
 

 

 

 

Abstract—Rescue teams must effectively cooperate despite 

sensing and communication limitations in order to save lives and 

minimize damage in RoboCup Rescue, which is a simulation of 

urban disasters. This paper describes the main features of the 

Persia 2007 rescue simulation team that was qualified to take 

part in RoboCup 2007 competitions in USA and ranked 10th at 

final competitions. We have explained Persia 2007 Agents’ 

Architecture, their decision making behavior, and their 

prediction strategies. We describe the major challenges each of 

the agent types should be concerned about in the RoboCup 

Rescue Simulation domain. Then, we have proposed our 

solutions based on either algorithms or machine learning 

techniques for each challenge. Our machine learning techniques 

are mostly based on Learning Automata that have been used in 

some parts of our agents’ development. 

 
Index Terms— Coordination, Disaster Prediction, Learning 

Automata, Multi-Agent Systems, RoboCup Rescue Simulation. 

 

I. INTRODUCTION 

  RoboCup Rescue Simulation is an excellent multi-agent 

domain which includes heterogeneous Agents that try to 

cooperate in order to minimize damage in a disaster. These 

Agents must have effective cooperative behavior despite 

incomplete information. In fact, the main goal in this domain 

is minimizing the damage by helping trapped agents, 

extinguishing fiery collapsed buildings, and rescuing 

damaged civilians. 

 To reach to this goal, agents must be flexible. It means that 

they should be able to work in different (even center-less) 

situations efficiently and make best decisions coordinated 

with each other. Decision making in such a domain is very 

complex, because each agent type has some limitations, e.g. 

agents‟ limited field of view, limited communication 

bandwidth, limited water quantity, and etc. We have tried to 

implement flexible agents despite these problems. 

In a highly dynamic disaster situation as in RoboCup 

Rescue domain, it is a crucial capability of rescue teams to 

predict future states of the environment as precisely as 

possible. To do so, we have designed new prediction methods 

in our agents‟ long-term plans and short-term reactions. One 

of the most important predictions in such a domain is to 

 
Manuscript received February 4, 2010.  

M. R. Khojasteh is with the Computer Engineering Division, College of 

Engineering, Islamic Azad University – Shiraz Branch, Shiraz, Iran (phone: 

+98-917-305-5001; e-mail: khojasteh@iaushiraz.ac.ir).  

A. Kazimi is with Persian Nice Dreams Company, Shiraz, Iran (e-mail: 

akazimi@pndream.com). 

predict how disasters evolve over time, e.g. how the fire 

spreads in the city. As a result of running different simulations 

and by using either machine learning methods (to determine 

fire spread rate) or their results‟ classification and data mining 

(to predict each injured civilian‟s dead-time), we have tried to 

create some predictions in this dynamic domain. 

Persia 2007 is based on its previous versions [12][13] 

which has taken part in last two World RoboCup 

Competitions (2005 in Osaka-Japan and 2006 in 

Bremen-Germany). Some of the main ideas behind Persia 

2007 team are investigating and evaluating machine learning 

methods based on Learning Automata [8] and Cellular 

Learning Automata [5][9] among others in cooperating agents 

in a team which could act in a complex multi-agent domain. 

Learning automata act in a stochastic environment and are 

able to update their action probabilities considering the inputs 

from their environment, so optimizing their functionality as a 

result. And each Cellular Learning Automata is made of a 

cellular automata [10] in which each cell is equipped with one 

or more learning automata that identify the state of this cell. 

Also, because of the large state space of a complex 

multi-agent domain, it is vital to have a method for 

environmental states‟ generalization. We have devised some 

ideas based on technique called “The Best corner in State 

Square” that we had used successfully before [3] in parts of 

some simulations for generalizing the vast number of states in 

agents‟ environment to a few number of states. 

Some of these ideas had been used in other simulated 

multi-agent domains like RoboCup Soccer2D Simulation 

domain [1][2][4] and trade networks [5][9] prior to RoboCup 

Rescue Simulation domain. We have started to implement 

similar ideas in RoboCup Rescue Simulation domain from 

2005 and have extended our use of Learning Automata-based 

machine learning techniques in much more parts of our 

simulated team comparing to what we had done before 

[12][13]. 

In this paper, we will talk a bit about our agents‟ 

multi-layered architecture that we propose to simplify their 

decision making process, their skills and action selection, 

their disaster prediction via learning, and their coordination. 

