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Abstract-- The Traveling Salesman Problem (TSP) is one of 

the most widely known non- deterministic polynomial (NP-
hard) problems. It is used to check the efficacy of any 
combinatorial optimization method, and is often used as a 
testbed. This paper proposes a new Hybrid Genetic and 
Simulated Annealing Algorithm (HGSAA) to solve the TSP. 
The basic idea behind the proposed HGSAA is that the genetic 
algorithm (GA) starts its process with its new techniques. 
When it seems that the GA is stuck after 20 consecutive 
generations, the hybrid algorithm switches the population to 
the simulated annealing (SA) which allows uphill jumps to a 
higher-cost solution in order to avoid getting trapped in local 
minima. After several SA iterations; the new population is 
returned to GA. The proposed algorithm was tested using 
benchmark datasets for symmetric TSPs from TSPLIB, and it 
provided good results within a reasonable time. 
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I. INTRODUCTION 

The TSP is stated as: for a given complete graph, G, with a 
set of vertices, V, a set of edges, E, and a cost, c୧୨, associated 
with each edge in E. T, where the value c୧୨ is the cost 
incurred when traversing from vertex, i  ∈  V to vertex, j  ∈
 V, a solution to the TSP must return the cheapest 
Hamiltonian cycle of G. Genetic algorithms and SA have 
been used to solve optimization problems. Current GAs may 
not produce optimal solutions, or if they do, they will not do 
so within a reasonable time [1]. Simulated annealing 
proceeds with only one candidate solution all the time, and 
therefore does not build up an overall view of the search 
space. In addition, it is sequential in nature, which makes it 
slow. According to previous studies of the optimization 
algorithms [2, 3], high-quality results cannot be obtained by 
distinct algorithm within a reasonable time, especially with 
large TSPs. Therefore, many researchers thought of 
combining two or more algorithms in order to improve 
solution quality and reduce execution time.  
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  This paper introduces a new hybrid algorithm by 
combining both the SA and GAs, in order to help each other 
overcome their problems to obtain the best results in the 
shortest time. The basic idea behind the proposed HGSAA 
is to overcome the problem of GA when it is stuck at any 
early local minima, by switching to SA, which has a better 
chance of jumping over this problem with its hill-climbing 
behavior.  

 

II. GENETIC ALGORITHM 

The basic principles of GAs were introduced by Holland 
in 1975 [4]. The GA optimization and search technique 
emerged from a study of biological evolution [3]. Genetic 
algorithms operate on populations of potential solutions that 
are referred to as chromosomes. Each chromosome 
represents a set of parameters for a given problem. The 
chromosomes are evaluated according to a fitness function 
to select the best solutions for a recombination process, 
which produces new chromosomes. The new, improved 
chromosomes replace those with poorer solutions. In this 
way, each new generation gets closer to the optimal 
solution. This continues for many generations until the 
termination condition is met. Mutations and different 
combining strategies ensure that a large range of search 
space is discovered [3]. 

III. SIMULATED ANNEALING ALGORITHM 

Simulated annealing algorithm is a general-purpose 
optimization technique that has been used to solve many 
combinatorial optimization problems [5]. It can be described 
formally as follows: start from a random solution x୮ , select 
a neighboring solution x୬  and compute the difference in the 
objective function values, 

 ∆f ൌ fሺx୬ ሻ െ f൫x୮ ൯. If the objective function is 
improved (∆f ൏ 0), then replace the present solution x୮ by 
the new one x୬ ; otherwise accept the solution that decrease 
the value of the objective function with a probability  

pr ൌ 1/ሺ1  eି
∆
୲  ሻ 

where pr is decreased as the algorithm progresses, and 
where (t) is the temperature or control parameter. This 
acceptance is achieved by generating a random number (nrሻ 
where ሺ0  rn   1ሻ and comparing it against the threshold. 
If   pr   then replace the current solution by the new , ݊ݎ
one. The procedure is repeated until a termination condition 
is satisfied. 
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IV. THE PROPOSED HYBRID ALGORITHM (HGSAA) 

Unlike the classic GA, the HGSAA uses only two 
individuals as a population. Where the hybrid algorithm 
starts with a random population, it will be the input of the 
GA, and multi-crossover is then applied to it to produce 60 
different children.  The fitness of the parents and their 
offspring will be calculated, and depending on the results of 
this calculation a new population will be selected that is the 
same size as the original population. A partial local optimal 
mutation operation will then be applied on one individual 
(according to mutation probability) in order to improve its 
fitness value. The rearrangement operation is also used on 
the population; this process is continued until there is no 
improvement in results after ten consecutive iterations. The 
memorized population from GA which provides the best 
result will then be transferred to the SA. The SA processes 
will be used to improve the results by using the nearest 
solution technique. If no improvement results are achieved 
within ten consecutive iterations, then the best memorized 
population from SA will be moved to the GA to repeat the 
above process.  

