
A New Hybrid Genetic and Simulated Annealing
Algorithm to Solve the Traveling Salesman Problem

Younis Elhaddad, Omar Sallabi

Abstract-- The Traveling Salesman Problem (TSP) is one of

the most widely known non- deterministic polynomial (NP-
hard) problems. It is used to check the efficacy of any
combinatorial optimization method, and is often used as a
testbed. This paper proposes a new Hybrid Genetic and
Simulated Annealing Algorithm (HGSAA) to solve the TSP.
The basic idea behind the proposed HGSAA is that the genetic
algorithm (GA) starts its process with its new techniques.
When it seems that the GA is stuck after 20 consecutive
generations, the hybrid algorithm switches the population to
the simulated annealing (SA) which allows uphill jumps to a
higher-cost solution in order to avoid getting trapped in local
minima. After several SA iterations; the new population is
returned to GA. The proposed algorithm was tested using
benchmark datasets for symmetric TSPs from TSPLIB, and it
provided good results within a reasonable time.

Keywords-- Genetic Algorithm, Simulated Annealing, and
Traveling Salesman Problem

I. INTRODUCTION

The TSP is stated as: for a given complete graph, G, with a
set of vertices, V, a set of edges, E, and a cost, c୧୨, associated
with each edge in E. T, where the value c୧୨ is the cost
incurred when traversing from vertex, i ∈ V to vertex, j ∈
 V, a solution to the TSP must return the cheapest
Hamiltonian cycle of G. Genetic algorithms and SA have
been used to solve optimization problems. Current GAs may
not produce optimal solutions, or if they do, they will not do
so within a reasonable time [1]. Simulated annealing
proceeds with only one candidate solution all the time, and
therefore does not build up an overall view of the search
space. In addition, it is sequential in nature, which makes it
slow. According to previous studies of the optimization
algorithms [2, 3], high-quality results cannot be obtained by
distinct algorithm within a reasonable time, especially with
large TSPs. Therefore, many researchers thought of
combining two or more algorithms in order to improve
solution quality and reduce execution time.

Younis Elhaddad, with Department of computer science Faculty of

information Technology, Garyounis University, Benghazi,
Libya,younis_hadded@garyounis.edu.

Omar Sallabi, with Department of computer science Faculty of
information Technology, Garyounis University, Benghazi, Libya,
Osallabi@garyounis.edu

 This paper introduces a new hybrid algorithm by
combining both the SA and GAs, in order to help each other
overcome their problems to obtain the best results in the
shortest time. The basic idea behind the proposed HGSAA
is to overcome the problem of GA when it is stuck at any
early local minima, by switching to SA, which has a better
chance of jumping over this problem with its hill-climbing
behavior.

II. GENETIC ALGORITHM

The basic principles of GAs were introduced by Holland
in 1975 [4]. The GA optimization and search technique
emerged from a study of biological evolution [3]. Genetic
algorithms operate on populations of potential solutions that
are referred to as chromosomes. Each chromosome
represents a set of parameters for a given problem. The
chromosomes are evaluated according to a fitness function
to select the best solutions for a recombination process,
which produces new chromosomes. The new, improved
chromosomes replace those with poorer solutions. In this
way, each new generation gets closer to the optimal
solution. This continues for many generations until the
termination condition is met. Mutations and different
combining strategies ensure that a large range of search
space is discovered [3].

III. SIMULATED ANNEALING ALGORITHM

Simulated annealing algorithm is a general-purpose
optimization technique that has been used to solve many
combinatorial optimization problems [5]. It can be described
formally as follows: start from a random solution x୮ , select
a neighboring solution x୬ and compute the difference in the
objective function values,

 ∆f ൌ fሺx୬ ሻ െ f൫x୮ ൯. If the objective function is
improved (∆f ൏ 0), then replace the present solution x୮ by
the new one x୬ ; otherwise accept the solution that decrease
the value of the objective function with a probability

pr ൌ 1/ሺ1 eି
∆
୲ ሻ

where pr is decreased as the algorithm progresses, and
where (t) is the temperature or control parameter. This
acceptance is achieved by generating a random number (nrሻ
where ሺ0 rn 1ሻ and comparing it against the threshold.
If pr then replace the current solution by the new , ݊ݎ
one. The procedure is repeated until a termination condition
is satisfied.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

IV. THE PROPOSED HYBRID ALGORITHM (HGSAA)

Unlike the classic GA, the HGSAA uses only two
individuals as a population. Where the hybrid algorithm
starts with a random population, it will be the input of the
GA, and multi-crossover is then applied to it to produce 60
different children. The fitness of the parents and their
offspring will be calculated, and depending on the results of
this calculation a new population will be selected that is the
same size as the original population. A partial local optimal
mutation operation will then be applied on one individual
(according to mutation probability) in order to improve its
fitness value. The rearrangement operation is also used on
the population; this process is continued until there is no
improvement in results after ten consecutive iterations. The
memorized population from GA which provides the best
result will then be transferred to the SA. The SA processes
will be used to improve the results by using the nearest
solution technique. If no improvement results are achieved
within ten consecutive iterations, then the best memorized
population from SA will be moved to the GA to repeat the
above process.

