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Abstract—A coalition is a set of self-interested agents that agree 

to cooperate for achieving a set of goals. Coalition formation is an 

active area of research in multi-agent systems nowadays. Central 

to this endeavour is the problem of determining which of the 

many possible coalitions to form in order to achieve some goal, 

which is called coalition structure generation. Coalition structure 

generation problem is extremely challenging due to the number 

of possible solutions that need to be examined, which grows 

exponentially with the number of agents involved. Generally, 

agents would enumerate all possible coalitions, store them in 

memory, and then try to construct the coalition structure that 

maximizes the sum of the values of the coalitions. However, this is 

not feasible when we have a large number of agents, and other 

constraints on execution time, and memory. Hence, there is a 

need to develop an algorithm that can generate solutions rapidly 

for large number of agents while can provide bounds on the value 

of solution as well. With this in mind, we propose two new 

heuristics, namely LocalSearch and GreedySearch, for 

generating the coalition structure, which satisfy these properties. 

We empirically show that these heuristics are able to return 

‘good-enough’ solutions in very short time. They enhance the 

performance of state of the art algorithm, IP (proposed by [12]) 

in terms of increased lower bound, anytime property, and 

solution quality. Furthermore, we implemented different 

heuristics for selecting a sub-space in the IP algorithm and show 

how the time required to find a good-enough solution depends on 

the selection of a sub-space in the IP algorithm.  

 

Index Terms—Multi-agent systems, Coalition formation, 

Coalition structure generation, Heuristics   

 

                                          I. INTRODUCTION 

    Cooperation among agents is an important keystone in 

Multi-Agent Systems (MAS), which enables them to solve a 

problem efficiently. Agents cooperate in many economic 

milieus on issues of common interest, which results in the 

formation of coalition [1]. For this purpose, agents need to 

determine the optimal set of agents with whom to enter into a 

coalition (i.e. the best grouping of agents). This problem is 

formally referred to as the Coalition Structure Generation 

(CSG) problem. 

 

 

 

 

   

   Suppose that we are given set of agents 1,2, …… 𝑛 𝜖 𝐴, and 

the value of a coalition , s, is specified by a characteristic 

function v(.). Then the value of the coalition structure (CS) is: 

 

𝑉 𝐶𝑆 =  (𝑣𝑠)

𝑆 𝜖  𝐶𝑆

 

 

Generally, the goal is to maximize the social welfare by 

discovering the optimal coalition structure [2]. 

 

CS* = arg 𝑚𝑎𝑥𝑆∈𝐶𝑆  𝑉(𝐶𝑆)  

 

    Finding the optimal coalition structure is very challenging 

as the computational complexity of finding the optimal 

coalition structure is exponential
1
 in the number of agents and 

is shown to be NP-hard [3]. To date, a number of algorithms 

have been proposed to solve CSG problem, but there has been 

less work on algorithms that can generate good-enough 

solutions quickly. In this paper, we propose new heuristics to 

solve this problem and show how good-enough solution can 

be generated, while balancing the properties, such as 

execution time and memory. 
 

 II. RELATED WORK 

 

     Existing literature defines various CSG algorithms that can 

be classified into three main classes: Dynamic Programming 

(DP) based algorithms, heuristic based algorithms, and 

anytime algorithms [4]. Dynamic programming algorithms 

generate optimal solution (i.e. optimal coalition structure) with 

minimal computational complexity. They provide a guarantee 

on the performance of the algorithm in the worst-case 

scenarios. [5], [6], [7] develop DP based algorithms but these 

algorithms can not be used for large number of agents (>20). 

Heuristic based algorithms are not designed to find the optimal 

solution; rather their focus is on finding good solutions. In this 

context, [8] employ an order-based genetic algorithm (OBGA) 

as a stochastic search process to discover the optimal coalition 

structure. The main limitation of this algorithm is that, it 

provides no guarantee about finding the optimal CS, and it 

                                                           
1 The number of coalition structure grows in O(𝑛𝑛 ) with the number 

of agents [3]. 
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cannot specify any bounds on the quality of the optimal CS.  

[9] developed a greedy algorithm, which takes only coalitions 

up to a certain size into consideration. Its limitation is that it 

provides no guarantee on the quality of its solutions compared 

to the actual optimal. Anytime algorithms return an initial 

solution, and then improve on the quality (and establish better 

bound gradually) of the solution as they search more of the 

space. In this context, [3] proposed an anytime algorithm that 

can establish a bound on quality of the solution, however, the 

algorithm has to search entire search space, to generate a 

guaranteed optimal solution
2
 and the bounds provided by the 

algorithm are not valuable for practical use. Based on this 

concept, [10] proposed another anytime algorithm that can 

also establish a bound on the quality of solution but employ 

different searching mechanism and have the same demerits. 

