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Abstract – This work is devoted to the problem of 

magnetoelastic waves propagation in rods. The influence 

of a magnetic field on dispersion, dissipative properties of 

linear waves as well as impact on parameters of nonlinear 

waves which propagate in rods has been studied. 

 

Index Terms – magnetic field, waves in rods, 

magnetoelasticity. 

 

The effect of magnetoelasticity has been discovered by the 

Italian physicist E. Villari in 1865. However, 

magnetoelasticity as a branch of science began to develop at 

the end of the 1950-ies [Chadwick (1957)]. It arose on the 

interface of solid mechanics, electrodynamics and acoustics. 

The first papers were inspired by the problems of geophysics. 

The goal was to describe the wave dynamics of deep layers of 

the Earth taking into account its conductivity and interaction 

with the geomagnetic field.  

Since then the study of dynamic processes during the 

interaction of deformation and electromagnetic fields received 

close attention. Attention to the problems of magnetoelasticity 

motivated by the numerous physical, technical and 

technological applications. Among them are forging and 

welding of metal constructions by the magneto-pulse method, 

magnetoacoustic heat of materials, and the problems of 

defectoscopy [Beliy, Fertik and Klimenko (1997)], [Hefni, 

Ghaleb and Maugin (1995)], McCarthy (1968)], [Kulikovskii 

and Sveshnikova (1995)]. 

Taking into account physical phenomena of the different 

nature during the modeling of mechanical systems opens new 

opportunities for the technical and technological development. 

Effects of magnetoelasticity appear in strong magnetic fields 

when the induced strains have major influence on wave and 

dissipative characteristics of elastic media such as rods, 

planes, and membranes. Anisotropy of properties is typical for 

boundless magnetoelastic media in a magnetic field. In a 

medium with finite conductivity, the  magnetic  field  leads  to  
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the additional dissipation mechanism. Such features of 

magnetoelastic systems open new possibilities for practical 

applications.  

As a rule the interaction problem of different physical 

fields are solved in linear formulation. However, there are a 

number of publications where non-linear approach was used. 

[Pospelov (1963)], [Baser and Ericson (1974)], [Donato 

(1976, 1987)], [Domanski (1993)], [Erofeyev and Kovalev 

(1997, 1998)] studied nonlinear magnetoelastic waves. 

In magnetoelasticity, the influence of a magnetic field on a 

deformational field is described employing the Lorentz forces 
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which enter equations of motion of an elastic body  
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Here 


E  is the intensity of the magnetic field ; 


j  is the vector 

of the electric  current density, 


B  is the magnetic induction 

vector; eρ  is the volumetric density of the electric charges; 



u is displacements vector ; λ,μ  are the Lame constants ; 

ρ is the density of material;  is the time. 

The force nonlinearF


 includes elements which result from 

the consideration of elastic nonlinearity. If only the quadratic 

nonlinearity is taken into account, then components of the 

vector can be represented through the gradients of 

displacements as follows [7]: 
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Here CBA ,,  are the Landau constants; (index after 

comma means differentiation with respect to the 

corresponding coordinate; repeating indices mean summation. 

From Maxwell equations, one can obtain equations for 

electric and magnetic inductions 






 

D  and 






 

B , respectively: 
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which along with electromagnetic equations of state  
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need to be added to equations (1), (2). Here 


H  is intensity of 

the magnetic field,   is the conductivity, e  is the 

permittivity and 
e  is the magnetic conductivity, c is the 

electromagnetic constant. 

In magnetoelasticity, are neglected both biasing current 

and electric field. Due to this, equations of magnetoelasticity 

can be written as follows: 
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We consider propagation of the longitudinal waves in a 

homogeneous nonlinear elastic rod placed in an external 

magnetic field. Let us suppose that external constant magnetic 

field with intensity 0H  is transverse to the direction of the 

waves’ propagation (see Fig. 1).  

 

 
Fig. 1 

 

Generally, magnetic field which results from the 

interaction between external constant magnetic field and the 

deformation field can be represented as follows: 
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where  


h  is  a small disturbance of the magnetic field, 


n is 

the normal vector. 

For longitudinal elastic waves in the rod and for the 

magnetic field, we obtain the following expressions:  
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The system of equations of magnetoelasticity, according to 

the Bishop’s model of the rod, can be written as follows: 
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Here 
ρ

Ec 0
 is the velocity of longitudinal waves, 

ρ
μ

c η 
 
is the velocity of shear waves. 

According to the model under the consideration, only a 

transverse component of the magnetic field  3h  is taken into 

the account. Other items in the system (10), which include 

components    21 , hh  have smaller order than others and 

therefore can be neglected. Thus expressions (9) can be 

presented as follows: 
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First of all, we consider linear Bernoulli model for 

longitudinal waves in a rod. It can be obtained if all the items 

corresponding to the kinetic energy of transverse 

deformations, potential energy of shear deformations and all 

nonlinear items in (10) will be neglected. The following 

system is obtained: 
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We suppose that the magnetic field is stationary 

i.e.    11, xhxh  , then system (12) can be rewritten as 

follows: 
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Thus, the following equation is obtained: 
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From equation (14) one can see that the external magnetic 

field leads to the appearance of the effective viscous 

dissipation.  