However, we‟ve tried to concentrate on our learning 

approaches to our agents‟ major challenges more than the 

other parts. 

 

II.  AGENT SKILLS AND ACTION SELECTION 

Agents in the rescue simulation environment should be able 

Agent Coordination and Disaster Prediction in 

Persia 2007, A RoboCup Rescue Simulation 

Team based on Learning Automata 

Moahammad R. Khojasteh, and Aida Kazimi 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

to do a series of actions based on some limited information 

that they gain via vision or communication. In order to design 

and implement flexible agents such that they can act with high 

performance in different and hard (and even center-less) 

situations we have designed and implemented a layered 

architecture.  

Our layered architecture consists of three layers including 

skills layer, event handler layer, and high level strategy layer 

and it can be shown as a whole in figure 1.  

We have used the basic idea for layered learning in [6] and 

also we have added our own ideas to design this 3-layer 

architecture. We explain the role of each layer briefly. 

 

 

Fig. 1. Persia Agents’ Architecture. 

A. Skills Layer 

 In this layer we have defined some skills for each agent, 

based on its type (besides the skills that all agents have in 

common). This layer provides low level skills and facilities 

for higher level layers. Some of these skills are general like 

moving, sensing, saying, and hearing. But some of these skills 

have been specialized based on the agent‟s type, e.g. 

extinguishing for fire brigade agents, rescuing and loading 

for ambulance team agents, and clearing for police force 

agents.  

B. Event Handler Layer 

In this layer we have designed and implemented the more 

complex decisions that each agent makes regarding its current 

conditions, events, and situations. At first we consider all the 

situations that each agent can be in, and then we predict all the 

actions that each agent might do in those situations. Then we 

use a simple finite state machine (FSA) in order to determine 

the agent‟s action in each event.  

It must be considered that this layer is still a low level 

decision maker layer comparing to the high level strategy 

layer and agents just choose (and perform) some simple 

actions (not complex ones as in the strategy level) in this 

level. Some examples of simple decision makings possible in 

this layer are extinguishing a fire when positioned well next to 

it, going to refuge when getting damaged or running out of 

water in tanks, path finding for which we have used a method 

based on Dijkstra shortest path algorithm that was first 

implemented by SOS team [7], and searching to find injured 

civilians. 

 Cooperation of agents in groups is accomplished through 

some high level decisions that are made in the next layer. 

C. High Level Strategy Layer 

In this layer, we have provided the more complex decisions 

(comparing to the above) that cause a typical agent to become 

a member of a group and work in it. In this layer we have tried 

to build a virtual environment in the agent‟s memory by 

considering the messages and the commands that are received 

from other agents, so that the agent could be able to know 

what has happened in the other points of the city.  

It must be considered again that in this layer, our agents 

don‟t have to handle low level events in the environment. 

Also, they generally know what has happened in their 

environment. So, in this layer, each agent knows how many 

groups have been formed to work in the environment and 

what are they going to do (and of course where they are now 

and/or where they will be in the near future). 

This high level information, simplifies the designing and 

implementing our machine learning methods (mostly based 

on Learning Automata). 

In order to describe our approach for action selection, e.g. 

how our agents decide about the priority and selection of 

actions while facing the disaster, we have explained our Fire 

Brigades‟ approach as an example. 

Fire brigades have an important role in preventing fire 

spread in the city and in rescuing civilians‟ lives. To 

extinguish fires, fire brigades should from groups to act more 

efficiently. In our approach, fire station forms such groups 

and assigns sufficient number of fire brigades to each fiery 

zone. Fiery zone is defined as a group of neighboring burned 

buildings. After these assignments, each group goes on his 

work and each fire brigade decides itself which fiery buildings 

in its allocated area must be extinguished first to prevent fire 

spread. This decision is based on building‟s danger. By 

danger we mean the potential damage a building might have if 

it catches fire. We experienced that building‟s danger formula 

in [12] should be substituted with new formula in some parts, 

as follows: 

 

)1log(1

1
1

1

V

Vu




            (1) 

 

Where Vu is the building‟s vulnerability [12] and V is the 

building‟s volume, which affects building‟s vulnerability. 

 

))1log(1( n

neighborsn

n IVuS  


        (2) 

 

Where I is building‟s infectivity [12]. 

