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ABSTRACT 

Non-linear Resonant Decay method (NL-RDM) addresses 

the identification of multi-degree of freedom non-linear 

systems. This method offers a practical approach to the 

identification of lumped parameter and continuous systems 

by producing a non-linear extension of the classical linear 

modal model. The method is introduced and its potential as 

a practical identification approach explained.  

This paper is concerned with the inclusion of residual 

modes, above and below any region of interest.  

Any structure that is not supported to earth will have 

rigid body modes, being modes that have a natural 

frequency at zero Hertz; a good example is an aircraft. 

These modes are sometimes ignored but for a complete 

mathematical model obtained from NL-RDM the effects of 

rigid body modes must be analysed. NL-RDM relies on a 

method of curve fitting to generate modal characteristics, in 

terms of force, displacement, velocity and acceleration in 

modal space.  

The lower residual region was observed to contain rigid 

body modes, and these were observed to affect significantly 

the results in the region of interest. Monitoring this effect 

was shown to be too difficult currently for the NL-RDM, 

given technological restrictions. A Mass Substitution 

method was generated to model the system response more 

accurately. Its accuracy was demonstrated through case 

studies. 

Most systems also contain an indefinite number of 

residual modes, these being modes that occur at frequencies 

greater than the frequency range of interest. The section will 

attempt to determine the effects of excluding residual modes 

on the accuracy of NL-RDM.  

The effect of the upper residual area on the modelling 

of the system within the region of interest was observed 

through several case studies. Simple validation methods 

have been considered to preserve the accuracy of the model, 

taking into account both harmonic and coupled residual 

modes and their effects. 
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I. METHODOLOGY FOR NL-RDM  

The method is a development of the Resonant Decay 

Method, the Restoring Force Surface method based in 

modal space and the Force Appropriation methodology [1, 

2]. It makes use of an appropriated excitation vector applied 

in a burst to reduce the number of modes required in the 

curve fit. 

In this section, the mathematical form of the extended 

modal model for non-linear systems will be described. 

Consider a lumped parameter system or a continuous one 

that has been discredited as N degrees of freedom (DOF). 

The equation of motion in physical space for a dynamic 

system including stiffness non-linearities is  

              )(tFxxKxKxCxM NLL       (1) 

where [M] is the mass matrix, [C] is the damping matrix, 

[KL] is the linear stiffness matrix, [KNL] is the non-linear 

stiffness matrix, {F(t)} is the vector of applied nodal forces, 

and {x(t)} is the vector of physical displacements. The 

transformation between physical and modal space is defined 

by 
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where {p(t)} is a vector of modal amplitudes, and [] is the 

modal matrix of the N modes {}r, r = 1,2…N of the 

underlying linear system, which may be obtained by solving 

the classical eigenvalue problem for un-damped free 

vibration. The corresponding un-damped natural frequencies 

are r (r = 1, 2 … N). In practice, the number of degrees of 

freedom required to model the system with reasonable 

accuracy can be reduced by considering only those modes 

NR << N having natural frequencies in the frequency range 

of interest, or that are considered important in the response. 

In this case, the modal matrix ][  is reduced to dimension N 

by NR and the vector of modal amplitudes {p(t)} to 

dimension NR by 1. Substituting the modal expansion into 

the system equations of motion and pre-multiplying by []
T
 

yields: 
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Using the orthogonality of the modes, this equation of 

motion in modal space becomes 
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where the modal mass matrix [m] and linear modal stiffness 

matrix [kL] are diagonal and the modal damping matrix [c] 

is diagonal for proportionally damped systems. {f} is the 

applied modal force vector and {fNL} is the vector of non-

linear restoring forces in modal space. Clearly, in order to 

be able to perform this transformation, the modal matrix ][  

is assumed to be known from low force level results. For a 

particular mode of a proportionally damped non-linear 

system, equation (4) is in the form of a single degree of 

freedom system, namely 

NRrtffpkpcpm rrNLrrrrrr ...2,1)(      (5) 

where pr is the r
th

 modal displacement, mr, cr and kr are the 

r
th

 mode modal mass, damping and stiffness, and fr is the 

corresponding applied modal force. The modal mass and 

stiffness for the linear system are related by the un-damped 

natural frequency from the equation
rrr mk 2 [3]. Non-

proportional damping would lead to the presence of modal 

damping coupling terms [4]. The term frNL refers to the r
th

 

