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Abstract— The term Micro Air Vehicles (MAVSs) is used for a
new type of remotely controlled, semi-autonomous or
autonomous aircraft that is significantly smaller than
conventional aircrafts. To apply Micro Electro Mechanical
Systems (MEMS) inertial sensors for the Guidance, Navigation
and Control (GNC) of Micro Air Vehicle (MAV) is an
extremely challenging area. The major components of the
control system of micro air vehicles are the onboard sensors.
This paper presents an approach for the implementation of on
board sensors for Micro Air Vehicles and the application of a
Seven State Discrete Time Extended Kalman Filter. On-board
sensors are linked to the Ground Control Station (GCS). This
paper presents an approach of applying an Inertial Navigation
System (INS) using MEMS inertial sensors and Global
Positioning System (GPS) receiver with a Single Seven State
Discrete Time Extended Kalman Filter. Inertial navigation
system (INS) includes MEMS gyro, accelerometer,
magnetometer and barometer. MEMS inertial sensors are of
utmost importance in the GNC system. The system considered
is non-linear and it is first linearized for application of the
Kalman Filter. A Single Seven State Discrete Time Extended
Kalman Filter is used for state estimation. Process covariance
matrix and measurement covariance matrix are derived.

Index Terms— Micro Electro Mechanical System (MEMS),
Micro Air Vehicle (MAV), Measurement Covariance Matrix,
Process Covariance Matrix
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As superscript shows the rate of change
Mo Northern Magnetic Field Component
m,,  Eastern Magnetic Field Component

m,  Vertical Magnetic Field Component

Q Process Covariance Noise Matrix

R Process Covariance Noise Matrix

I. INTRODUCTION

By Defense Advanced Research Projects Agency
(DARPA) standards [1], a Micro Air Vehicle (MAV) is
limited to a maximum dimension of 15 cm, gross weight of
100 g, with up to 20 g payload and the Reynolds number
must be below 10° [2]. The size limitation for MAV for
International MAV competitions is 100 cm for outdoor
missions and 70/80 cm for indoor missions with maximum
weight of 1 kg [3]. In MAV configuration, the dimension of
15 cm is very critical because it is considered border line
between bird flight and insect flight [4]. The flight-control
algorithms used for MAVs have been primarily based on the
Radio Controller (R/C) or Tele-Operation [5]. Guidance,
Navigation and Control (GNC) has been an important area in
MAYV research. On-board sensors (MEMS gyro, MEMS
accelerometer, Magnetometer and GPS) have crucial
importance in GNC. These sensors are used for state
estimation of MAV. In this paper an approach of Single
Seven State Discrete Time Extended Kalman Filter is used
for the state estimation of MAV.

II. GUIDANCE AND FLIGHT CONTROL LOOP

The guidance loop [6,7] is an outer control loop in
autonomous flight mode. It computes guidance demands to
force the vehicle to follow the desired way-point to reach the
destination. The guidance loop provides the guidance
demands from the current vehicle states and the next
way-point information. The guidance demands are the
desired vehicle speed with respect to the air, the desired
height and the bank angle.
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DISCRETE TIME EXTENDED KALMAN
FILTER

The update of the states is related to the inputs as shown
The flight control loop [8] caters for the vehicle’s attitude ~ below [10]:
and attitude rates as well as the vehicle speed with respect to

the air. It performs speed control, height control, bank angle [ 4] [P+asingtand+rcosgtan O]
control, heading control and elevation control by using the 6 gcos ¢ + I sin ¢
guidance demands and the measured vehicle states. It v g ¢ cosd
generates actuator signals for the engine throttle, rudder, Po|= cos&  cosd
. . . N Vi, cos + W
elevator and aileron. The proposed flight control system is ; )
. Pe Vi siny +We
shown in figure 02. : air
Wy 0
_WE 1L 0 |

III. SINGLE 7 STATE DISCRETE TIME EXTENDED KALMAN

FILTER STATE ESTIMATION SCHEME . o .
The linearization of Extended Kalman Filter through

Jacobian method [11]
The Discrete Time [9] Extended Kalman Filter (EKF)

considers discrete-time dynamics and discrete-time r . sing _ cosg 1
measurements. This situation is often considered in practice. qcoswa_”g*rsmma“‘g 90 "oodg 0000
Even if the underlying system dynamics are continuous time, ’gzlslgj* rs"ifj 0 00000
the EKF usually needs to be implemented in a digital A Eu) _ 08 cosd (gsing + rcosg)secftand 0 0 0 0 0
computer. This means there might not be enough x 0 0 000-10
computational power to integrate the system dynamics as 0 0 000 0 -1
required in a continuous-time [9] EKF or a hybrid [9] EKF. g g g g g g g
So the dynamics are often discretized [9] and then - -
discrete-time EKF can be used.
The state equations which relate body frame rotations to
h : : : : : Measurement
changes in roll, pitch and heading are nonlinear. Letting the
states be roll angle (¢) and pitch angle (0), and letting angular ) i
rates (p, q and r) and Airspeed V,;, be inputs. V“‘%mgmne
p \/a,r(rcosf;—rsine)_CO Beosp
0 N Vet o
NENS 61RO SINGLE SEVEN SATE v &)= (cosPeosy)m,, +cosdsinym,, —sineh,,
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Fig. 3 Single Seven State Extended Kaman Filter scheme The linearization of Extended Kalman Filter through
Jacobian method [11]
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The Process Covariance Matrix [12,13] is given as follows:

