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Abstract - This paper illustrates the vibration analysis of flapping 

wing MAV, using FEM analysis. The wing is modeled using beam 

and membrane elements. The wing’s natural frequencies are 

computed by modeling the membrane as plate without pre tension 

and initial bending. Whole wing geometry is modeled and analyzed 

using eBeam26 and ePlate36
2
. The code for FEM analysis and 

finding the mode shapes is written in Matlab with the help of guide 

lines provided in reference-1. Aerodynamic loads used in the FEM 

analysis are derived from modified strip theory based on blade 

elemental analysis for semi-elliptical wing
3
. Moreover the wing is 

also modeled in ANSYS and mode shapes are also found. Finally 

modes shapes obtained from both software are compared. 

I. INTRODUCTION 

The growing interest in unmanned aircraft, especially for 

surveillance in constrained areas, has triggered much research in 

the area of micro air vehicles (MAVs). Sensors and actuators are 

becoming smaller and smarter, enabling new aircraft designs. 

MAVs offer the potential to fly reconnaissance missions in 

constrained areas, which are difficult for larger aircraft to 

accomplish. Their small size allows them to navigate in tight 

corners at low speeds and blend in with their surroundings. The 

opportunity exists to build low cost systems that can hover or 

take off in short distances, generate less noise, and be quickly 

deployed in the field4 . 

      In 1997, the Defense Advanced Research Projects Agency 

(DARPA) initiated a program to develop and test MAVs for 

military surveillance and reconnaissance missions. DARPA 

defined the MAV in terms of size, gross weight, and payload – 

requiring that the maximum dimension in any direction be no 

greater than 15 cm, the gross weight should not exceed 100 

gram, with up to 20 gram devoted to payload, and the MAV 

should be able to reach altitudes of up to 100m. These MAVs 

took the form of fixed-wing, rotary-wing, and flapping-wing 

configurations, among others. Most operated below chord-based 

Reynolds numbers of 100,000, where conventional aerodynamic 

theories are inadequate. The Reynolds number is a ratio of 

inertial to viscous aerodynamic forces used to characterize flight 

regimes. 

Re = Inertial forces/Viscous Forces 

DARPA’s current MAV initiative is the Advanced Concept 

Technology Demonstration phase, which seeks to further 

develop practical MAV systems for military use. Whereas the 

initial phase focused on individual components in MAV flight, 

the current phase focuses on technologies that will allow MAVs 

to accomplish missions in restricted environments with 

autonomous or semi-autonomous control. These technologies 

focus on navigation, communications, and multi-task 

subsystems, particularly because MAV missions could require 

navigation inside building, in densely populated areas, or in 

mountainous terrain, caves, or heavily forested areas. Other 

MAV mission might include sensor dispersal, border 

surveillance, electronic jamming, communications, counter-

drug operations, mine detection, mine detection, and biological 

and chemical agent detection. 

II. MATHEMATICAL DERIVATIONS 

Governing equations are to be derived using the extended 

Hamilton principle, which states that1&2  

……..(1) 

where t is the time, δ T is the variation of kinetic energy, δΠ is 

he variation of elastic energy, and δWnc  is the variation of 

non-conservative work due to aerodynamic loads. 

Beam Deformed Reference Line &Initial curvatures 

For a naturally curved and twisted beam, three coordinate 

systems are needed for describing its deformation, as shown in 

Fig. 1. The system xyz is an orthogonal curvilinear coordinate 

system, where the axis x denotes the undeformed reference line 

of the beam and s is the undeformed arc length from the root of 

the beam to the reference point on the observed cross section. 

The system abc is a rectangular coordinate system attached to 

the beam root and is used for reference in calculating initial 

curvatures. Moreover, the system ξηζ is a local orthogonal 

curvilinear coordinate system, where the axis ξ represents the 

deformed reference line and the axes η and ζ represent the 

deformed configurations of the axes y and z if the cross section 

does not warp. Moreover, ix, iy, and iz are unit vectors 

undeformed reference line of the beam and s is the undeformed 

arc length from the root of the beam to the reference point on 

the observed cross section. The system abc is a rectangular 

coordinate system attached to the beam root and is used for 

reference in calculating initial curvatures. Moreover, the system 

ξηζ is a local orthogonal curvilinear coordinate system, where 

the axis ξ represents the deformed reference line and the axes η 

and ζ represent the deformed configurations of the axes y and z 

if the cross section does not warp. Moreover, ix, iy, and iz are 

unit vectors along the axes x, y, and z, respectively; ia, ib, and ic 
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are unit vectors along the axes a, b, and c, respectively; and i1, i2, 

and i3 are unit vectors along the axes ξ, η, and ζ, respectively. It 

can be shown that [2] 