mode non-linear modal restoring force and in general 

includes other modal co-ordinates to allow for non-linear 

cross coupling  
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where the Ar term is the amplitude of the non-linear term in 

the r
th 

mode equation that is associated with the respective 

modal displacements ps
 
and pt (for modes identified by the 

indices s and t), raised to the powers defined by i and j. For 

example, the direct cubic non-linear stiffness term 

associated with the r
th

 mode would be Arpr
3
 (s=r, t=r, i=3, 

j=0) and a typical cross-coupling term between modes r and 

q might be Arpr
2
pq (s=r, t=q, i=2, j=1). Note, in this case, 

that the set of possible basis functions is restricted to terms 

of 3
rd

 order involving no more than two modes. Also, the 

basis functions in equation (6) are polynomials whereas 

non-polynomial terms may be used to cater for different 

types of non-linearity (e.g. discontinuous) [5]. There is no 

reason in principle why non-linear modal velocity terms 

cannot also be included in the extended modal model to 

cope with damping non-linearity.  

 

A. SIMPLE EXAMPLE 

Non-linearity is not easy to define in a general manner 

and so the NL-RDM cannot be applied to a general case. 

Thus, it is recommended that the consideration of the 

method start with a simple example such as a two degree of 

freedom system with some kind of non-linearity, which 

could be the common cubic stiffness, to take advantage of a 

relatively simple case. Some other type of non-linearity such 

as quadratic damping, friction and backlash will not be 

investigated in this paper.  

II. RIGID BODY AND OUT OF RANGE MODES 

The previous paper [6] attempted to determine the effects 

the use of imperfect data has on NL-RDM, assuming use of 

the correct model. This paper will assume the use of perfect 

data and test process, but will analyse some of the effects of 

using an incorrect model. The analysis will include the 

effects of rigid body modes, of problems associated with 

harmonics, and of the residual part of the data. The effects 

will be analysed in terms of derived system parameters and 

the FRF. 

Any structure that is not supported to earth will have 

rigid body modes, being modes that have a natural 

frequency at zero Hertz; a good example is an aircraft. 

These modes are sometimes ignored but for a complete 

mathematical model obtained from NL-RDM the effects of 

rigid body modes must be analysed. NL-RDM relies on a 

method of curve fitting to generate modal characteristics, in 

terms of force, displacement, velocity and acceleration in 

modal space. 

Most systems also contain an indefinite number of 

residual modes, these being modes that occur at frequencies 

greater than the frequency range of interest. This chapter 

will attempt to determine the effects of excluding residual 

modes on the accuracy of NL-RDM. Finally, harmonic 

effects will be analysed. Specifically a system with a cubic 

stiffness non-linearity will be observed, when one mode 

natural frequency occurs at precisely 3 times the natural 

frequency of the other mode.  

 

A. IDENTIFYING RIGID BODY MODES 

Rigid body motion occurs in many systems and affects 

the dynamic behaviour, so should be investigated. A rigid 

body mode is a mode with a natural frequency of zero Hertz 

and mode shapes which normally consist of pure translation 

or rotation; rigid body modes occur in a perfect free-free 

structure. Experimentally, rigid body motion is observed to 

cause no strain in any elastic element in the system. Rigid 

body behaviour can include six types of motion, which are 

translation and rotation in 3 dimensions.  

The way in which the NL-RDM would approach the 

analysis of rigid body modes needs to be discussed, as a 

complete model is required in order for the dynamic 

behaviour of the system to be investigated. The problems 

encountered by this approach give rise to three practical 

methods of analysing structures with rigid body modes. 

Firstly, the mode is identified using the NL-RDM in the 

same way as for any other mode. Secondly, the rigid body 

mode can simply be ignored. The effects of this on accurate 

system representation are analysed by comparison between 

practical results for models with and without rigid body 

modes. Thirdly, the rigid body mode is simulated by a 

substituted modal mass element without the need for any 

specific identification. 
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A.1. NON-LINEAR MDOF MODELS WITH RIGID 

MODY MODES 

In this section, two systems are introduced for the 

evaluation of the practical method, i.e. to determine the 

effectiveness of approximating a free-free system by a 

lightly sprung fixed-fixed system. The three degree of 

freedom lumped parameter system with stiffness non-

linearity between the second and third masses (free-free 

structure) in Figure 1, is compared to another structure, 

identical except for being supported at both ends on soft 

springs (practical structure) in Figure 2. 