[11, 12] proposed a state of the art anytime algorithm, IP, but 

again it has to search entire space in order to generate an 

optimal solution.  

 

  III. BACKGROUND: INTEGER PARTITION GRAPH 

AND IP ALGORITHM 

 

     In [12] the authors proposed an efficient search space 

representation that can be used for finding the optimal solution 

efficiently. They called this representation Integer Partition 

Graph. In this representation, they partitioned the search space 

𝑝 by defining sub-spaces that contain coalition structures that 

are similar according to the ‗integer partitions‘
3
 of the number 

of agents. This can be defined by a function 𝐹:  𝖕G , where 

G is the set of integer partition of n. Then they defined a pre-

image (or inverse image) of an integer partition G as follows: 

 

𝑃𝐺 =  𝐹−1  𝐺  . 
 

    Each pre-image, which represents a sub-space in the integer 

partition graph, encloses all the coalition structures 

corresponding to the same integer partition G.   

 

    Fig. 1 shows an integer partition graph for 4 agents. We 

observe that sub-spaces have been categorized into levels, 

based on the number of parts within the integer partitions. In 

general, we have n levels, where n is the number of agents. 

Each level, 𝖕𝑖  comprises of all the sub-spaces that correspond 

to an integer partition with 𝑖 parts.  

 

     Given this representation, they computed the Upper Bound
4
 

(UB) and Lower Bound
5
 (LB) in each sub-space 𝑃𝐺  as follows: 

Let 𝐿𝑠 be the list of coalitions of size s, and let  

                                                           
2 i.e. bound=1 
3 Integer partition of n is a multiset of positive integers that add up to 

exactly n. 
4 UB places an upper limit on the value of the optimal solution, i.e.  

no coalition structure in a sub-space can have value greater than its 

UB.  
5 LB places a lower limit on the value of the optimal solution, i.e.  the 

solution at worse will be greater than or equal to this LB. 

 
 
Fig. 1: Example of the integer partition graph for 4 agents [12].      

 

𝑚𝑎𝑥𝑠 , 𝑚𝑖𝑛𝑠 and 𝑎𝑣𝑔𝑠  be the maximum, minimum, and 

average value of the coalition in 𝐿𝑠 respectively. 

Now given an integer partition G, let 𝑇𝐺  be the Cartesian 

product of the lists 𝐿𝑠 : 𝑠 𝜖 𝐺, i.e. 

𝑇𝐺  =   (𝐿𝑠 )
𝐺(𝑠)

𝑠 𝜖  𝐺
, 

 

where G(s) is the multiplicity of s in G. 

 

    Now consider the value 𝑀𝐴𝑋𝐺   obtained by adding the 

maximum value of each element (i.e. coalition list) in 𝑇𝐺  . 

Formally, it can be represented as follows: 

 

𝑀𝐴𝑋𝐺 =   𝑚𝑎𝑥𝑠 𝑠 𝜖  𝐺  × G(s) . 

 

    This value is an upper bound on the best coalition structure 

in 𝑃𝐺  . Now the average value of all the solutions in 𝑃𝐺  , 

denoted by 𝐴𝑉𝐺𝐺  , can be computed immediately after 

scanning the input, by adding the averages of the coalition lists 

in 𝑃𝐺  . If we consider G=  𝑔1 , 𝑔2, … , 𝑔|𝐺|   as an integer 

partition, and 𝑎𝑣𝑔𝑔𝑖   as the average of the values of all 

coalition in 𝐿𝑔𝑖 , then it can be computed as follows
6
: 

 

𝐴𝑉𝐺𝐺  =  𝑎𝑣𝑔𝑔𝑖  
𝐺
𝑖=1 . 

 

    Furthermore, they argued that it is better to specify 𝐴𝑉𝐺𝐺  as 

lower bound. The reason behind this is that one can prune a lot 

of search space by improving the LB
7
 and average value of a 

sub-space is usually better than the minimum value.  

 

    Two main steps that IP requires in order to search the space 

using this representation are, 

a. Scanning the input in order to compute the bounds (i.e. 

𝑀𝐴𝑋𝐺  and 𝐴𝑉𝐺𝐺 ) for every subspace 𝑃𝐺  . 

 

                                                           
6 For proof of this theorem, refer to [12]. 
7Our heuristic (LocalSearch) improves the LB of IP drastically. 
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b. Selecting and searching within the remaining sub-

spaces—we can apply different selection functions within 

this step (discussed in next section). 

