25 m/s). This 
case simulates the evolution of the first traffic 
wave. 

• Case 4: repeating case 2. This case is responsible 
for the creation of traffic wave 2. 

• Case 5: repeating case 3. This case simulates the 
evolution of traffic wave 2. 

B. Mathematical translation 
The LWR model with constant speed is given by (8). All 

simulations are done from 0 s to 840 s and the road length L  
is 5000 m. The constant speed 0u is 25 m/s.  

Case 1 contains an initial condition. The density at 
0 s=t is given by:  

 ( ,0) 0 0 5000= ≤ ≤k x x  (29) 
Cases 1, 2, 3, 4, and 5 contain boundary conditions. The 

density at 0 m=x  (the beginning of the road) is given by: 

 

0 0 240
0.04 240 300

(0, ) 0 300 540
0.04 540 600

0 600 840

≤ ≤⎧
⎪ < ≤⎪⎪= < ≤⎨
⎪ < ≤⎪

< ≤⎪⎩

t
t

k t t
t
t

 (30) 

Fig. 6 gives a graphical representation of the boundary 
conditions. 

C.  Analytical solution using the method of characteristics 
The analytical solution with the method of characteristics 

(see section III) is given by the following equation: 
0 0

0 0

0 0

0 0

0 0

0 0

0 0 5000  ( )
0 0 240   ( )

0.04 240 300 ( )
( , )

0 300 540 ( )
0.04 540 600 ( )

0 600 840 ( )

≤ − ⋅ ≤ → − ⋅⎧
⎪ ≤ − ≤ → −⎪
⎪ < − ≤ → −⎪= ⎨ < − ≤ → −⎪
⎪ < − ≤ → −
⎪

< − ≤ → −⎪⎩

x u t f x u t
t x u g t x u

t x u g t x u
k x t

t x u g t x u
t x u g t x u
t x u g t x u

 (31) 

D. Numerical solution with the Galerkin FEM 
The density is calculated for all times (0 to 840 s) and 

distances (0 to 5000 m) by using (26) and applying the initial 
and boundary conditions. 

The convergence study on the density is done with 
simulations with different element sizes Δx and time 
steps Δt . The density versus time at distance 2000 m is fully 
analysed by using convergence parameters and CPU 
calculation times.  

The evolution of density in distance (at distances 0 m, 

2500 m and 5000 m) and time (at times 570 s, 670 s and 770 
s) is investigated with the use of a simulation with element 
size 100 m and time steps of 1 s.  
 

1) Convergence study on density 
The analytical solution results in discontinuous traffic 

block waves. The numerical solution results in continuous 
rounded traffic waves. The discontinuities become 
approximated by a continuous function using the Galerkin 
FEM.  

The CPU times of the numerical simulations are presented 
in Table I.  
 

Table I: CPU times for the numerical simulations of block driving 

Δt (s) Δx (m) Simulation time (s) 

1 1 1563.43 

1 10 35.73 

1 100 2.76 

1 250 2.47 

1 1000 1.62 

10 100 0.39 

30 100 0.35 

 
The accuracy parameters (mean error, standard deviation 

of the error and total error) of the numerical simulations are 
presented in Table II. The higher the total error, mean error or 
standard deviation (std), the less accurate the results. The 
error results are calculated via the difference between 
analytical and numerical values. 
 
Table II: Accuracy parameters for the density versus time at distance 2000 m 

Δt (s) Δx (m)
Mean error at 

2000 m  
(veh/m) 

Std error at 
2000 m 
(veh/m) 

Total error at 
2000 m  
(veh/m) 

1 1 0.0021 0.0046 1.1452 

1 10 0.0021 0.0045 1.1432 

1 100 0.0022 0.0046 1.1568 

1 250 0.0023 0.0048 1.4650 

1 1000 0.0057 0.0073 4.2822 

10 100 0.0064 0.0085 4.4135 

30 100 0.0072 0.0098 6.2037 
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Figure 7: Convergence of density as function of Δx – block driving 
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Figure 8: Convergence of density as function of Δt – block driving 

 
Fig. 7 gives an overview of the density versus time at 

distance 2000 m for simulations with Δt = 1 s and Δx = 100 
m, 250 m, and 1000 m. 