 
Figure 1: Schematic Diagram of 3 Degree of Freedom Free-

free System with Stiffness Non-linearity (perfect 

free-free structure) 

 
Figure 2: Schematic Diagram of 3 Degree of Freedom Free-

Free System with Stiffness Non-linearity but 

supported on Soft Springs (practical structure) 
 

The FRF results for the perfect free-free and practical 

systems are shown in Figures 3 and 4 respectively. 

Comparison between the first and second modes, i.e. the 

rigid body mode and the first flexible mode, gives an 

indication of the suitability of the practical system for 

approximating the free-free system. At a ratio of 1/10 the 

first mode is considered close enough to zero Hertz to not 

have any significant effect on the flexible mode; in this 

example, the rigid body mode natural frequency is 0.4 Hz 

and the first flexible mode is 5.06 Hz. For better comparison 

between the perfect and practical system, the mode shapes 

or modal matrix for the two cases are as follows 


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Clearly, the support has little effect on the modal 

characteristics. The FRFs of the perfect and practical 

structures introduced in the previous section, are compared 

in Figures 3 and FRFs phases in Figure 4. The FRFs show 

strong agreement, indicating the accuracy of the rigid body 

mode approximation and justifying the analysis of the 

supported structure for rigid body mode identification.  

Figure 5 shows the MMIF [7] for the 3 degree of 

freedom practical structure, where the rigid body mode on 

soft supports is included.  Clearly, appropriated force 

patterns could be obtained from such an analysis. 
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Figure 3: 11H  FRFs for the Perfect free-free Structure and 

the Practical System 
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Figure 4: 11H  FRFs Phases for the Perfect free-free 

Structure and the Practical System  
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Figure 5: MMIF for the 3DOF Practical Free-free System 

 

A.2 IDENTIFICATION OF A RIGID BODY 

MODE USING NL-RDM 

Having confirmed that it is acceptable to consider a 

free-free structure to be supported on soft springs, one 

possibility for identifying the rigid body behaviour is to 

simply apply the NL-RDM [8] approach just as for a 

flexible mode. The NL-RDM is perfectly suited to identify a 

free-free structure by simulation, but problems arise when 
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seeking to identify a structure in practice, i.e. 

experimentally. 

Several problems hinder the analysis of rigid body 

modes practically as the rigid body mode may need to be 

investigated with very low frequencies. This may create a 

significant problem with noise, as the level of noise is closer 

to the low acceleration levels experienced at low 

frequencies. The very low frequencies create further 

problems experimentally when generating force and 

monitoring response. Piezo-electric transducers are not 

accurate at low frequency levels as the characteristics roll-

off at low frequencies. However, it would be possible to use 

accelerometers that operate down to DC (e.g. piezo-resistive 

accelerometers) or even displacement transducers.  

Commonly, shakers would be used to generate force 

and accelerometers used to monitor the motion, so the 

ability to generate acceptably low levels of force and 

monitor the low levels of motion, and hence obtain accurate 

results, is limited by the capability of these pieces of 

equipment. It is well known that it is difficult to use an 

electrodynamic shaker to generate a sinusoidal force at low 

frequency. 

Further problems are encountered when using the NL-

RDM to identify the rigid body mode. Problems may arise 

when preparing for force appropriation. A poor MMIF, 

specifically a poorly identified rigid body mode causes an 

inaccurate force vector and poor tuning of the system. 

These problems are critical with a lower flexible mode 

frequency. For example, with a first flexible mode around 5 

Hz, the rigid mode frequency would be around 0.5 Hz and 

the procedure of detecting and identifying the mode 

becomes much more difficult than when a structure’s first 

flexible mode frequency appears around 100 Hz and the 

rigid body frequency could be more like 10 Hz. For such a 

stiffer structure, there would be no particular problem in 

using the NL-RDM to identify the rigid body mode linear 

characteristics; no non-linear behaviour would be expected. 