 

    To get the unbiased performance evaluation of IP with other 

state of the art algorithms, they tested it under different 

distributions. They used the normal, uniform, and NDCS
8
 

(Normally Distributed Coalition Structures) input distribution, 

and benchmarked it against the other state-of-the-art algorithm 

IDP. The results are shown in fig. 2. 
 

 
Fig. 2: The time required to find the optimal solution for IDP and IP under 

NDCS, Normal, and Uniform Distributions [12]. IDP was found to be 15 

times slower than IP.  

 

    They showed that IP was faster than IDP in finding the 

optimal coalition structure. Furthermore, they noted that IP 

was slower in finding the solution in the case of NDCS
9
.  

 

                      IV. PROPOSED HEURISTICS 

 

A. LocalSearch Heuristic 

      We assume that the input to coalition structure generation 

algorithm is the value associated to each coalition, v(C), where 

C 𝜖 2𝐴/{𝜙}. We further assume that input is given as follows: 

C 𝐿𝑠  ∀𝑠 𝜖 {1,2, … . . 𝑛} and v 𝐿𝑠  ∀𝑠 𝜖 {1,2, … . . 𝑛}, where 

C 𝐿𝑠  is a list containing the coalitions and v 𝐿𝑠  is a list 

containing the values of all the coalitions of size s. 

     

    Now we define some notations. Let max (𝑣 (𝐿𝑠)) be the 

maximum value present in a list of value 𝑣(𝐿𝑠). Let MAX 

consists of memory locations
10

, that contain the maximum 

values (i.e. max (𝑣 (𝐿𝑠))) from each list of values present in G. 

Furthermore, let 𝑉𝑀𝑎𝑥   be the maximum value present in MAX 

                                                           
8 See appendix A. 
9 Our heuristics are more successful in this case. 
10 Its size is equal to the size of corresponding integer partition that 

we want to search, i.e., |MAX|= |G|. 

(i.e. 𝑉𝑀𝑎𝑥 = max(𝑀𝐴𝑋)), 𝐿𝑀𝑎𝑥  be the list of coalition that 

contains this value 𝑉𝑀𝑎𝑥 , and 𝐶𝑀𝑎𝑥  be the coalition that 

corresponds to the value 𝑉𝑀𝑎𝑥 . 

  

    Like IP algorithm we first scan the value of coalition of size 

n (called grand coalition), scan the values of coalitions of size 

1 (called singleton coalition), and search the level 2 (i.e. 𝔭2). 
At this point, we can compute the best solution found so for. 

Then we run LocalSearch heuristic that computes a good-

enough solution.  

 

    The pseudo code of the LocalSearch heuristic can be 

outlined as follows: 

 
 

Algorithm: LocalSearch()—Scans input, generates CS, and 

improves the LB of IP. 

Input: C 𝑳𝒔  ∀𝒔 𝝐 {𝟏,𝟐, … . . 𝒏}, v 𝑳𝒔  ∀𝒔 𝝐 {𝟏, 𝟐, … . . 𝒏}, set of 

agents (A =  𝒂𝟏, … , 𝒂𝒏 ), an integer partition (G=  𝒈𝟏, 𝒈𝟐, … , 𝒈|𝑮| ). 

Output: coalition structure, value of the coalition structure, time 

required to generate the coalition structure. 

 

1. Set solution= ―‖, value=0 

2. end= |G|   // Size of G                 

3.  t1=start timer; 

 

//Loop until we finish finding a valid solution. In each iteration, 

we pick the maximum possible coalition value from all available 

coalitions in that sub-space 

4. While (end>=1)      

 

//From step 5 to 7 we load lists into memory, pick maximum 

value of each list, and store these maximum values in an array 

MAX 

5. Get lists of coalitions, C 𝑳𝑮 , from A  

6. Get lists of values, v 𝑳𝑮 , corresponding to C 𝑳𝑮   

7. Get the maximum value present in each list of value and store 

them in an array MAX, i.e. MAX= [max (𝒗(𝑳𝒈𝟏)), 

max(𝒗(𝑳𝒈𝟐),….. max (𝒗(𝑳𝒈|𝑮|))]   //pick maximum value from 

each list of values in G 

 

//From step 8 to 10, we find the maximum value 𝑽𝑴𝒂𝒙, from 

MAX array and pick the coalition 𝑪𝑴𝒂𝒙 which corresponds to 

this value 

8. Get element, 𝑽𝑴𝒂𝒙, which has the maximum value in MAX, 

i.e. 𝑽𝑴𝒂𝒙= max(MAX) 