A. Multi-crossover operation

Crossover is the most important operation of GA because
it exchanges characteristics between the individuals, and
according to that many types of crossover operations are
used to produce offspring with different attributes in order to
build up an overall view of the search space. Multi-
crossover works as mentioned below:

The basic principle of this crossover is two random cut
points (pଵ and pଶ), a head, containing ሺ1,2… . . . , pଵ െ 1ሻ ,
the middle containing ሺpଵ, pଵ 1,… . . . , pଶሻ, and the tail
containing (pଶ 1, pଶ 2,… . . … , nሻ .The head and tail of
each parent are flipped, and then the head of the first parent
is swapped with the tail of the other parent, and vice versa.
For example, if the selected random two crossover points
are pଵ ൌ 4 and pଶ ൌ 7, and two parents tours are:

Parent1 -> 9 1 5 7 4 8 6 2 10 3

Parent1 -> 2 8 5 6 3 1 4 7 10 9

݉݅݀1 1݈݅ܽݐ

݄݁ܽ݀2 ݉݅݀2 2݈݅ܽݐ

݄݁ܽ݀1

 For a valid tour the elements of head2 and tail2 are
removed from the parent1 to give mid1

 1 4 6 3

In the same way, elements of head1 and tail1 are removed
from the parent2 to give mid2.

 8 6 4 7

Step 1: If the parts (head2, mid1, tail2) are reconnected
using all possible permutations, six different children can be
obtainedሺ3!ሻ.

child1 → 2 8 5 1 4 6 3 7 10 9

In the same way for (head1, mid2, tail1), six other children
are produced: i.e.

child2 → 9 1 5 8 6 4 7 2 10 3

Step 2: If the two heads are flipped, as in step 1, 12 new
different children are produced:

child3 → 5 8 2 1 4 6 3 7 10 9

݄݈ܿ݅݀4 → 5 1 9 8 6 4 7 2 10 3

Step 3: If the two tails are flipped and as in step 1, 12 new
different children are produced:

child5 → 2 8 5 1 4 6 3 9 10 7

݄݈ܿ݅݀6 → 9 1 5 8 6 4 7 3 10 2

Step 4: If the two mid are flipped and as in step 1; 12 new
different children are produced:

݄݈ܿ݅݀7 → 2 8 5 3 6 4 1 7 10 9

݄݈ܿ݅݀8 → 9 1 5 7 4 6 8 2 10 3

Step 5: If the two heads and tails are flipped and as in step
1, 12 new different children are produced:

݄݈ܿ݅݀9 → 5 8 2 1 4 6 3 9 10 7

 ݄݈ܿ݅݀10 → 5 1 9 8 6 4 7 3 10 2

In each step 12 children are produced; therefore 5 ൈ ሺ3!ሻ ൈ
2 ൌ 60 completely different children are produced from
just two parents.

B. Selection operation

Using the rank selection, the best two individuals are
selected for the next operations in order to reduce the
execution time.

C. Mutation

The inversion mutation operation is used here, where
random subtour is selected from the second individual then
is inversed.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

D. The Rearrangement operation

This operation is applied to both individuals. c୧,୨ is the cost
between the two adjacent cities city୧ and city୨ , where
i ൌ 1,2,3, … . , n െ 1 and j ൌ i 1, . The aim of this
operation is to find the greatest (max) value of c୧,୨ among all
the adjacent cities on the tour, and then swap city୧ with
three other cities, one at a time. These cities are located on
This operation works in a random matter, and while it may
not achieve any improvement after several iterations, it
might instead (or is just as likely to) take a big jump and
improve the result.

E. Partial local optimal mutation operation

In this operation, the subtour of individuals is selected
randomly within the range of

3 size of subtor ൏ n 4⁄ . We then find the tour that
produces the local minima of this subtour and exchange it
with the original subtour. This operation is undertaken on
one of the selected individuals after the mutation operation
is performed.