For further analysis, let us rewrite system (12) in a non-

dimensional form: 
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Here 
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c

c
C A  is the non-dimensional wave velocity, 

0


  is 

the non-dimensional conductivity, t  is the non-dimensional 

time, x  is the non-dimensional coordinate, 
4
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the Alfven wave velocity. 
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we obtain the dispersion equation: 
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If the rod under consideration represents an ideal 

conductor   , then the following equation is deduced: 
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Dependency of the wavenumber  k  on the frequency    

of longitudinal waves for the case of ideally conductive rod is 

shown in Fig. 2: 

 

 
Fig. 2 

 

The intensity of the magnetic field determines the value of 

the phase velocity: the larger the intensity, the larger the phase 

velocity. The phase velocity  phaseV  is shown in Fig. 3 as a 

function of the wave frequency   : 

 
Fig. 3 

 

The finite conductivity of the rod    leads to the 

appearance of the imaginary part of wavenumber  (k)Re  that 

causes wave decay. Results of numeric solution of equation 

(17) are shown in Figs. 4, 5: 

 

 
Fig. 4 

 

 
Fig. 5 

 

For the numeric simulations, the following values of non-

dimensional velocity and conductivity have been chosen: 

C=0.1, Σ=2.  Using Figs. 4, 5, one can conclude that in case 

of finite conductivity of the rod there exist two waves. One of 

them is delayed and the other one is accelerated in relation to 

the wave in the case of ideal conductivity of the rod. Both 

waves propagate with negligible decay since for both of them 

the real part  (k)Re  of wave number is larger than the 

imaginary one  (k)Im .  
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The phase velocity  phaseV  as a function of frequency     

is shown in Figs. 6, 7. 

 

 
Fig. 6 

 

 
  Fig. 7 

 

One can see from Fig. 6 that the presence of the magnetic 

field leads to the increase in the phase velocity. At the same 

time it decreases as a function of frequency. The phase 

velocity of the second wave increases independently of the 

magnetic field (see Fig. 7). 

For the further research, we need to obtain the 

evolutionary equation. To achieve that, we make the change 

of the variables and introduce a small parameter. Let us 

rewrite system (10) in the form 
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is the elastic nonlinearity coefficient. 

We introduce non-dimensional variables 
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as well as a moving reference system: 
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where Vp is characteristic wave velocity, not known in 

advance,  is a small parameter. 

Substituting (20) and (21) into (19) and omitting items one 

of the second order and higher, we obtain the following 

systems of equations: 
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which represent zero and first dimensionless approximations 

of the system (19), respectively. Using the 2nd and 3rd 

equations in (22), we obtain the connection between the 

functions: 
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and from the 1
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 equation we determine the velocity: 
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Substituting (24) and (25) into (23) and summing the 

obtained equations, we transform it to the equation of the form 
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Further, we consider equations derived from the initial 

evolutionary equation deprived of this or that component. We 

will consider solutions for the localized waves only. This is 

due to the localized wave energy focused in a limited segment 
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unlike the energy of periodic waves, which causes higher 

loads in the rod that in its turn may lead to its destruction. 

First of all, let us review the initial evolutionary equation 

(26). It represents Korteweg - de Vries - Burgers equation. 

This equation has a localized solution in the form of a soliton 

that can be represented as a blast wave: 
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The form of this wave is shown in Fig. 8: 

 

 
Fig. 8 

 

For condensed media in magnetic fields under 10 tesla, 

Alfven wave velocity is smaller than a longitudinal wave 

velocity. That is why, changing of all parameters is shown on 

10
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interval.

 
One can see from the figures how the external magnetic 

field intensity affects the amplitude  A , velocity  kV  and 

width  Δ  of the solution. With the increase in magnetic field, 

both amplitude and velocity decrease and the width increases.  

 

 
Fig. 9 

 

Let us assume that the rod is an ideal conductor so that the 

last term in the evolutionary equation with δ coefficient can be 

neglected. We obtain the Korteweg - de Vries’ equation: 
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It has a localized solution in the form of soliton of negative 

polarity: 
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The form of the soliton is shown in Fig.10: 

 

 
Fig. 10 

 

One can see from Fig. 11 that for a constant velocity  sV , 

amplitude  A  and width  Δ  increase, while for a constant 

amplitude, velocity decreases with increase of the magnetic 

field. 

 

 
Fig. 11 

 

Finally, let us suppose that the initial system of 

magnetoelasticity doesn’t take into account the kinetic energy 

of transverse deformations. In this case, from the initial 

evolutionary equation one will obtain the Burgers’ equation: 
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It has a localized solution in the form of a shock wave: 
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 (31) 

The form of the shock wave is shown in Fig.12: 

 

 
Fig. 12 

 

 It has been shown that width  Δ of the shock wave 

decreases with the increase of the magnetic field: 

  
Fig. 13 

In this paper, we have obtained the evolutionary equation 

for the system of magnetoelasticity equations; considered 

different possible cases of its transformation, and studied 

localized solutions and their dependencies in a magnetic field. 

The analysis performed proves that the magnetic field affects 

parameters of longitudinal deformation waves in a rod. 
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