9. Find index of  𝑽𝑴𝒂𝒙 in MAX and find corresponding list, 𝑳𝑴𝒂𝒙   

from G, which contains this element  𝑽𝑴𝒂𝒙    //find out the list 

which contains this maximum value, 𝑽𝑴𝒂𝒙 

10. Search for the coalition, 𝑪𝑴𝒂𝒙, which has value 𝑽𝑴𝒂𝒙, in 

corresponding list  𝑳𝑴𝒂𝒙 

 

//In step 11 and 12, we add 𝑽𝑴𝒂𝒙 and 𝑪𝑴𝒂𝒙 in solution value 

and solution respectively 

11. Value = value+ 𝑽𝑴𝒂𝒙                 //add coalition value  

12. Solution = solution + 𝑪𝑴𝒂𝒙        //add coalition 

 

// From step 13 to 17, we update  (except in last iteration) MAX, 

G, and A 

13. If !(end ==1)                             

14. Update MAX: set all element of MAX to zero, 

and  set |MAX|= |MAX| -1 

15. Update G: delete 𝑳𝑴𝒂𝒙 from G, and set |G| = |G| -1 

16. Update A: A= A\𝑪𝑴𝒂𝒙 
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17. End if 

18. end =end -1;   //update loop counter 

19. End while       

20. t2=stop timer; 

21. Return (solution, value, t2-t1)                  

 

 

     

    At start, we pick up the integer partition G, and load its list 

of coalitions and values in memory (step 5 and 6). Then we 

find the maximum value from each list and store these values 

in an array, MAX (step 7). Now we find the maximum 

value, 𝑉𝑀𝑎𝑥 , from this array and get the coalition list, 𝑳𝑀𝑎𝑥  

,that contains this value. From this list, we find the 

coalition, 𝑪𝑀𝑎𝑥  that corresponds to this maximum value (step 

8 to 10). Then, we store this value, and the corresponding 

coalition (step 11 and 12). At end, we update MAX array by 

decreasing its dimension by one and initializing by zeros, 

update our agent set
11

 which ensure that we generate only the 

valid coalition structure, and update G by deleting the list, 

𝑳𝑀𝑎𝑥 , from memory (step 13 to 17). We repeat this process 

until we finish searching the possible maximum values from 

all the lists in G, and then return our solution, corresponding 

value, and searching time. 

B. GreedySearch Heuristic 

      This heuristic is greedy because it starts by discovering the 

coalition that has the highest value among all the input 

coalitions. Then it finds all possible integer partitions that can 

go with this value. Afterwards, it chooses integer partition 

according to the following selection criteria: chooses integer 

partition that has the highest average utility, chooses integer 

partition that has the highest UB, and chooses integer partition 

that has the highest sum of average and UB. Next, we feed 

these integer partitions to the LocalSearch heuristic. In this 

way, we guarantee that we can come up with a good solution 

at low cost. 
 

    Now we define some notations. Let 𝑉𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥  be the 

highest value among all the input values,  𝐶𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥  be the 

coalition which corresponds to the value 𝑉𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 ,     

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥  encloses all the integer partitions, which 

contain |𝐶𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 | as an element, and 𝐼𝑃𝑠𝑖𝑧𝑒  (Where size≤

 |𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑝𝑎𝑐𝑒𝑀𝑎𝑥 | ) is such an integer partition. 

     

    The pseudo code of GreedySearch heuristic can be outlined 

as follows: 
 

Algorithm: GreedySearch()— Generate solution quickly. 

Input: C 𝑳𝒔  ∀𝒔 𝝐 {𝟏,𝟐, … . . 𝒏}, v 𝑳𝒔  ∀𝒔 𝝐 {𝟏, 𝟐, … . . 𝒏}, set of 

agents (A =  𝒂𝟏, … , 𝒂𝒏 ), Set of possible Integer Partition (G = 

 𝑮𝟏, 𝑮𝟐, … , 𝑮𝒏 ). 
Output: solution,  value of solution, time required to generate the 

solution. 

 

1. Set solution[]= ―‖, value[]=0.0, utility[]=0.0 , 

conspicuousNode[]=0, time[]=0; //creates 3 instances: [0] for 

                                                           
11 This step is very crucial and is required to save resources. Further 

details can be found in [4]. 

the highest UB, [1] for highest average, and [2] for highest (UB 

and average) 

2. t1=start timer; 

 

//From step 3 to 7, we find the maximum value in the space and 

determine all the sub-spaces which contain this value 

3. Get lists of coalitions, C 𝑳𝓰 , from A  

4. Get lists of values, v 𝑳𝓰  corresponding to C 𝑳𝓰  

5. Find value, 𝑽𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙, which is the maximum value among all 

the values in v 𝑳𝓰  

6. Get coalition, 𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙, corresponding to 𝑽𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙 

7. Get all integer partitions which can go with |𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙| as first 

element and store them in 𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙, i.e. 

𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙={ [ |𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙|, … ],…, [|𝑪𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙|, ….]} 

= { [𝑰𝑷𝟏 ], [ 𝑰𝑷𝟐 ], …. }, where 𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙 𝝐 G 

 

 //From step 8 to 23, we discover the sub-space which can at 

expectation give us good enough solution 

8. end= |𝑷𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏𝑺𝒑𝒂𝒄𝒆𝑴𝒂𝒙|, size=1 

9. Set conspicuousNode [0]= conspicuousNode 

[1]=conspicuousNode [2]=𝑰𝑷𝟏 ; 
10. while (size <= end)  

11. Iterate through, 𝑰𝑷𝒔𝒊𝒛𝒆 , from second to last element  

 

//we skip first element, as we know that it will be there in every 

solution 

12. compute UB, LB, and UB + LB  

13. If utility[0] < UB  

14. utility[0] = UB, conspicuousNode[0] = 𝑰𝑷𝒔𝒊𝒛𝒆       

15. end if 

 

    //Update the IP which contains highest sum 

16. If utility[1] < LB  

17. utility[1] = LB, conspicuousNode[1] = 𝑰𝑷𝒔𝒊𝒛𝒆            

18. end if 

 

//Update the IP which contains highest average 

19. If utility[2] < UB+LB 

20. utility[2] = UB+LB, conspicuousNode[2] = 𝑰𝑷𝒔𝒊𝒛𝒆   

21. end if 

 

//Update the IP which contains highest sum 

22. size++;   //Update loop counter 

23. end while 

 

 //From step 24 to 30, we call the LocalSearch algorithm with 

the selected integer partition 

24. (solution[0], value[0], time[0]) := LocalSearch (v 𝑳𝑮 , 

C 𝑳𝑮 , 𝑨, 𝐜𝐨𝐧𝐬𝐩𝐢𝐜𝐮𝐨𝐮𝐬𝐍𝐨𝐝𝐞[𝟎])  
25. If   (conspicuousNode[1] != conspicuousNode[0]) 

26. (solution[1], value[1], time[1]) := LocalSearch (v 𝑳𝑮 , 

C 𝑳𝑮 , 𝑨, 𝐜𝐨𝐧𝐬𝐩𝐢𝐜𝐮𝐨𝐮𝐬𝐍𝐨𝐝𝐞[𝟏]) 
27. End if //This step ensures that we are not going through same 

integer partition twice 

28. If  ( (conspicuousNode[2] != conspicuousNode[0])       &&   

      (conspicuousNode[2] != conspicuousNode[1]) ) 

29. (solution[2], value[2], time[2]):= LocalSearch (v 𝑳𝑮 , 

C 𝑳𝑮 , 𝑨, 𝐜𝐨𝐧𝐬𝐩𝐢𝐜𝐮𝐨𝐮𝐬𝐍𝐨𝐝𝐞[𝟐]) 
30. End if  //This step ensures that  we are not going through same 

integer partition twice 

31. t2=stop timer; 

32. Return (solution[], value[], t2-t1)                    
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    We start by finding the maximum value among all the input 

values (step 3 to 5). Then we find the sub-spaces that contain 

this maximum value (step 6 to 7). Afterwards, we find the 

utility (in terms of highest UB, LB and sum of UB and LB) of 

each such sub-space and choose the sub-spaces that give us 

the highest utility (step 8 to 23). Then, we search within these 

sub-spaces by using the LocalSearch heuristic (step 24 to 30), 

and return the solution. 

C. Selection of a Sub-space in the IP Algorithm                                                                                  

   We assume that we want to find a good-enough
12

 solution 

and we have constraint on the search time. We can make a 

reasonable selection according to the requirements, by 

choosing a sub-space according to its normalized size, UB, 

and LB. For instance, given constraint on searching time, we 

can pick a sub-space that has the highest (UB + 1/Size) rather 

than going for a sub-space that has the highest UB. In the 

former case, we can generate solution much quickly because it 

contains the small amount of possible solutions. Whereas, in 

the latter case, it can contain millions of possible solutions and 

we might not have enough time to search them. Hence, given 

such priorities, we can choose sub-spaces that can generate 

required solution more efficiently than the other ones. 

     

    We implemented the following important heuristics for 

selecting a sub-space: Select sub-space that has the highest 

UB, highest LB, highest (UB+LB),  highest (UB + 1/size
13

), 

highest(LB+1/size), highest ((UB+LB) +1/size), lowest 

((UB+LB) +1/size), highest ((UB-LB) +1/size), lowest ((UB-

LB) +1/size), and smallest size. 