Typically, the instrumentation problems mentioned above 

become worse below about 4 Hz, corresponding to a 

flexible mode at 40 Hz if the rigid / flexible mode frequency 

ratio is 10%. 

Theoretically, using improved force generation / 

recording, with better shakers and accelerometers could 

produce better, more accurate results at very low 

frequencies. Technologies are already available or being 

developed that could improve the accuracy of these devices 

(e.g. laser based measurement systems). Clearly, improved 

low-level accuracy of components would have a significant 

effect on the difficulties associated with rigid body mode 

experimentation. With accurate enough components, the 

rigid body mode could theoretically be analysed by the NL-

RDM in the same way as any other mode. 

However, if direct identification of very low frequency 

rigid body modes is too difficult to perform accurately, 

maybe there are other approaches? Perhaps the rigid body 

mode could simply be ignored or a theoretically based 

estimate included? 

A.3 NEGLECTING THE RIGID BODY MODE IN 

THE Non-IDEALIZED MODEL 

Another method that could be employed to analyse the 

system response in a non-linear system with a rigid body 

mode is to entirely ignore the rigid body mode itself. For 

example, in the flutter analysis of an aircraft, often only the 

flexible modes are included. The non-linear system is then 

analysed like any other system, in terms of its flexible 

modes. The ease of this method is clearly its greatest 

advantage, but what may be a significant mode is missed 

out. Case studies are carried out in this section to 

demonstrate the accuracy of this approach as compared to 

identifying the rigid body mode from measured 

experimental results. 

The same system as introduced in Figure 2 is chosen for 

analysis. Figures 6 and 7 show the calculated FRFs for the 

system when the rigid body mode is ignored (Green colour), 

and compares them to results from a complete analysis, with 

the rigid body mode on soft supports included in the 

practical system (Blue colour). While the general shape of 

the FRFs match around the two flexible mode peaks, it is 

clear that response levels are all somewhat inaccurate when 

the rigid body mode is ignored. The effect occurs not only 

where the rigid body peak is not modelled, but at other 

frequencies too, because the influence of the rigid body 

mode extends across the entire frequency range of the 

system. Thus, while this method can be used as an 

approximation to the true system, its accuracy for generating 

system response and thus its application may be seriously 

limited. Figure 8 implements a flowchart, which indicates 

the way the comparison between 2 systems is done. 
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      Figure 6: Comparisons of FRF (H22) 
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Figure 8: Comparison between 2 Systems – Rigid Body 

Ignored or Included 

 

A.4 REPRESENTING THE RIGID BODY MODE 

WITHOUT SPECIFIC IDENTIFICATION 

Due to the inaccuracy of measurement of low frequency 

rigid body modes, a complete identification using NL-RDM 

may be considered too inaccurate to be workable; certainly 

this is the case for an aircraft where the flexible modes 

occur at low frequencies (typically 2-5 Hz). Therefore a 

method is required that will readily allow for the rigid body 

mode effects in the identified model; for example, in curve 

fitting an FRF, it is common to include a lower residual 

term in the model to approximate the rigid body effect [9]. 

In this section, a method is proposed that will simply add in 

a modal equation to allow for the rigid body mode 

contribution. 

The mass representation method involves analysing the 

rigid body mode in terms of an added modal mass, that mass 

being derived from a mass summation over the structure, 

assuming a rigid body mode shape. This method has the 

advantage of a more complete system analysis, without 

making any major changes or additions to the original 

method. 

The approach will be illustrated for the simple case of 

the 3 DOF system considered earlier. The extension to more 

complex problems will be outlined later. The rigid body 

modal mass MRB, which is also in a sense a mass 

summation, could be calculated as 

RBPhysical

T

RBRB MM  **        (9) 

where the rigid body mode shape for the 3 DOF system is 

 T

RB 111         (10) 

and MPhysical is the physical mass matrix of the system. Thus 

the rigid body modal mass is 
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or 

321 MMMM RB          (12) 

or more generally 

  TotaliRB MMM           (13) 

Thus, if the total mass of the structure is known by 

direct measurement or calculation, and if the rigid body 

translation mode shape is assumed to have unit values, the 

rigid body modal mass is simply equal to the total mass of 

the structure. 