On the other hand, the potential buildings for burning are 

the buildings which are neighbor to at least one of the border 

buildings of a fiery zone. The border of a fiery zone is defined 

to the set of all ignited buildings for which there is at least one 

unburned building in their neighborhood as depicted in figure 

2. 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

 

Fig. 2. A fiery zone and its border buildings, which are marked with white 

points. 

Actually, our fire brigades extinguish the boundary 

buildings, which are more dangerous in each fiery zone first in 

order to stop the spread of existent fire to other unburned 

buildings. This way, they try to achieve a higher final 

performance.  

Moreover, some other parameters such as the distance 

between a fire brigade and a candidate target (i.e. a fiery 

building), the number of civilians which are threatened by the 

fire, and at last the candidate target reach-ability, have direct 

effects on fire brigades‟ decisions in order to select their final 

target. 

 

III. DISASTER PREDICTION 

 The most important disaster prediction that we have 

implemented in our team is fire spread rate prediction by 

using Cellular Learning Automata. We have also predicted 

the injured civilians‟ dead-times with our data-mining 

techniques. 

One of the well-known Learning Automata algorithms that 

we have used extensively is Lrp [1][2][3][4][14]. It can be 

explained by the following code fragment when a Learning 

Automata wants to update its action probabilities based on the 

response it has received from its environment and regarding 

the Lrp learning algorithm [8][13][14]. In writing this 

fragment we have assumed that we deal with 8 discrete states, 

we use one Lrp in each of these states, and we have 8 possible 

actions for each Lrp in any instant. Also, r (the response) = 0 

when the automata receives a penalty and r = 1 when the 

automata receives a reward. The factor 0.1 in this code 

fragment shows the amount of increase/decrease for these 8 

action probabilities too. 

 
for ( int i = 0; i < 8; i++ ) { 

   if ( i != myLastAction ) { 

    probability[myStateInLastAction][i] 

    += (1 - r) * (0.1) * ((1.0 / 7.0) – 

    probability[myStateInLastAction][i])  

    - r * ( 0.1 ) *  

    (probability[myStateInLastAction][i]); 

 } 

} 

probability[myStateInLastAction][myLastActi

on] -=  

(1 - r) * (0.1) * 

probability[myStateInLastAction][myLastActi

on] + r * (0.1) * (1 - 

probability[myStateInLastAction][myLastActi

on]); 

 

We explain our prediction methods in the next sections. 

A. Fire Spread Rate Prediction 

After earthquake, some buildings catch fire in some 

different parts of the city. Naturally, fire will spread in the city 

in all directions and threat civilians‟ life if not controlled well. 

So, predicting fire spread rate is one of the most useful and at 

the same time difficult prediction in RoboCup Rescue 

Simulation System. We had proposed an approach for 

predicting fire spread rate, based on CLA method, for the first 

time in [12] although it had some defects. In Persia 2007 we 

have tried to refine it and make it more a practical and 

efficient approach. 

It‟s obvious that we need to have some distinct states in our 

CLA method as in any other machine learning method. So, we 

have selected some parameters that seem to be important in 

order to define our states. These parameters consist of: 

 VolumeBi, it represents Bi’s volume (Bi is one of the 

environment’s buildings). 

 F, it represents the average fieriness of Bi’s neighbors 

 T, it represents the total temperature of Bi’s neighbors  

 Vbn, it represents the average volume of Bi’s burning 

neighbors 

 Vtotal, it represents the average volume of all Bi’s 

neighbors 

 Ibn, it represents the average infectivity [12] of Bi’s 

burning neighbors. 

Then, we have defined a relationship between the above 

mentioned parameters as follows: 

 

iB

total

bn

bn

Volume

T
V

V
IF  ))((

            (3) 

 

We have divided the range between the experimental 

minimum and the experimental maximum values of the 

function above to 10 equal regions. Then we assigned each 

region to one state. So, at any instant in the simulation and by 

calculating the above function, we are put in a unique state. 

For each state, we equip an Lrp Learning Automata 

[1][2][3][4][14] with 2 actions. By running a lot of different 

simulations and after convergence, our Lrp learns the 

probability of a building‟s being burnt depending on the 

above parameters (which include the important parameters in 

that building itself and also in its neighbors). 

After going to the next cycle, the mentioned Lrp can give 

itself reward (if it had predicted correctly) or penalty (if it had 

predicted incorrectly). 