 

      V. ANALYSIS AND RESULTS 

 

     In this section, we empirically evaluate our heuristics. We 

used Java JDK 1.6 as a development language and an Intel 3.2 

GHZ dual core PC with 3GB of RAM for running our 

experiments. 

A. LocalSearch Heuristic 

     We plug-in the code of LocalSearch heuristic in the IP 

algorithm and recorded the algorithm‘s performance for 

different number of agents (from 8 to 22). Furthermore, we 

used the standard instances of the coalition structure 

generation problem
14

. 

 

    In the case of NDCS distribution, the average results 

obtained by running the algorithm for 50 times are shown in 

fig. 3. It is clear that LocalSearch heuristic is able to return 

greater than 80% optimal solutions for 8 to 15 agents, and 

greater than 75% solutions for 16 to 22 agents. In the lower 

plot, we observe that the increase in the LB* (optimal LB 

computed by IP while scanning the input and searching the 

first two layers) is between 5-10%. Furthermore, the total time 

taken by the IP algorithm is nearly zero for 8 to 15 agents and 

                                                           
12

 Solution with bound > 1 
13

 Size has been normalized with respect to the largest size in 

the space.  
14

 See appendix A. 

is less than 400ms for 16 to 22 agents. It is worthy to note that 

in case of 22 agents, this heuristic returns a 75% optimal 

solution (with 8% increase in the LB*) in 300ms which is very 

small. This is because; we are not exploring all possible 

solutions of the search space, which reduces the exponential 

nature of the problem. In fact, the complexity of the 

LocalSearch heuristic depends on the number of possible 

integer partition of n, (where n is the number of agents) and is 

independent of the number of possible solutions in the entire 

space. 

 

    Similar results were obtained in the case of normal 

distribution  (not shown), where it returns greater than 95% 

optimal solutions for 8 to 15 agents and greater than 92% 

optimal solutions for 16 to 22 agents. We observe that the 

increase in the LB* is less than 4%. Furthermore, the time 

taken to return solutions is the same as in the NDCS case. 

    The results were not promising (not shown) for uniform 

distribution. For this distribution, the increase in the LB*  is 

less than 1% when number of agents are less than 14, and is 

zero when the number of agents increases.  

 

    Our heuristic gives better results in the case of NDCS 

distribution, than normal and uniform distributions. The 

reason is that, in the NDCS case coalition values have more 

spread (due to the high sigma value)
15

 as compared to normal 

and uniform cases; and LocalSearch heuristic can easily pick 

these values. For the normal distribution this spread is small 

(as sigma value lies between 0 and 1)
16

, so increase in LB* is 

smaller as compared to the NDCS case. The bad performance 

of LocalSearch heuristic in case of uniform distribution comes 

from the fact that IP finds 95 to 99% optimal solution in the 

second level
17

, while scanning the input. 

 

    Now we show how this heuristic improves the anytime 

property of the IP algorithm. For this purpose, we observe the 

behaviour of the heuristic while it visits each sub-space. To 

this end, we assume that we have 15 agents and values have 

been drawn from the NDCS distribution.  Furthermore, we 

want to find a solution which is 85% optimal. It is worthy to 

note that algorithm will stop only if it is successful in finding 

the required optimal solution or it has visited all the sub-

spaces. The behaviour of the heuristic is shown in fig. 4. In 

fig. 4, the percent increase in LB (in lower plot) refers to 

(
𝑳𝑩_𝑹𝒆𝒂𝒍𝑮− 𝑨𝑽𝑮𝑮

𝑨𝑽𝑮𝑮
) ∗ 100, where 𝐿𝐵_𝑅𝑒𝑎𝑙𝐺  is the solution 

computed by the LocalSearch heuristic in a particular sub-

space G. The solid line (in the upper plot) shows that the 

solution is 77% optimal before the IP algorithm calls the 

LocalSearch heuristic. We record the results after LocalSearch 

heuristic visits each sub-space (dotted line in the upper plot). 

Note that the solution becomes 85% optimal (i.e. 𝑥2 −  𝑥1 = 

                                                           
15

 See appendix A. 
16

 We run our heuristic wth 𝜎 = 0.1.  
17

 In fact, in uniform distribution, coalitions of larger size have 

more value as compared to the smaller ones; hence searching 

the second layer returns the 95 to 99% optimal solution. See 

appendix A for more information. 
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Fig. 3: LocalSearch heuristic for the NDCS distribution. The ‗time (ms) taken 

by LSA‘ refers to the time LocalSearch heuristic took to compute the solution, 

and the ‗time (ms) taken by IP‘ refers to the time IP algorithm took to scan the 

input, search the second level, and run the LocalSearch or GreedySearch 

heuristic to completion18. 