In order to include the rigid body mode behaviour as an 

additional equation to accompany the identified flexible 

mode equations, then the appropriate modal force and 

possibly modal mass and damping values should be 

estimated. 

By analogy to the analysis for mass performed above, 

the rigid body modal stiffness KRB will equal the summation 

of the support stiffnesses (e.g. bungees) and the modal 

damping CRB will be the summation of the support damping 

coefficients, both transformed into modal space.  

The rigid body modal force may be determined through 

the physical forces to be applied to the system, which means 

that: 

Physical
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or more generally 

  TotaliRB FFF         (17) 

Thus the rigid body modal force is simply equal to the 

summation of the physical forces applied to the structure.  

The final modal equation for the rigid body mode 

(including supports if desired) will then be 

RB RB RB RB RB RB RBM q C q K q F          (18) 

where qRB is the rigid body modal coordinate. This modal 

equation is simply added to those identified for the non-

linear flexible modes.  

It should be noted that no non-linear modal couplings 

will exist between rigid body and flexible modes, provided 

the support stiffnesses are linear, because no non-linear 

forces will be generated by rigid body motion and forces 

generated in motion of a flexible mode will not do any work 

in the rigid body mode. 

For implementation in the simulation programme, a 

system with 3 degree of freedom with cubic stiffness non-

linearity and one rigid body mode is considered. Figure 2 

shows the schematic system of the practical structure. 

Firstly, only the rigid body modal mass is included (i.e. 

effect of support stiffness is ignored) and then the support 

effects are included through the modal stiffness KRB. 

The accuracy is clearly improved in comparison with 

the ‘Neglected…’ method, with the FRFs being mostly 

coincident. The only variation is seen in the representation 

of the rigid body mode itself, around which point the 

methodically calculated FRF levels off, giving a lower 

response level around the rigid body mode. 

Thus this approach is a simple and practical one to 

including rigid body mode effects in the identified non-

linear model without needing to carry out difficult low 

frequency measurements. The approach represents the rigid 

body effects accurately, provided the estimated mass is 

reasonably accurate; indeed, the representation of the rigid 

body modes is considered to be more accurate than using 

the lower residual term in a curve fit. If support stiffnesses 

were only included to make the test possible, and a model of 

the true free-free system required, then only the rigid body 

modal mass and force need be included in the final model, 

as the support stiffness and damping effects can be ignored. 

 

A.5 PRACTICALITIES FOR MORE COMPLEX 

STRUCTURES 

In reality a structure could have as many as six rigid 

body modes. This will affect the mass representation 

method.  

For the 3 translation modes, the modal masses will all 

equal the total mass of the structure and the mode shapes 

will be equal translation of all points in the same direction, 

i.e. simple extension of the above approach. Thus, for a 

heave mode,  

  Totali

Heave

RB MMM        (19) 

and so on. 

The other rigid body modes will involve rigid body 

rotation about the centre of mass (e.g. roll, pitch and yaw). 

In this case, the substitution would be an inertia 

representation, as opposed to being mass based for a 

translation type mode. 

Thus for a pitch mode, it may be shown that 

  Totali

Pitch

RB IIM         (20) 

where Ii is the pitch moment of inertia of the i
th

 component 

of the structure about the centre of mass and ITotal  is the 

total pitch moment of inertia of the structure about the 

centre of mass. The pitch mode modal force will be the sum 

of applied moments of each of the physical forces about the 

centre of mass. The corresponding rotation mode shape 

must be a 1 radian rotation if the modal mass is the moment 

of inertia. 

In practice, if the support stiffness effects are to be 

included in the rigid body modal equations, the values may 

be found by direct measurement of the spring stiffnesses or 

by determining the rigid body natural frequencies by 

exciting or disturbing the structure into a rigid body motion, 

even though the data may be noisy, and then calculating the 

modal stiffness from the modal mass.  Flexible modes 

would be identified as normal using NL-RDM. 