,  where  

 (2) 

where [ (s)] is a known transformation matrix relating the 

coordinate systems abc and xyz, [k(s)] is the initial curvature 

matrix, ()′ ≡ ∂() / ∂s, k1 is the initial twisting curvature, and k2 

and k3 are the initial bending curvatures. Moreover, the 

deformed coordinate system ξηζ and the undeformed coordinate 

system xyz are related by the transformation matrix [T] as 

  

 

……(3) 

Where 

 ,  , ……(3a) 

 

……….(3b) 

, 

  

 

 

Deformed Curvatures 

Here, u, v, and w are the displacements of the reference point on 

the observed cross section with respect to the axes x, y, and z, as 

shown in Fig. 1. Moreover, φ is an Euler angle related to the 

twisting angle of the observed cross section with respect to the 

deformed reference axis ξ , and e is the axial strain along the 

axis ξ . It follows from (3) that T2i and T3i can be represented in 

terms of ,   ,  , and φ , as shown in Eq. (3b). 

Differentiating Eq. (3) with respect to s and using Eq. (2) and 

yields 

,  

 

where is the deformed twisting curvature and and are the 

deformed bending curvatures. Note that are not real curvatures 

because the differentiation is with respect to the undeformed 

differential length ds, instead of the deformed length (1+ e)ds . 

Using Eqs. (4), (3), and (2), one can show that 

  

 

 
     …………        (5) 

For a geometrically exact beam theory, fully nonlinear stress-

strain and strain-displacement relations are given by2 

, ,  &   

, ,  

 

 

 

,  

 

  

 

where Jij are Jaumann stresses, Bij are Jaumann strains, E is 

Young’s modulus, G is the shear modulus, and  and are 

transverse shear strains. 

Membrane 

For an initially curved membrane, three coordinate systems are 

also needed for describing its deformation, as shown in Fig. 4. 

The system xyz is an orthogonal curvilinear coordinate system 

with the curvilinear axes x and y being on the undeformed 

reference surface and the z axis being a rectilinear axis. The 

system abc is a rectangular coordinate system used for 

reference purpose in the calculation of initial curvatures. The 

system ξηζ is a local orthogonal curvilinear coordinate system 

with the curvilinear axes ξ and η being on the deformed 

reference surface and the ζ axis being a 

rectilinear axis. Moreover, j1, j2 , and  j3 are unit vectors along 

the axes x, y, and z, respectively; ia, ib, and ic are unit vectors 

along the axes a, b, and c, respectively; and i1, i2, and i3 are unit 

vectors along the axes ξ, η, and ζ, respectively. For a 

geometrically exact membrane theory, fully nonlinear stress-

strain and strain-displacement relations are given by [1,2] 

, , ,             (7) 
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                    (7a) 

,  

, ,         

, ,  

Here ν is Poisson’s ratio,   are initial curvatures, u, v,w are 

displacement components of an arbitrary point on the reference 

plane, and ux ≡ ∂u / ∂x, uy ≡ ∂u / ∂y , etc. It can be shown that 

the variations of extension strains and and shear strain 

on the reference plane of the membrane are given 
1 

 ,   

 

 

,   

                                    

 

 

 

 

For both beam and membrane elements, it follows from Eqs. (6), 

(7a,b), and (8) that 
 

,                                   (9)  

Where 

Beam   

(9a) 

Membrane:           (9b) 

The way the components of {U} are approximated defines a 

specific finite element. Using the finite-element discretization 

scheme, one can discretize the displacements as 

Beam:  where …………(10) 

                         

Membrane:  and 

 

where is the displacement vector of the jth beam element 

and  is a 6×18 matrix of 1D shape functions, and  is the 

displacement vector of the jth membrane element and  is a 

3×9 matrix of 2D shape functions. Substituting Eq. (10) into 

Eqs. (9a,b) yields 

Beam:  and                              (10a) 

