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Abstract— The term Micro Air Vehicles (MAVs) is used for a 

new type of remotely controlled, semi-autonomous or 
autonomous aircraft that is significantly smaller than 
conventional aircrafts. To apply Micro Electro Mechanical 
Systems (MEMS) inertial sensors for the Guidance, Navigation 
and Control (GNC) of Micro Air Vehicle (MAV) is an 
extremely challenging area. The major components of the 
control system of micro air vehicles are the onboard sensors. 
This paper presents an approach for the implementation of on 
board sensors for Micro Air Vehicles and the application of a 
Seven State Discrete Time Extended Kalman Filter. On-board 
sensors are linked to the Ground Control Station (GCS). This 
paper presents an approach of applying an Inertial Navigation 
System (INS) using MEMS inertial sensors and Global 
Positioning System (GPS) receiver with a Single Seven State 
Discrete Time Extended Kalman Filter. Inertial navigation 
system (INS) includes MEMS gyro, accelerometer, 
magnetometer and barometer. MEMS inertial sensors are of 
utmost importance in the GNC system. The system considered 
is non-linear and it is first linearized for application of the 
Kalman Filter. A Single Seven State Discrete Time Extended 
Kalman Filter is used for state estimation. Process covariance 
matrix and measurement covariance matrix are derived.  
 

Index Terms— Micro Electro Mechanical System (MEMS), 
Micro Air Vehicle (MAV), Measurement Covariance Matrix, 
Process Covariance Matrix 
 

Nomenclature 
 

Inertial North Position of MAV 
Inertial East Position of MAV 
Wind from North 
Wind from East 
Total Airspeed  
Angular Rate about x-axis 
Angular Rate about y-axis 
Angular Rate about z-axis 
Roll Angle 
Pitch Angle 
Yaw Angle 
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                             Vertical Magnetic Field Component 
                             Process Covariance Noise Matrix 
                            Process Covariance Noise Matrix 
                            

I. INTRODUCTION 

 
By Defense Advanced Research Projects Agency 

(DARPA) standards [1], a Micro Air Vehicle (MAV) is 
limited to a maximum dimension of 15 cm, gross weight of 
100 g, with up to 20 g payload and the Reynolds number 
must be below 106

 [2]. The size limitation for MAV for 
International MAV competitions is 100 cm for outdoor 
missions and 70/80 cm for indoor missions with maximum 
weight of 1 kg [3].  In MAV configuration, the dimension of 
15 cm is very critical because it is considered border line 
between bird flight and insect flight [4]. The flight-control 
algorithms used for MAVs have been primarily based on the 
Radio Controller (R/C) or Tele-Operation [5]. Guidance, 
Navigation and Control (GNC) has been an important area in  
MAV research. On-board sensors (MEMS gyro, MEMS 
accelerometer, Magnetometer and GPS) have crucial 
importance in GNC. These sensors are used for state 
estimation of MAV. In this paper an approach of Single 
Seven State Discrete Time Extended Kalman Filter is used 
for the state estimation of MAV. 

II. GUIDANCE AND FLIGHT CONTROL LOOP 
 

The guidance loop [6,7] is an outer control loop in 
autonomous flight mode. It computes guidance demands to 
force the vehicle to follow the desired way-point to reach the 
destination. The guidance loop provides the guidance 
demands from the current vehicle states and the next 
way-point information. The guidance demands are the 
desired vehicle speed with respect to the air, the desired 
height and the bank angle.  
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Fig. 1 Guidance Module [6] 
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The flight control loop [8] caters for the vehicle’s attitude 

and attitude rates as well as the vehicle speed with respect to 
the air. It performs speed control, height control, bank angle 
control, heading control and elevation control by using the 
guidance demands and the measured vehicle states. It 
generates actuator signals for the engine throttle, rudder, 
elevator and aileron.  The proposed flight control system is 
shown in figure 02. 
                                             

III. SINGLE 7 STATE DISCRETE TIME EXTENDED KALMAN 
FILTER STATE ESTIMATION SCHEME 

 
The Discrete Time [9] Extended Kalman Filter (EKF) 

considers discrete-time dynamics and discrete-time 
measurements. This situation is often considered in practice. 
Even if the underlying system dynamics are continuous time, 
the EKF usually needs to be implemented in a digital 
computer. This means there might not be enough 
computational power to integrate the system dynamics as 
required in a continuous-time [9] EKF or a hybrid [9] EKF. 
So the dynamics are often discretized [9] and then 
discrete-time EKF can be used. 