 

8%, which corresponds to the increase in the solution quality) 

after visiting a few sub-spaces and then algorithm stops and 

returns the solution. This behaviour shows that the 

LocalSearch heuristic improve the anytime property of the IP 

algorithm. 
 

    Note that this heuristic increases the solution quality of the 

IP algorithm as well. Moreover, the percent increase in the 

solution quality is at least equal to the percent increase in the 

LB*
19

.  

B. GreedySearch Heuristic 

     We plug-in the GreedySearch heuristic in the IP algorithm, 

run the algorithm for 15 to 27 agents, stop it when the 

GreedySearch heuristic finishes finding a solution, and record 

the results. Furthermore, we run our algorithm for 50 times, 

and reported the average results. The results in the case of 

NDCS distribution are shown in fig. 5. 

 

    Fig. 5 shows that the GreedySearch heuristic is able to find 

70 to 75% optimal solutions in less than 400ms. Although the 

increase in LB* is between 2-4%, but it is a significant 

improvement, as time taken by it to return a solution is very 

small. Similar results were observed in the case of normal 

distribution. Furthermore, for uniform distribution, the results  

                                                           
18 The terms ‗time (ms) taken by LSA‘ and ‗time (ms) taken by IP‘ 

have the same meaning for all figures. 
19 For proof, refer to appendix B. 

 

 
Fig. 4: How LocalSearch heuristic improves the anytime property of the IP 

algorithm. 

 

   

 

were not statistically significant (The reason is the same, as 

discussed before). 

 

    Note that for 27 agents, this heuristic returns a good-enough 

solution in 410ms that is 10 times less as compared to the time 

taken by the IP algorithm (5000ms – 410ms) to scan the input 

and search the second level. It is worth noting that, for 27 

agents and NDCS distribution, finding an optimal solution can 

take many hours (or days) as shown in fig. 1. Hence, one may 

prefer a good solution over optimal for setting where one has 

constraint over time (for instance, in real-time applications).  

 

C. Selection Functions for IP Algorithm 

      We assume that we want to find a 92% optimal solution
20

. 

We recorded the performance of the IP algorithm for 15 to 21 

agents against uniform, normal, and NDCS distribution. 

Furthermore, we run our algorithm 70 times for 15 to 19 

agents and 50 times for 20 to 21 agents, and recorded the 

average results. The results in the case of NDCS distribution 

are shown in fig. 6
21

. 
 
 

                                                           
20

 We take this value as an example. Any other value less than 

100% can be assumed. Furthermore, nearly similar results 

were observed for 85% optimal solution. 
21

 Similar results were observed for normal and uniform 

distribution.  
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Fig. 5: GreedySearch heuristic for the NDCS distribution22. 

 

     

Fig. 6 shows that, the following sub-spaces are found good in 

generating the required solution: 
 

 Sub-spaces having the highest LB with the smallest size 

return the solution about 30 to 300% faster than the other 

ones. The reason is that, they contain overall high values 

of the coalitions; hence, after searching a few solutions, 

we may find the desired optimal solution. Furthermore, it 

is able to return a good solution faster than others due to 

its smaller size. 

 Sub-spaces having the highest UB with the smallest size 

return the solution about 40 to 200% fasters then the rest 

ones (excluding the highest LB +1/Size) one. The reason 

is that the highest UB ensures to generate good solution 

and smallest size ensures that it can be generated much 

quickly. 

 Sub-spaces having the smallest size show same behaviour 

as that of the highest (UB+1/Size) one. The reason is that, 

they can return solution much quickly due to their 

smallest size. 

 

    Furthermore, some sub-spaces, such as the one having 

lowest ((UB-LB) + 1/Size) are more than 100% slower in 

generating the solution. The reason is that, they have large size 

and low values of the coalitions. From the results, we can 

conclude that the selection of a particular sub-space has 

significant effect on the time required to find a good solution. 

 

 

                                                           
22

 In fig. 5, the ‗time (ms) taken by GSA‘ refers to the time 

GreedySearch heuristic took to compute the solution 

 

 
 

Fig. 6: The time required to generate the 92% optimal solution for different 

sub-spaces against NDCS distribution. 

    

VI. CONCLUSION AND FUTURE WORK 

 

    Coalition formation is an advanced research area within 

multi-agent systems nowadays. Generally, the goal of the 

coalition structure generation activity is to maximize the social 

welfare by finding the optimal coalition structure, but 

exponential nature of the solution space does not allow 

making exhaustive search for the optimal solution. Hence, we 

may prefer a good solution over an optimal one in settings 

where we have constraints on execution time and memory. 

From this line of research, we proposed two new heuristics for 

coalition structure generation. 