B. Injured civilians’ dead-times Prediction 

We are trying to estimate each injured civilian‟s dead-time 

by using some data-mining methods with the factors HP, 

Damage, and Buried-ness as its inputs. 

 

IV. COORDINATION AMONG AGENTS 

We have categorized agents‟ coordination based on agents‟ 

types. 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

A. Fire Station and Fire Brigades 

We have categorized fire brigades‟ coordination based on 

being centralized or decentralized. 

The Centralized Approach. In our approach, the Fire 

Station tries to assign an efficient number of fire brigades to 

each fiery zone. Unfortunately, the number and the position of 

fiery zones change in every simulation and also we do need 

several cycles to detect all the fiery zones. 

First, our Fire Station should know the minimum necessity 

(i.e. minimum number of fire brigades) to assign to each fiery 

zone. We plan to use another Lrp Learning Automata in order 

to find this. In this Lrp, we can generalize its states for each 

fiery zone using the following parameters: 

 Proportion of the average volume of fiery zone border to 

the average volume of the whole fiery zone 

 The average danger of fiery zone’s unburned buildings 

 Proportion of the average fieriness of fiery zone border to 

the average fieriness of the whole fiery zone 

Again, we divide the range between the experimental 

minimum and the experimental maximum values to 10 equal 

regions. Then we assign each region to one state. For each 

state, we should equip a Lrp with some actions. We let our 

learning actions be assigning the minimum number of fire 

brigades with average water (i.e. half of the maximum amount 

of water one fire brigade might have). 

As a scenario for learning, we start some offline 

simulations with some different fiery zones (but just one fiery 

zone in each simulation). The center identifies the state of this 

fiery zone by mentioned parameters. Then, it looks to the 

corresponding Learning Automata in that state and assigns 

some (in the beginning of the simulation, it could be one or 

some predetermined number of) fire brigades to that fiery 

zone. If they could extinguish and control the fire by the end 

of simulation time, the station gives itself reward. But if not, it 

will give itself penalty, and so the probability that one more 

fire brigade will be assigned to the same fiery zone‟s state (by 

the station), is increased. 

Doing so and after a lot of simulations, our Learning 

Automata would be able to assign the minimum number of 

fire brigades (with average water) in each state that a typical 

fiery zone is in. 

Second, our Fire Station uses machine learning, but not like 

the method we used last year in [12] in order to find the best 

formation to assign a group to each fiery zone. Last year we 

tried to minimize all possible actions to just 3 types of actions. 

In the first type, all agents will be assigned to only one fiery 

zone at one time. The second type, assigns agents as 

distributed groups so that every detected fiery zone will have 

at least one fire brigade assigned. And the last type, assigns 

agents in groups, but there might be some detected fiery zones 

without any fire brigades allocated to them. From our 

simulations we experienced that the second type can not be 

efficient. Therefore in this year‟s approach, we have just 2 

action types and each type consists of 4 different actions as 

follows: 

1. Assign agents from the highest priority (zones) to the 

lowest priority (zones) in a preemptive manner. By 

preemptive, we mean the agents will leave their zone, if 

another preferable fiery zone has been detected at any 

instant. 

2. Assign agents from the highest priority (zones) to the 

lowest priority (zones) that is calculated with their 

priorities calculated above in a non-preemptive manner. 

By non-preemptive, we mean when agents are assigned 

to one fiery zone, they won’t leave there till they have 

finished their job at that assigned fiery zone 

(extinguishing the fire completely). 

3. Assign agents from the lowest priority (zones) to the 

highest priority (zones) in a preemptive manner. 

4. Assign agents from the lowest priority (zones) to the 

highest priority (zones) in a non-preemptive manner. 

5. Divide agents from the highest fiery zone’s minimum 

necessity (i.e. the minimum number of fire brigades 

necessary) to lowest fiery zone’s minimum necessity 

and assign them in a preemptive manner. 

6. Divide agents from the highest fiery zone’s minimum 

necessity to lowest fiery zone’s minimum necessity and 

assign them in a non-preemptive manner. 

7. Divide agents from the lowest fiery zone’s minimum 

necessity to highest fiery zone’s minimum necessity and 

assign them in a preemptive manner. 