V. EXPERIMENTS AND RESULTS

We use instances that are 100 from TSPLIB [6] and used
by J. Zhang and C. Tong [7]; same number of generation for

each instance are used in order to compare both results of
HGSAA and local search heuristic genetic algorithms
(LSHGA) [3]. The HGSAA is implemented on a 3.4 GHz
Pentium® D CPU, 512 MB of RAM with Matlab 7.0. The
HGSAA was run for 10 trials corresponding to each
instance, and the summarized results are shown in Table 1,
where column 2 shows the known optimal solutions; column
3 shows the best result obtained by HGSAA; column 4
indicates the number of generations performed, with the
number of generations needed to obtain optimal result in
parentheses; Column 5 indicates the time in seconds used
for each instance, with the time to obtain optimal result in
parentheses; column 6 shows the average of the ten results
for each instance; column 7 shows the standard deviation of
the ten results for each instance; column 8 shows the error
ratio between the best result and the optimal, which is
calculated according to the following equation:

 ݎݎݎܧ ൌ
 ݐ݈ݑݏ݁ݎ ݐݏ݁ܤ െ ݈ܽ݉݅ݐ

 ݈ܽ݉݅ݐ
 ൈ 100.

For results at [7], of LSHGA are summarized at Table 2.
The notations, PS, CN, OS and error, denotes the
population size of the algorithm, the convergence iteration
number, the best solution of the LSHGA and the error
respectively; error are calculated according to above
equation.

Table 1. Results of HGSAA

Problem Optimal Best result Iteration Time Sec. Avg. St. dev. error

eil101 629 629 400 17(15) 632.9 2.8 0.

ch130 6110 6126 500 26 6146.7 14.8 0.6%

ch150 6528 6528 750 (292) 46(18) 6540.4 13.9 0

korA100 21282 21282 400 (171) 18 (7) 21319.8 32.5 0.

kroA150 26524 26524 800 (407) 53 (27) 26588.7 62.3 0.

kroA200 29368 29382 1100 85 29434.9 45.7 0.23%

Table 2. The result of solution with LSHGA

problem PS CN BS error
eil101 300 400 640 1.75%

ch130 350 500 6164 0.88%

ch150 400 750 6606 1.19%
korA100 300 400 21296 0.66
kroA150 450 800 26775 0.95%
kroA200 500 1100 29843 1.62%

From Table 1 and Table 2 it is clear that the HGSAA
performed better than the LSHGA. The HGSAA can find
optimal solution for four instances out of six, while LSHGA
cannot find an optimal solution for any of these six
instances. The error ratios in both tables indicate that
HGSAA is much better than LSHGA.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Fig 1. Performance of HGSAA for eil101 Fig 2. Best result for eil101 problem

Fig3. Performance of HGSAA for kroA200 Fig 4. Best result for kroA200

Fig.1 shows the performance of HGSAA for the eil101
problem and Fig.2 shows the best result for the eil101
problem; Fig.3 shows the performance of HGSAA for the
kroA200 problem, while Fig.4 shows the best result for the
kroA200 problem.

VI. CONCLUSION

In this paper a new hybrid algorithm (HGSAA) is
proposed with new heuristics techniques and operations which
improve the convergence rate of the algorithm with better
solutions to TSP compared with other algorithms. The
hybrid algorithm uses GA and SA, which switches the
population to SA in order to allow uphill jumps to a higher-
cost solution in order to avoid getting trapped in local
minima when the GA stuck after 20 consecutive
generations. The proposed hybrid algorithm has been tested
using benchmark datasets for symmetric TSPs from
TSPLIB, and provides good results within a reasonable
time.

REFERENCES

[1]. P. Larranaga, C.M.H. Kuupers, R.H. Murga, I. Inza and S. Dizdarevic.
"Genetic Algorithms for the Travelling Salesman Problem: A Review
of Representations and Operators," 1999.

[2] P. Merz and B. Freisleben. "Genetic Local Search for the TSP:New

results" in proceeding of the IEEE International Conference on
Evolutionary Computation, pp,159‐164,IEEE Press,1977.

[3] S. Ray, S. Bandyopadhyay and S.K. Pal. "Genetic operators for
combinatorial optimization in TSP and microarray gene ordering,"
Springer Science + Business Media, LLC, 2007.

[4] J. Holland "Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence," The University of Michigan Press, 1975.

[5] Y. Habib, M. Sait and H. Adiche, "Evolutionary algorithms, simulated
annealing and tabu search: a comparative study," Engineering
Applications of Artificial Intelligence 14, pp. 167-181, 2001

[6] TSPLIB: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

[7] J. Zhang and C. Tong. “Solving TSP with Novel Local Search
Heuristic Genetic Algorithms” Fourth International Conference on
Natural Computation IEEE 2008

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