 

   This paper advances the state of the art in the followings: 

 

 First, we proposed a novel heuristic, namely LocalSearch 

for coalition structure generation and empirically show 

that it generates good-enough solution in short time. 

Furthermore, it improves the anytime property, lower 

bound, and solution quality of the IP algorithm. The 

increased lower bound can prune a major portion of the 

exponential search space without going into the space. 

 Second, we proposed a greedy heuristics, namely 

GreedySearch for finding a good-enough solution, 

without going fully to any of the sub-space, in settings 

where we have a large number of agents (>20).  

 Third, we implemented different heuristics for selecting a 

sub-space in the IP algorithm proposed by [12]. We show 

that, in order to find a good solution (as opposed by 

optimal), the selection of a particular sub-space in the IP 
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algorithm has significant effect on its performance, in 

term of the time required to return the solution. 

 

    As a future work, we would like to integrate our work with 

recommender systems [13, 14]. There has been no work in 

literature that uses coalition formation among agents for 

solving recommender systems problems. If we divide users (or 

items) into distinct clusters, then our algorithm can be used in 

finding the most relevant users (or items). A K nearest 

neighbour based collaborative filtering algorithm can be used 

for generating recommendations. Furthermore, proposed 

algorithm can be helpful in distributed recommender system. 
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APPENDIX A 

   For benchmarking the coalition structure generation 

algorithms, the standard instances of the input value  

distribution have been defined as follows [2]: 

 

Normal Distribution: 𝑣 𝐶 =  𝐶  x 𝑝 where 𝑝 ~   𝑁  𝜇, 𝜎2  , 

𝜇 = 1 𝑎𝑛𝑑 𝜎 = 0.1 

 

Uniform Distribution: 𝑣 𝐶 =  𝐶  x 𝑝 where 𝑝 ~   𝑈  𝑎, 𝑏  , 

𝑎 = 0 𝑎𝑛𝑑 𝑏 = 1 

 

Sub-additive: 𝑣 𝐶 ≤ 𝑣 𝐶 ′ +  𝑣(𝐶 ′′) where 𝐶 = 𝐶 ′ ∪ 𝐶′′ and 

𝑣(𝐶) is uniform as above. (In this case the singleton coalitions 

form the optimal structure) 

 

Super-additive: 𝑣 𝐶 ≥ 𝑣 𝐶 ′ +  𝑣(𝐶 ′′) where 𝐶 ′, 𝐶 ′′𝑎𝑛𝑑 𝑣(𝐶) 

are as defined above (In this case the grand coalition is the 

optimal structure). 

 

   The validity of uniform and normal instances has been 

questioned by [13], where the authors claimed that these 

instances generate biased results:“we analytically show that 

any CSG problem with an input defined according to 

distributions of coalition values based on the size of the 

coalitions (such as the Normal and Uniform distributions 

above) will generate biased results” [13]. 

    In fact this was the main reason why in the case of uniform 

and normal distribution, our Heuristics (LocalSearch and 

GreedySearch) did not showed much improvement in the LB* 

computed by the IP algorithm. 

 

 

 

 

 

NDCS (Normally Distributed Coalition Structures):  This 

instance of the input distribution has been defined by [12], and 

is well suited for the coalition structure generation problems. 

This instance is defined as follows: 

 

𝑣 𝐶  ~ 𝑁  𝜇, 𝜎2  , where 𝜇 = |𝐶|, 𝜎 =  |𝐶| 
 

   In this distribution, the value of every possible coalition 

structure is independently drawn from the same normal 

distribution 
 

    Furthermore, for this distribution, our heuristics showed 

significant improvement in LB* computed by the IP 

algorithm. 

 

APPENDIX B 

 

   This comes from the fact that LB* = max (𝑨𝑽𝑮𝑮
∗ , 𝑽(𝑪𝑺′)) 

where 𝑉 𝐶𝑆 ′  is the best solution found in 

levels 𝔭1, 𝔭2, 𝑎𝑛𝑑 𝔭𝑛 . Let 𝐿𝐵_𝑅𝑒𝑎𝑙∗ be the best solution found 

by the LocalSearch heuristic. We compute the percent 

increased in the LB* as follow: % 𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒆 𝒊𝒏 𝒕𝒉𝒆 𝑳𝑩∗ =

(
𝑳𝑩𝑹𝒆𝒂𝒍

∗−𝑳𝑩∗

𝑳𝑩∗ ) * 100. We can easily conclude from this 

equation that the % increase in the solution quality is at least 

equal to this % increase in the LB* (in case we have LB*= 

𝑉(𝐶𝑆′))  and can be greater than this % increase in the LB* (in 

case we have LB* = 𝐴𝑉𝐺𝐺
∗). 
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