8. Divide agents from the lowest fiery zone’s minimum 

necessity to highest fiery zone’s minimum necessity and 

assign them in a non-preemptive manner. 

Consequently, Fire Station will find the best formation for 

each situation (state) after many simulations and assigns fire 

brigade agents. After these assignments each group goes on 

its work and each fire brigade decides itself which fiery 

buildings in its allocated area must be extinguished first to 

prevent fire spread. 

The Decentralized Approach. In center-less situations or if 

our Fire Station crashed, one of our fire brigades will be 

chosen as a leader and does the Fire Station‟s task. 

B. Ambulance Center and Ambulance Teams 

We have categorized ambulance teams‟ coordination based 

on being centralized or decentralized. 

The Centralized Approach. Ambulance Teams are 

responsible for rescuing and saving the lives of the victims 

that are buried under the debris caused by the collapse of 

buildings. Their way of operation directly affects the number 

of civilians in the city whose lives can be saved after the 

happening of the disaster. No doubt this is the most important 

goal of a rescue team. It seems that Ambulance Team agents 

must work in some formed groups in order to be more 

effective instead of working altogether. But our previous 

experiences show that in early cycles of the simulation, 

working individually might be more efficient. 

Our Ambulance Team's strategy is based on its previous 

version [12] with some new changes as the results of our 

previous simulations‟ analysis. Like the previous approach in 

[12], we have divided the whole simulation time into two 

major phases for our Ambulance Team agents. But the way 

our agents act in each phase is somewhat changed. 

In the first phase of the simulation (i.e. in its early cycles), 

Ambulance Teams have limited moving capability because of 

the relatively high number of the blocked roads in the city. 

Our Ambulance Teams worked together in this phase last year 

[12], but this year we have concluded that the Ambulance 

Center must prepare (and update) a list of the best targets (i.e. 

injured civilian) that are recognized by now to each one of the 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

Ambulance Teams. Each one of the ambulance agents will 

then look into its list to find the first reachable target 

considering its location. 

The second phase of the simulation will start as soon as 

more blockades have been cleared by Police Forces. After a 

lot of random simulations and analyzing their results, we 

finally decided that Ambulance Teams should do their rescue 

job in some groups that have been formed based upon the 

number of required ambulances for each injured civilian. This 

is actually the last option, which we proposed previously in 

[12]. In order to calculate the number of required ambulances 

for rescuing a target, the Ambulance Center calculates 

buried-ness and dead-time for each injured civilian as in [12] 

and then assigns Ambulance Teams to the targets with the 

highest priorities. In this way, the Ambulance Center tries to 

coordinate Ambulance Teams in order to reach the best 

possible result. 

It is known that selecting the best target is the most 

important task for Ambulance Team agents in RoboCup 

Rescue Simulation and maybe the most important targets to 

rescue are trapped agents. When there are no other trapped 

agents left, now it‟s the time for the Ambulance Center to 

prepare separate lists of the best targets (i.e. injured civilian) 

that are recognized by now for each one of the Ambulance 

Teams regarding their position. We have used a simple 

approach using a greedy algorithm to choose the best target by 

estimating civilians' dead-times for this case. It is necessary to 

say that by an injured civilian‟s dead-time we mean the 

remaining time left to the time of his death in case of no rescue 

operation. 

The Decentralized Approach. In center-less situations our 

Ambulance Teams should select a leader with a simple voting 

mechanism. This leader then goes either to the Fire Station or 

to the Police Office and tries to communicate with them by 

saying and hearing the information. In fact we have replaced 

the Ambulance Center with this leader who assigns the 

Ambulance Teams to their targets and leads them during the 

simulation in a way similar to what the center did before. 

C. Police Office and Police Forces 

We have categorized police forces‟ coordination based on 

being centralized or decentralized. 

The Centralized Approach. Last year we used some 

strategies based on Learning Automata [1][2][3][4] by police 

forces to clear the blocked roads. Our agents tried to learn 

how to find the most important blockade roads, and how to 

help other agents like Ambulance Teams or Fire Brigades. 

By using our methods [12], police agents can find the most 

important blockades and clear them. But as the result of the 

analysis we had after the competition, we found out that in 

some occasions our Police Forces try to clear some roads that 

are not so important or strategic (e.g. a road that doesn‟t lead 

to any civilian, fiery building, refuge or trapped agent). 