The state equations which relate body frame rotations to 
changes in roll, pitch and heading are nonlinear. Letting the 
states be roll angle (ϕ) and pitch angle (θ), and letting angular 
rates (p, q and r) and Airspeed  be inputs. airV
 

 
 

 
 
 
 

 
 

 

 
 

The update of the states is related to the inputs as shown 
below [10]: 
 
 
 
 
 
 
 
 
 
 
 
     The linearization of Extended Kalman Filter through 
Jacobian method [11] 
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The linearization of Extended Kalman Filter through 
Jacobian method [11] 
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  Fig. 3 Single Seven State Extended Kaman Filter scheme 

Fig. 2 Proposed Control System 
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The Process Covariance Matrix [12,13] is given as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Measurement Covariance Matrix [12,13] is given as 
follows: 
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IV. RESULT AND ANALYSIS 
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Fig. 6 Velocity in Z-Direction Versus Accelerometer Output 

 
The output of the on-board sensors is mathematically 

modeled and filtered with the help of Single Seven State 
Discrete Time Extended Kalman Filtering. The graphs are 
based on the linearized equations of motion that also take 
into account the rotation of the body frame with respect to the 
inertial frame. The actual and estimated results are compared 
as following: 
 

 

Fig. 4 Velocity in X-Direction Versus Accelerometer Output 
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Since velocity does not have any impact on the states, a 
variation in velocity in the x direction would not indirectly 
cause major inaccuracies in the measurements. There is, 
however, slight inaccuracy in the x direction acceleration 
owing to the fact that the state estimate appears uncoupled in 
the formula and therefore has a greater impact on the 
measurement of acceleration in the x direction than in the 
other directions.  
 

 
Variation in velocity in the y direction has no effect on 

acceleration in the y direction, whereas it does on 
accelerations in the other two axes.  Single State Kalman 
Filter show almost the same accuracy in the case of variable 
velocity in y direction as for variable velocity in x direction.  

 
 
 
 

As cited earlier, variation in velocity in the z direction has 
no effect on acceleration in the z direction whereas it does on 
acceleration in the other two axes. Single State Kalman Filter 
again showed the same accuracy as it did for variable 
velocity in x and y in the previous graphs. 
 

0.6

 

 
In above figure the Kalman filter estimates of the 

measurement of acceleration show increased inaccuracy 
owing to the dependence of the states (Euler angles) being 
used in measurement, on the angular rates. The curves are 
oscillatory in nature owing to the presence of the indirect 
effect of process noise that is passed on in the state estimates. 
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Fig. 5 Velocity in Y-Direction Versus Accelerometer Output 
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Fig. 8 Angular Velocity in Y-Direction Versus Accelerometer 
Output 
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Fig. 7 Angular Velocity in X-Direction Versus 
Accelerometer Output 
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Figure. 8 shows variation in acceleration owing to 
changes in the angular rate about the y axis. Angular rate 
about the y axis only affects acceleration in the x and z 
axes. As for the Kalman Filter estimates, they are still quite 
inaccurate owing to the dependence of the state estimate 
on the value of angular rates. 
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Fig. 11 Angular Velocity in Y-Direction Versus Euler Angles 
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Fig. 9 Angular Velocity in Z-Direction Versus Accelerometer 
Output 

 

The above graph shows variation in acceleration owing to 
changes in the angular rate about the z axis. Angular rate 
about the z axis affects only the acceleration in the x and y 
axes. As for the single Kalman filter estimates, they are still 
quite inaccurate owing to inaccuracies in the state estimates. 
 
 

 
 

The above graph shows variation in inertial angles with 
respect to change in angular rate about x axis. Since the 
transformation about the x axis is the last in the sequence of 
transformations, the Euler angle in the x axis  almost matches 
the body angular rate in the same axis. The other angular 
rates remain constant with changes in the body angular rate 
around x axis, since this is the last step of the transformation 
and therefore the orthogonal axes have become independent 
of the influence of any further transformations.  The single 
step Kalman filter estimate is not very inaccurate, except for 
the oscillations due to the presence of noise. 
 
 

 
  
 
 
The second graph shows variation in Euler angles with 
respect to changes in angular rate about the y axis. All Euler 
angles are dependent on the body angular rate about y axis to 
a certain extent, owing to the fact the transformation about y 
axis is the second in the sequence.  But it is Euler angle about 
y axis that shows the largest variation with change in q. This 
variation has a simple linear character when the Euler angle 
in the x axis is small. The single step Kalman filter, as before, 
is quite accurate. 
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The above graph shows variation in Euler angles with 
respect to change in angular rate about z axis. Since the 
transformation about z axis is the first in the sequence of 
single transformations, all Euler rates are affected by change 
in the dynamics of the z axis.  Euler angular rate about z axis 
is the most affected because of the relationship between the 
same axes. The relationship is dependent on primarily the 
pitch angle. The single step Kalman Filter is quite accurate. 
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Fig. 10 Angular Velocity in X-Direction Versus Euler Angles 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Angular Velocity in Z-Direction Versus Euler Angles

r (deg/s)

Eu
le

r 
An

gl
es

(d
eg

)

roll actual
roll estimation
pitch actual
pitch estimation
yaw actual
yaw estimation

Fig. 12 Angular Velocity in Z-Direction Versus Euler Angles 
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V. CONCLUSIONS 
 

The MAV could provide significant new capabilities to a 
wide range of users. Several MAVs and a base station could 
be transported and operated by a single individual, providing 
real-time data directly to the local user. The MAV promises 
to be particularly useful for covert operations. Application of 
Single Seven State Discrete Time Extended Kalman Filter is 
helpful in state estimation.  
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