A. Multi-crossover operation 

Crossover is the most important operation of GA because 
it exchanges characteristics between the individuals, and 
according to that many types of crossover operations are 
used to produce offspring with different attributes in order to 
build up an overall view of the search space. Multi-
crossover works as mentioned below: 

The basic principle of this crossover is two random cut 
points (pଵ and  pଶ), a head, containing ሺ1,2… . . . , pଵ െ 1ሻ , 
the middle containing ሺpଵ, pଵ  1,… . . . , pଶሻ, and the tail 
containing ( pଶ  1, pଶ  2,… . . … , nሻ .The head and tail of 
each parent are flipped, and then the head of the first parent 
is swapped with the tail of the other parent, and vice versa. 
For example, if the selected random two crossover points 
are  pଵ ൌ 4 and pଶ ൌ 7, and two parents tours are: 

 

 

Parent1 ->      9     1     5     7     4     8     6     2    10     3 

 

Parent1 ->       2     8     5     6     3     1     4     7    10     9 

݉݅݀1   1݈݅ܽݐ

݄݁ܽ݀2  ݉݅݀2  2݈݅ܽݐ

݄݁ܽ݀1 

 For a valid tour the elements of head2 and tail2 are 
removed from the parent1 to give mid1 

 

    1 4 6 3 

In the same way, elements of head1 and tail1 are removed 
from the parent2 to give mid2. 

 

    8 6 4  7 

Step 1: If the parts (head2, mid1, tail2) are reconnected 
using all possible permutations, six different children can be 
obtainedሺ3!ሻ.  

child1   → 2      8       5      1       4       6       3       7     10     9 

In the same way for (head1, mid2, tail1), six other children 
are produced:  i.e.   

child2   → 9      1      5        8       6     4      7      2      10       3 

Step 2: If the two heads are flipped, as in step 1, 12 new 
different children are produced: 

child3   → 5      8       2      1       4       6       3       7     10     9 

݄݈ܿ݅݀4   → 5      1      9        8       6     4      7      2      10       3 

Step 3: If the two tails are flipped and as in step 1, 12 new 
different children are produced: 

child5     → 2      8       5      1       4       6       3       9     10     7  

݄݈ܿ݅݀6   → 9      1      5        8       6     4      7      3      10       2 

Step 4:  If the two mid are flipped and as in step 1; 12 new 
different children are produced:  

݄݈ܿ݅݀7   → 2      8       5      3       6       4       1       7     10     9 

݄݈ܿ݅݀8   → 9      1      5        7       4     6      8      2      10       3 

Step 5: If the two heads and tails are flipped and as in step 
1, 12 new different children are produced: 

݄݈ܿ݅݀9   → 5      8       2      1       4       6       3       9     10     7 

 ݄݈ܿ݅݀10   → 5      1      9        8       6     4      7      3      10       2  

In each step 12 children are produced; therefore 5 ൈ ሺ3!ሻ ൈ
2 ൌ  60 completely different children are produced from 
just two parents. 

B. Selection operation 

Using the rank selection, the best two individuals are 
selected for the next operations in order to reduce the 
execution time. 

C. Mutation 

The inversion mutation operation is used here, where 
random subtour is selected from the second individual then 
is inversed. 
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D.  The Rearrangement operation 

This operation is applied to both individuals. c୧,୨  is the cost 
between the two adjacent cities city୧   and city୨ , where 
i  ൌ  1,2,3, … . , n െ 1 and j ൌ  i  1, . The aim of this 
operation is to find the greatest (max) value of c୧,୨ among all 
the adjacent cities on the tour, and then swap city୧  with  
three other cities, one at a time. These cities are located on 
This operation works in a random matter, and while it may 
not achieve any improvement after several iterations, it 
might instead (or is just as likely to) take a big jump and 
improve the result. 