B. UPPER RESIDUAL EFFECTS 

It is possible to divide the range of frequencies into 

three regions. Of central concern is the particular region of 

interest, which will often include several important flexible 

and maybe non-linear modes. If this area is considered in 

isolation, it may be modelled inaccurately, as the energy 

from modes is less than expected in that region. The 

preceding section has considered the low frequency region 

below the region of interest, containing one or more rigid 

body modes, and observed the effect of its presence on the 

region of interest; approaches for allowing for the rigid body 

effects were proposed. Additionally, the region of 

frequencies higher than the region of interest should be 

considered and its effects on the region of interest observed. 

These higher frequency modes occur at lower levels of 

displacement, and so are more likely to be linear, and 

therefore arguably may be less of a concern. 

The problem with such out of range high frequency 

modes is that their effects will appear in the measured data, 

up to around the Nyquist frequency [10], but the model 

constructed by the NL-RDM approach will only cover a 

limited number of modes, likely to be smaller than the 

number of modes in the measured range. In curve fitting of 

an FRF, it is common to include an upper residual term to 

allow crudely for the modes above the range analysed. 

However, there appears to be no obvious way of allowing 

for out of range modes above the range of interest; adding a 

representative mode would seem to be rather artificial. It 

seems the only way is to ensure that the frequency range 
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analysed is somewhat wider than that for which the model is 

really required; this is more important for a non-linear 

structure than for a linear one as will be shown later. 

B.1 EFFECTS OF MISSED MODES 

In a continuous system, there are a great many modes 

present. It would be impractical to model all of them, and so 

the effect of missed modes should be observed. These 

missed modes may be coupled to included modes and so the 

effect of those missed modes should not be neglected. 

To observe the effect of missed modes on a simple 

example, a three degree of freedom non-linear lumped 

parameter system is modelled, and force, displacement, 

velocity and acceleration data derived. Then, in this study 

case, the third and highest mode is omitted from the fitted 

model (but not its effects from the data) and the curve fit 

would be run for both systems (3 and 2 DOF). The FRF 

result is shown in Figure 9. Results have shown some loss 

of energy and inaccuracy on the FRF. However, the 

estimated parameters for the two identified modes were 

actually the same (i.e. not in error); this is because there was 

no non-linear coupling and 3 shakers were used so the 

appropriation was perfect. Errors could be present if the 

appropriation was imperfect and if non-linear couplings 

were present; any error would then depend upon how large 

the missed mode contribution was and how close in 

frequency.  
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Figure 9: FRF 11, when Third mode is missed 

 

There is no way to eliminate these errors; the only 

approach is to ensure that any modes with a large response 

are included and that the frequency range chosen is 

adequately large so that the effect of higher frequency 

modes is small. 

B.2 HARMONIC EFFECTS  

One particular case of out of range modes that is of 

interest is when an out of range mode occurs at a harmonic 

of a mode within the range of interest. Harmonic effects 

need to be considered for a non-linear system. The harmonic 

behaviour depends on the order of non-linearity, which 

means that if a system has a quadratic or cubic non-linearity, 

harmonic effects may be observed at two or three times any 

natural frequency respectively. The so called ‘harmonic 

modes’ outside the region of interest may store a significant 

amount of energy, and so shouldn’t be neglected. 

The effects of these harmonic modes are considered 

through the modelling of a system with two natural 

frequencies, at 7.12 and 21.36 Hz, the second mode 

occurring at the third harmonic of the first mode. The 

simulation programme is run for cases around and at exactly 

three times the ratio between natural frequencies to indicate 

any effects on the results. When the system was identified 

with both modes present, the identified parameters were not 

affected because all the relevant terms were included in the 

analysis; however, consideration of this harmonic issue is 

required when the 3 times natural frequency is outside the 

region of interest. 

The results showed the response of the higher 

frequency (harmonic) mode is clearly much larger in this 

case, especially for the acceleration. Another comparison 

based on examining time domain signals showed that the 

modal acceleration for mode 2 when seeking to excite mode 

1 was doubled when the frequencies differed by a factor of 

3.  

What is of more interest is that when mode 1 was 

analysed alone using NL-RDM, with the presence of mode 

2 completely ignored, the modal parameters identified were 

more in error when the two modes differed by exactly a 

factor of 3.  