Consider a situation in which a Police Force agent opens a 

road that leads to the position of a civilian. Meanwhile an 

Ambulance Team agent, far from the mentioned civilian, is 

going to move towards him. There should obviously be some 

open roads leading to him at this instant, but due to 

incomplete information about blockades and open roads, the 

Ambulance Team agent does not know which path is open and 

has to test the roads that result from its path finding module 

one by one. This try and error method to find an open path 

towards the civilian causes that the Ambulance Team agent 

loses some cycles in this phase and so these agents lose their 

performance. These situations mostly happen in the first 

cycles of the simulation. 

So this year we decide to reduce the time which agents lose 

in the first cycles of the simulation due to some problems like 

the one mentioned above. To solve this problem we have 

decided to find the more important paths (called highways) 

that act as bridges between the most important parts of the city 

(called regions). To find these highways we use algorithms as 

in [11]. 

It‟s necessary to mention that our overall approach is much 

like our last year‟s as in [12] in center-based situations. In 

center-less situations, we have proposed a new variation of 

our last year‟s center-based approach in [12] that we will 

describe in the following section. 

The overall scenario can be explained like this: at the 

beginning of the simulation we assign some number of the 

Police Force agents to clear the highways. So in the first 

cycles of simulation whenever each agent wants to travel from 

one region to another, it at first tries to reach itself to the 

nearest highway. Then it moves through the highways to reach 

to the region which its target is located in. Inside the region, 

agents use normal path planning to move towards their target. 

   The Decentralized Approach. In center-less situations, we 

should provide a different approach. In our center- based 

approach [12], each police agent needs to be aware of other 

police force positions in order to do an action. In that 

approach police center transfers each police force‟s position 

to the other police forces, so after a very short time police 

forces can receive the information they need. 

In the center-less situations police agents can‟t send their 

position to each other in each cycle because of the 

communication limitations, so it seems that the previous 

approach does not work efficiently in center-less situations. 

Because of this problem we have designed and implemented 

another approach for center-less situations. 

In this approach a police agent will act as a commander. 

This commander assigns jobs to police agents. 

At first, the entire city is divided in to four major parts and 

each of these major parts is subdivided into 20m*20m cells as 

shown in figure 3. 

 

Fig. 3. A typical city divided virtually into 20(m)*20(m) cells. 

We have chosen 20m*20m cells because agents are able to 

see everything in the radius of 10 meters from themselves. So, 

almost the whole square should be visible for an agent that is 

in it. For each police force, we assume a virtual attraction 

vector pulls it towards the position of each of the following 

items: 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

 Fiery buildings 

 Refuges 

 Trapped agents 

 Fire brigades’ and ambulances’ important requests 

The magnitude of each vector is conversely proportional to 

the distance between the above mentioned items and the 

police force, multiplied by a constant coefficient. 

Coefficients are different based on the type of each item. 

These coefficients were chosen just by experimental data 

mining in this center-less approach. 

Because of process time restrictions, we have considered 

no attraction vectors towards blocked roads. Instead, we have 

considered attraction vectors towards the centers of each cell 

(from the police forces) in addition to the above mentioned 

vectors. The magnitude of this vector is conversely 

proportional to the distance between the police force‟s 

position and the center of each cell. Also the coefficient for 

this magnitude is directly proportional to the number of roads 

inside the cell. It‟s obvious that after assigning a police agent 

to a cell, we will eliminate its corresponding vector. Also, if a 

path toward a refuge or fiery building was opened, its 

corresponding vector will be ignored thereafter. 

The commander calculates the resultant vector for each 

police agent. Naturally the resultant vector points to one of the 

four major parts of the city. We call this part as the active part. 

Then the commander assigns a police force to one of the cells 

of this active part via an Lrp [1][2][3][4][14] Learning 

Automata. 

Thereafter, police agent begins to clear the roads of the 

allocated cell. Since the commander knows the police forces‟ 

work areas, it is able to calculate the resultant vector of each 

police agent easily. The commander considers the center of 

the cell which the police force works in as the police‟s 

position. Then calculates the resultant vector with the 

procedure above and assigns this police force to another cell. 

This way, the commander determines polices‟ next jobs. 

After this process (determining polices‟ next jobs) is done by 

the commander, the new job is sent for police agents. The 

commander also gives such information to every police force 

in each cycle. On the other hand, police forces save the 

commands which were sent form the commander each cycle. 