Q=E(ww")
w; WW,  WW,  WWe W W,
w,W, W, WoW,  WoW  WW,
w,W, W, W, w;, W, We W, Wp
Q=E[wpW, W, W, W,w, W Wp, W,
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The Measurement Covariance Matrix [12,13] is given as
follows:
R=E(w")
Vziccx vaccx Vaccy acc, vaccZ VaccX Vmag « Vaccx Vmag y
Vaccy Vaccx \IZCCy accy Vaccz Vaccy Vmag X Vaccy vmag y
VaccZ Vaccx VaccZ Vaccy ViccZ Va\ccZ VmagX VaccZ Vmag y
R=E Vmagx Vaccx Vmagx Vaccy Vmagx VaccZ Vr?\agx VmagX Vmagy
Vmag y Vaccx Vmag y Vaccy Vmag v VaccZ Vmag y Vmag ; Vriag v
VmagZ VaccX VmagZ Vaccy VmagZ VaccZ VmagZ VmagX VmagZ Vmagy
Vops, Vace, Vops, Vaccy Vops, Vace, Veps, Vmag, Vops, Vmagy
_VGPSE Vace, Veps, Vaccy Vops, Vace, Veps.Vmag,  Vops, Vinag y
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IV. RESULT AND ANALYSIS

0.4

The output of the on-board sensors is mathematically
modeled and filtered with the help of Single Seven State
Discrete Time Extended Kalman Filtering. The graphs are
based on the linearized equations of motion that also take
into account the rotation of the body frame with respect to the
inertial frame. The actual and estimated results are compared
as following:
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Fig. 4 Velocity in X-Direction Versus Accelerometer Output

Since velocity does not have any impact on the states, a
variation in velocity in the x direction would not indirectly
cause major inaccuracies in the measurements. There is,
however, slight inaccuracy in the x direction acceleration
owing to the fact that the state estimate appears uncoupled in
the formula and therefore has a greater impact on the
measurement of acceleration in the x direction than in the
other directions.
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Fig. 5 Velocity in Y-Direction Versus Accelerometer Output

Variation in velocity in the y direction has no effect on
acceleration in the y direction, whereas it does on
accelerations in the other two axes. Single State Kalman
Filter show almost the same accuracy in the case of variable
velocity in y direction as for variable velocity in x direction.
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Fig. 6 Velocity in Z-Direction Versus Accelerometer Output

As cited earlier, variation in velocity in the z direction has
no effect on acceleration in the z direction whereas it does on
acceleration in the other two axes. Single State Kalman Filter
again showed the same accuracy as it did for variable
velocity in x and y in the previous graphs.
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Fig. 7 Angular Velocity in X-Direction Versus
Accelerometer Output

In above figure the Kalman filter estimates of the
measurement of acceleration show increased inaccuracy
owing to the dependence of the states (Euler angles) being
used in measurement, on the angular rates. The curves are
oscillatory in nature owing to the presence of the indirect
effect of process noise that is passed on in the state estimates.
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Figure. 8 shows variation in acceleration owing to

changes in the angular rate about the y axis. Angular rate
about the y axis only affects acceleration in the x and z
axes. As for the Kalman Filter estimates, they are still quite
inaccurate owing to the dependence of the state estimate
on the value of angular rates.
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The above graph shows variation in acceleration owing to
changes in the angular rate about the z axis. Angular rate
about the z axis affects only the acceleration in the x and y
axes. As for the single Kalman filter estimates, they are still
quite inaccurate owing to inaccuracies in the state estimates.
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Fig. 10 Angular Velocity in X-Direction Versus Euler Angles

The above graph shows variation in inertial angles with
respect to change in angular rate about x axis. Since the
transformation about the x axis is the last in the sequence of
transformations, the Euler angle in the x axis almost matches
the body angular rate in the same axis. The other angular
rates remain constant with changes in the body angular rate
around x axis, since this is the last step of the transformation
and therefore the orthogonal axes have become independent
of the influence of any further transformations. The single
step Kalman filter estimate is not very inaccurate, except for
the oscillations due to the presence of noise.
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Angular Velocity in Y-Direction Versus Euler Angles

— roll actual

— roll estimation

— pitch actual
pitch estimation

— yaw actual

— yaw estimation

-
T

Euler Angles(deg)

o
o
I

q (deg/s)

I I
-0.05 0.05 01 0.15 02

Fig. 11 Angular Velocity in Y-Direction Versus Euler Angles

The second graph shows variation in Euler angles with
respect to changes in angular rate about the y axis. All Euler
angles are dependent on the body angular rate about y axis to
a certain extent, owing to the fact the transformation about y
axis is the second in the sequence. But it is Euler angle about
y axis that shows the largest variation with change in q. This
variation has a simple linear character when the Euler angle
in the x axis is small. The single step Kalman filter, as before,
is quite accurate.
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Fig. 12 Angular Velocity in Z-Direction Versus Euler Angles

The above graph shows variation in Euler angles with
respect to change in angular rate about z axis. Since the
transformation about z axis is the first in the sequence of
single transformations, all Euler rates are affected by change
in the dynamics of the z axis. Euler angular rate about z axis
is the most affected because of the relationship between the
same axes. The relationship is dependent on primarily the
pitch angle. The single step Kalman Filter is quite accurate.
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V. CONCLUSIONS

The MAYV could provide significant new capabilities to a
wide range of users. Several MAVs and a base station could
be transported and operated by a single individual, providing
real-time data directly to the local user. The MAV promises
to be particularly useful for covert operations. Application of
Single Seven State Discrete Time Extended Kalman Filter is
helpful in state estimation.
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