E. Partial local optimal mutation operation 

In this operation, the subtour of individuals is selected 
randomly within the range of  

3    size of subtor  ൏  n 4⁄ . We then find the tour that 
produces the local minima of this subtour and exchange it 
with the original subtour. This operation is undertaken on 
one of the selected individuals after the mutation operation 
is performed. 

V. EXPERIMENTS AND RESULTS 

We use instances that are  100 from TSPLIB [6] and used 
by J. Zhang and C. Tong [7]; same number of generation for 

each instance are used in order to compare both results of 
HGSAA and local search heuristic genetic algorithms 
(LSHGA) [3]. The HGSAA is implemented on a 3.4 GHz 
Pentium® D CPU, 512 MB of RAM with Matlab 7.0. The 
HGSAA was run for 10 trials corresponding to each 
instance, and the summarized results are shown in Table 1, 
where column 2 shows the known optimal solutions; column 
3 shows the best result obtained by HGSAA; column 4 
indicates the number of generations performed, with the 
number of generations needed to obtain optimal result in 
parentheses; Column 5 indicates the time in seconds used 
for each instance, with the time to obtain optimal result in 
parentheses; column 6 shows the average of the ten results 
for each instance; column 7 shows the standard deviation of 
the ten results for each instance; column 8 shows the error 
ratio between the best result and the optimal, which is 
calculated according to the following equation: 

 

 ݎݎݎܧ ൌ
 ݐ݈ݑݏ݁ݎ ݐݏ݁ܤ െ ݈ܽ݉݅ݐ 

 ݈ܽ݉݅ݐ
 ൈ  100. 

For results at [7], of LSHGA are summarized at Table 2. 
The  notations, PS, CN, OS and error, denotes the 
population size of the algorithm, the convergence iteration 
number, the best solution of the LSHGA and the error 
respectively; error are calculated  according to above 
equation. 

 

Table 1. Results of HGSAA 

Problem  Optimal  Best result  Iteration Time Sec. Avg.  St. dev. error

eil101  629  629  400 17(15) 632.9  2.8  0.

ch130  6110  6126  500 26 6146.7  14.8  0.6%

ch150  6528  6528  750 (292) 46(18) 6540.4  13.9  0

korA100  21282  21282  400 (171) 18 (7) 21319.8  32.5  0.

kroA150  26524  26524  800 (407) 53 (27) 26588.7  62.3  0.

kroA200  29368  29382  1100 85 29434.9  45.7  0.23%

 

Table 2. The result of solution with LSHGA 

problem  PS  CN BS  error
eil101 300 400 640 1.75% 

ch130 350 500 6164 0.88% 

ch150 400 750 6606 1.19% 
korA100 300 400 21296 0.66 
kroA150 450 800 26775 0.95% 
kroA200 500 1100 29843 1.62% 

 

 

 

From Table 1 and Table 2 it is clear that the HGSAA 
performed better than the LSHGA. The HGSAA can find 
optimal solution for four instances out of six, while LSHGA 
cannot find an optimal solution for any of these six 
instances. The error ratios in both tables indicate that 
HGSAA is much better than LSHGA. 
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Fig 1.  Performance of HGSAA for eil101                Fig 2. Best result for eil101 problem 

                 

Fig3.  Performance of HGSAA for kroA200                                       Fig 4. Best result for kroA200 

Fig.1 shows the performance of HGSAA for the eil101 
problem and Fig.2 shows the best result for the eil101 
problem; Fig.3 shows the performance of HGSAA for the 
kroA200 problem, while Fig.4 shows the best result for the 
kroA200 problem. 

VI. CONCLUSION 

In this paper a new hybrid algorithm (HGSAA) is 
proposed with new heuristics techniques and operations which 
improve the convergence rate of the algorithm with better 
solutions to TSP compared with other algorithms. The 
hybrid algorithm uses GA and SA, which switches the 
population to SA in order to allow uphill jumps to a higher-
cost solution in order to avoid getting trapped in local 
minima when the GA stuck  after 20 consecutive 
generations. The proposed hybrid algorithm has been tested 
using benchmark datasets for symmetric TSPs from 
TSPLIB, and provides good results within a reasonable 
time. 
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