Each police force extracts the latest commander command 

after finishing its job in its allocated cell and then it begins to 

accomplish it. Each police force informs its position (its cell) 

to the commander during opening the roads. 

We have again used a Learning Automata to determine the 

next cell that the police force should clear. The commander 

should learn which one of the cells is most important to clear. 

The rewards and penalties for the commander are given 

regarding the allocated cell. As an example, if there is a 

trapped agent in one of the cells but the police agent was 

assigned to a cell which doesn‟t have any special item in (like 

trapped agents or fiery buildings), the commander will get 

penalty. 

 

REFERENCES 

[1] M.R. Khojasteh, and M.R. Meybodi, “Evaluating Learning Automata 

as a Model for Cooperation in Complex Multi-Agent Domains,” in 

Gerhard Lakemeyer, Elizabeth Sklar, Domenico Sorenti, and Tomoichi 

Takahashi (eds.): RoboCup-2006: Robot Soccer World Cup X, 

Springer-Verlag, Berlin, 2007, pp. 410-417.  

[2] M.R. Khojasteh, and M.R. Meybodi, “Using Learning Automata in 

Cooperation among Agents in a Team,” in Proceedings of the 12th 

Portuguese Conference on Artificial Intelligence, IEEE Conference 

Publication Program with ISBN 0-7803-9365-1 and IEEE Catalog 

Number 05EX1157, University of Beira Interior, Covilhã, Portugal, 

2005, pp. 306-312. 

[3] M.R. Khojasteh, and M.R. Meybodi, “The technique “Best Corner in 

State Square” for generalization of environmental states in a 

cooperative multi-agent domain,” in Proceedings of Eighth 

International Annual Computer Conference of Computer Society of 

Iran (CSICC'2003), Mashhad, Iran, 2003, pp. 446-455. 

[4] M.R. Khojasteh, “Cooperation in multi-agent systems using Learning 

Automata,” M.Sc. thesis, Department of Computer Engineering and 

Information Technology, Amirkabir University of Technology, 2002.  

[5] M.R. Khojasteh, and M.R. Meybodi, “Cellular Learning Automata as a 

Model for Trade Networks in a Space of Agents who Learn by Doing,” 

in Proceedings of Sixth International Annual Annual Computer 

Conference of Computer Society of Iran (CSICC'2001), Isfahan, Iran, 

2001, pp. 284-295. 

[6] P. Stone, “Layered Learning in Multi_Agent Systems,” PhD. Thesis, 

School of Computer Science, Carnegie Mellon University, 1998. 

[7] S.A. Amraii, B. Behsaz, M. Izadi, H. Janzadeh, F. Molazem, A. 

Rahimi, M.T. Ghinani, and H. Vosoughpour, “S.O.S. 2004: An 

attempt towards a multi-agent rescue team,” Team Description Paper, 

2004. 

[8] K.S. Narendra, and M.A.L. Thathachar, Learning Automata: An 

Introduction, Prentice Hall, Inc., 1989. 

[9] M. Taherkhani, “Proposing and Studying of Cellular Learning 

Automata as a Tool for Modeling Systems,” M.Sc. thesis. Department 

of Computer Engineering and Information Technology, Amirkabir 

University of Technology, 2000. 

[10] S. Wolfrom, Theory and Application of Cellular Automata, Singapore: 

World Scientific Publishing Co., Pte. Ltd., 1986. 

[11] S.B.M Post, and M.L. Fassaert, “A communication and coordination 

model for „RoboCupRescue‟ agents,” M.Sc. thesis, Department of 

Computer Science, University of Amsterdam, 2004. 

[12] A. Kazimi, and M.R. Khojasteh, “Persia 2006, Towards a Full 

Learning Automata-Based Cooperative Team,” in Proceedings of the 

First Regional Conference of Computer Science and Engineering 

(RCCSE’2009), Shiraz, Iran, 2009, pp. 87-99. 

[13] M.R. Khojasteh, H. Heidari, and F. Faraji, “Persia 2005 Team 

Description,” Team Description Paper, 2005, unpublished. 

[14] M.A.L. Thathachar, and P. Sastry, “A New Approach to the Design of 

Reinforcement Schemes for Learning Automata,” IEEE Transactions 

on Systems, Man, and Cybernetics, Vol. SMC-15, No. 1, 1985. 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010