Simulations with Δt = 1 s and Δx = 1 m or 10 m gives good 
results (both a small mean error of 0.0021 veh/m with a small 
standard deviation of 0.046 veh/m and 0.045 veh/m), but 
computationally these simulations are very intensive (high 
CPU time of 1563.43 s and 35.73 s). This simulations are not 
presented in Fig. 7 because of the same graphical results as 
with Δt = 1 s and Δx = 100 m. Simulations with Δt = 1 s and 
Δx = 100 m gives good results (a small mean error of 0.0022 
veh/m with a small standard deviation of 0.046 veh/m). 
These simulations are computationally fast (low CPU time of 
2.67 s). Simulations with Δt = 1 s and Δx = 250 m gives also 
good results (a small mean error of 0.0023 veh/m with a small 
standard deviation of 0.048 veh/m) but those are less accurate 
then simulations with Δx = 100 m. Simulations with Δt = 1 s 
and Δx = 1000 m gives bad results (a large mean error of 
0.0057 veh/m with a large standard deviation of 0.073 
veh/m).  

The effects of a larger segment length are: 
• Broader traffic wave 
• Lower maximum densities 
• Earlier start of traffic wave 

Fig. 8 gives an overview of the density versus time at 
distance 2000 m for simulations with Δx = 100 m and Δt = 1 
s, 10 s, and 30 s.  

Simulations with Δx = 100 m and Δt = 0.1 s gives good 
results, but computationally these simulations are very 
intensive (more than 1563.43 s CPU time). This simulation is 
not presented in Fig. 8 because of the same graphical results 
as with Δx = 100 m and Δt = 1 s. Simulations with Δx = 100 
m and Δt = 1 s gives good results (a small mean error of 
0.0022 veh/m with a small standard deviation of 0.046 
veh/m) and they are computationally not intensive (low CPU 
time of 2.76 s). Simulations with Δx = 100 m and Δt = 10 s 
or 30 s gives bad results (both a large mean error of 0.0064 
veh/m and 0.0072 veh/m with a large standard deviation of 
0.0085 veh/m and 0.0098 veh/m).  

The effects of a larger time step size are: 
• Broader traffic wave 
• Lower maximum densities 
• Later start of traffic wave 

 

Simulations with segment lengths of 100 m and time steps 
of 1 s give best results complying with computation power 
and accuracy. This results in the following convergence 
criteria: 

• 50Δ ≤ Lx  

• 1 sΔ ≤t  
 

2) Evolution of density in distance and time 
Fig. 9 gives a graphical representation of the evolution of 

the density in distance at x = 0 m, 2500 m, and 5000 m. The 
movement of traffic waves 1 and 2 is clearly visible in Fig. 9. 
The analytical and numerical results are the same for x = 0 m 
because of the boundary condition.  

Since traffic waves are travelling with a constant speed of 
25 m/s, the maximum density at distance 2500 m and time 
370 s (point A) becomes at distance 5000 m at time 470 s 
(point B). 

Fig. 10 gives a graphical representation of the evolution of 
the density in time at t = 570 s, 670 s, and 770 s. This is a 
graphical representation of the movement from traffic wave 2 
over the road with length 5000 m. 

Since the traffic wave is travelling with a constant speed of 
25 m/s, a density at time 570 s and distance 0 m (point A) 
becomes at time 670 s at distance 2500 m (point B) and at 770 
s at distance 5000 m (point C).  
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Figure 9: Evolution of density in distance – block driving 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.01

0.02

0.03

0.04

Distance x (m)

D
en

si
ty

 k
 (

v
eh

/m
)

 

 

FEM at 570 s FEM at 670 s FEM at 770 s

A B C

Traffic wave 2

100 u
0100 u

0

 
Figure 10: Evolution of density in time – block driving 
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VI. CONCLUSIONS AND FUTURE WORK 
The Galerkin FEM can be used to solve the first-order 

macroscopic LWR traffic flow model with constant speed. 
The density, flow and speed values are calculated in each 
point on the road, at any time. The results of the Galerkin 
finite element analysis are compared with that of the 
analytical method of characteristics.  

By the use of an analytical and numerical technique, block 
driving is simulated. A simulation with road length 5000 m, 
constant speed of 25 m/s, segment lengths of 100 m and time 
steps of 1 s results in accurate and fast numerical results. The 
difficulties with the numerical simulations appear at the 
discontinuities. This can be prevented by choosing the 
element size and time steps small enough. Using larger 
segment lengths and/or time steps can give inaccurate results. 
Using very small segment lengths and/or time steps can result 
in intensive simulations. 

Future research will concentrate on the application of the 
Galerkin FEM to the LWR model with non-constant speed. 
In such a case, the speed is a function of the density. The 
LWR model can also be extended to include social forces and 
resistances.  
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