Membrane:  and             (10b) 

where[∂1] is a 15× 6 matrix and  [∂2]is a 9×3 matrix 

consisting of differential operators. For beams, the variation of 

elastic energy is given by 

Beam:  

 ,                 (11) 

,  

Where V is the volume, N e is the total number of elements, 

 j]is the length of the jth element, and  is the stiffness 

matrix of the jth beam element. For membranes, the variation 

of elastic energy is given by 

Membrane: 

 

,            (12) 

where N e  is the total number of elements,  is the area of the 

jth element, and  is the stiffness matrix of the jth 

membrane element. 

The variation of kinetic energy is given by 
                                               (13) 

where ρ is the mass density. Only translational inertias are 

included because rotary inertias are assumed to be negligible 

for the thin rods and membranes used in an MAV. It follows 

from Eq. (18) that the variation of non-conservative energy due 

to aerodynamic loads is given by 

                                                                (14) 

where  r1 , r2 , and  r3 are distributed external loads per unit area 

along the axes x, y and z , respectively.  is the elemental 

nodal loading vector, and {R}is the structural nodal loading 

vector. Furthermore, 

              (15) 

 

III.  RESULTS AND FIGURES 

 

Before doing the analysis in the Matlab and ANSYS we have 

to carry out the initial sizing of the ornithopter. Based on the 

span of the ornithopter, initial parameters can be calculated 

from following empirical formulae 5:- 

      

             

     

     

For an ornithopter with span of 40 cm, the calculated initial 

value of flapping frequency is 6.96 Hz to 7.97 Hz and AR is 

6.84 to 7.25.  The selected root chord is 8 cm, which gives AR 

just above 6.2, because the above equations are just initial 

guess. 

A MATLAB code has been written for Elliptical wing 

model2.In this code eBeam26 and ePlate 362 are used and linear 

analysis is done. Modal analysis is done and Mode shapes are 

obtained. This code has 8 inputs namely a) Linear Analysis b) 

Modal Analysis c) Element d) Number of natural Frequencies 

(7b) 

(6) 

   (8) 
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to be computed e) Mode shape plotting f) Mode number g) 

Magnification factor h) Frequency response function. There are 

also some options for plotting results like i) Original undeformed 

geometry  ii) Mode shapes.   

The same wing is analyzed in ANSYS using Beam188 and 

Shell181 elements. Modal/analysis is done and these modes are 

compared with those obtained in Matlab.  

Fig 1: Coordinate system and displacement variables for initially 

curved beam 

Fig 2: In this figure wing geometries modeled in Ansys and Matlab 

are shown. Upper geometry shown is undeformed geometry modeled in 

ANSYS and the lower one is the same modeled in Matlab 

. 

 

 

 

Fig 4: In this figure second vibration mode shape is shown which 

is obtained through both software ANSYS and Matlab. Upper mode 

shape of this figure is the second vibration mode obtained in ANSYS 

at 2.74Hz and lower one is the same mode obtained in Matlab at 1.98 

Hz. There is little frequency difference between the modes obtained 

from the two software. This difference can be minimized by refining 

the codes further as a future work 

. 

Fig 3: First vibration modes obtained from ANSYS and Matlab 

are presented in this figure. Upper mode shape of this figure is the 

first vibration mode obtained in ANSYS at 0Hz and lower one is 

the same mode obtained in Matlab at 0 Hz. 
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Fig 5: In this figure third vibration mode of wing has been shown 

found through both ANSYS and Matlab software. Upper mode shape 

shown in this figure is third vibration mode found in ANSYS at the 

frequency 5.01 Hz whereas lower one is the same mode shape found in 

Matlab at 6.325 Hz frequency. Both bending and torsional modes are 

visible in these mode shapes. 
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Fig 6: In this figure sixth vibration mode of wing has been shown 

which has been obtained in both software ANSYS and Matlab. Mode 

shape shown in the upper of this figure is that obtained in ANSYS at 

10.42 Hz frequency where as lower one is the same mode shape found 

in Matlab at 9.82 Hz frequency. Both bending and torsional modes are 

visible in these mode shapes. 
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