B.3 PRACTICALITIES 

Practically, it may be important to validate the response 

model generated within the region of interest. This would be 

best achieved through modelling of the system with one 

additional mode outside this region, and observing the effect 

of the inclusion of this mode on the originally identified 

parameters and fit to a validation excitation. If there is no 

significant change, then the range chosen is arguably 

adequate. If there is a significant difference, then the range 

needs to be extended. 

In recent sections has been concerned with the inclusion 

of residual modes, above and below any region of interest. 

The lower residual region was observed to contain rigid 

body modes, and these were observed to possibly affect 

significantly the results in the region of interest. Obtaining 

rigid body parameters experimentally was shown to be too 

difficult currently for the NL-RDM, given technological 

restrictions. A mass representation method was generated to 

model the system response more accurately by adding in a 

modal equation for each rigid body mode. Its accuracy was 

demonstrated through case studies. 

The effect of the upper residual area on the modelling 

of the system within the region of interest was observed 

through several case studies. No obvious way of allowing 

for higher frequency modes seems available and so it is 

important that an adequate range of data is considered. 

Modes whose frequency is at a harmonic factor of modes of 

interest need to be considered carefully as if they are 

omitted, significant errors may occur. Simple validation 

methods have been considered to preserve the accuracy of 

the model, taking into account both harmonic and coupled 

residual modes and their effects. 
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III. CONCLUSIONS 

In this paper, problems with residual effects have been 

investigated, including rigid body mode effects in the lower 

residual area, and missed / coupled modes in the upper 

residual area. Harmonic effects, where one mode natural 

frequency was an integer multiple of another mode were 

also investigated. Measuring any rigid body mode is 

difficult because, even though the structure is supported on 

low stiffness mounts, the frequency will usually be very low 

and excitation and measurement are inaccurate. So, some 

methods were introduced in the simulation programme for 2 

and 3 degree of freedom systems to determine or maybe 

neglect a rigid body mode. The first option could be to 

neglect the rigid body mode. The results show some 

inaccuracy not just around the rigid mode that neglected, but 

also at other frequencies even when the rigid body mode 

was at a significantly lower frequency than the flexible 

mode(s). Another option could be considered when, instead 

of identifying the rigid body mode, the modal mass may be 

represented theoretically by a summation of physical mass 

and inertia parameters and a theoretical modal equation 

added to the overall model; a modal stiffness term may be 

estimated if the rigid body frequencies on the supports can 

be estimated. The results show good agreement when 

compared with neglecting the rigid body mode. In a real 

structure, estimating accurate mass and inertia parameters 

could become a problem although the FE model could be 

used.     

In real structures, because a significant number of 

modes are present in the frequency domain, only regions of 

interest are considered but then how could upper residual 

effects be allowed for? Effects of this region have been 

investigated. Missing or including a mode in a region of 

interest is compared for a 3 degree of freedom system. 

Unlike linear identification, there seems no way of including 

an upper residual term in the non-linear model to allow for 

the effect of the out of range modes. To avoid this problem, 

it is recommended that extra modes be added to the region 

of interest and, the effect of the increased size model on the 

validation checked to see if the difference is significant; so 

maybe more modes need to be included than for a linear 

identification. Alternatively, the level of energy in the out of 

range modes could be assessed to see if they need to be 

included.  

One more issue, is about the so-called harmonic effect 

where an out of range mode frequency is at an integer 

multiple of a mode in the region of interest. As explained, 

the harmonic effect should be considered carefully in a non-

linear system and depends on the non-linear order (i.e. is 

non-linearity of second or third order). For example for 

cubic stiffness non-linearity, 3 times frequency should be 

examined and, depending on the level of energy in that 

mode, could be considered or left out of the region of 

interest.   

The overall study showed that the NL-RDM could 

allow a non-linear modal model to be identified. The levels 

of inaccuracy present for expected levels of error was 

considered to be acceptable; even though high levels of 

inaccuracy were sometimes encountered, the errors were 

higher than might be expected from modern instrumentation 

and methodologies. This is the nature of non-linearity for 

which there is no perfect solution to non-linear system 

identification up to now. The method needs to be modified, 

but at the end of the day, NL-RDM is still in relatively early 

stages of exploration and development should continue. 
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