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Abstract—In the present study, the thermal stability of 
laminated functionally graded (FGM) circular plates of 
variable thickness subjected to uniform temperature rise 
based on the first-order shear deformation plate theory is 
presented. The laminated FGM plate with variable 
thickness is considered as a sandwich plate constituted of 
a homogeneous core of variable thickness and two 
constant thickness FGM face sheets whose material 
properties are assumed to be graded in the thickness 
direction according to a simple power law. In order to 
determine the distribution of the prebuckling thermal 
load along the radius, the membrane equation is solved 
using the shooting method. Subsequently, employing the 
pseudo-spectral method that makes use of Chebyshev 
polynomials, the stability equations are solved numerically 
to evaluate the critical temperature rise. The results 
demonstrate that the thermal stability is significantly 
influenced by the thickness variation profile, aspect ratio, 
the volume fraction index, and the core-to-face sheet 
thickness ratio. 

Index Terms—FGM, pseudospectral method, thermal 
Stability, variable thickness plates 
 

I. INTRODUCTION 

Stability analysis and studies on the buckling 
behavior of plates have been always considered as one 
of the important subjects in structural analysis [1,2]. On 
the other hand, variable thickness plates have always 
been attractive for designers, and a lot of researches 
have been done on this subject. The most conspicuous 
usage of variable thickness plates is to lighten 
structures, especially when used in high-speed aircrafts. 
With an accurate design of the thickness distribution, 
one can make an increase in buckling capacity of the 
plate compared to its uniform thickness counterpart. 

 Functionally graded materials (FGM) are a group of 
composite materials whose properties vary 
continuously from one side to another. These materials 
are typically constructed from a mixture of ceramic and 
metal and they can survive environments with high-
temperature gradients such as nuclear reactors and 
high-speed aircrafts. The low thermal conductivity of 
ceramic provides the high-temperature resistance. On 
the other hand, the ductile metal prevents fracture 
caused by thermal stresses. A huge number of 

researches have done on the subject of buckling and 
post-buckling of FGM plates of constant thickness. 
However, the subject of FGM plates with variable 
thickness has been taken under advisement by 
researchers.  

FGM plates would constitute a significant part of 
structural applications in future. On the other hand, 
optimum design is a big concern especially in 
applications such as aerospace, where reducing the 
structural members’ weight is essential. Considering 
these facts demonstrates the importance of researches 
dealing with the behavior of FGM plates with variable 
thickness. However, with regard to the previous 
researches, it is obvious that the analysis of FGM plates 
with variable thickness, especially in the field of 
buckling problems, has not been noticed very much. 
Therefore, in this study, the thermal stability of FGM 
circular plates with variable thickness under radial 
compression is investigated for clamped and simply 
supported boundary conditions. 

 

II. PROBLEM FORMULATIONS 

A. Geometry 
Consider a circular plate of radius b which is mid-

plane symmetric, as shown in Fig. 1. The plate is under 
uniform temperature rise ΔT. The origin of the 
cylindrical coordinates system lies on the center of the 
mid-plane where r and z define the radial and thickness 
directions, ߮ defines the rotation about the radial axis, 
and u and w are the displacements in r and z directions, 
respectively. The plate studied here can be considered 
as a sandwich plate with a homogenous core of variable 
thickness, hH(r), and two FGM face sheets with 
constant thickness, hf. Therefore, the overall thickness 
of the plate, h(r), would be a function of r. 
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where h1H and h2H are the thicknesses of the core at the 
center and the edge of the plate, respectively, and p 
defines the profile of the thickness. Although the 
formulation and the method are general for circular 
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plates with any kind of profile through the thickness, 
the analysis is performed only on plates with linear and 
parabolic profiles. The plate has three layers that the kth 
layer is between zk and zk+1 (k=1, 2, and 3) coordinates. 
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Considering a plate of constant core volume, VH, the 
relationship between the geometrical parameters is 
given by 
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where hH0 is the core thickness of its uniform thickness 
counterpart, and  is the taper parameter ranging from 
0 to 1, defining the volume distribution of the core in 
radial direction.  

 

Fig. 1. Geometrical definition of an FGM circular plate with 
variable thickness 

 
B. FGM properties 

The material properties of the FGM face sheets such 
as Young’s modulus are functions of ceramic and metal 
volume fractions, Vc and Vm as follows 
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where N is the volume fraction index ranging from 0 to 
 . 

C. Equilibrium and stability equations 

In order to consider the nonlinear effects of the 
buckling problem, the axisymmetric strain-
displacement relations are written based on von-
Karman plate theory 
௥ߝ ൌ ௥଴ߝ ൅ ݇௥ݖ,  (8a) 
ఏߝ ൌ ఏ଴ߝ ൅ ݇ఏݖ,  (8b) 

௥௭ߛ ൌ ߮ ൅  ௥ (8c),ݓ
in which the mid plane strains, ߝ௥଴ and ߝఏ଴, are given by 
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and the curvatures, ݇௥ and ݇ఏ are defined as 
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where ሺ ሻ,୰ indicate the differentiation with respect to r. 
 The relations between stress and strain are based on 
Hook’s law, while Poisson’s ratio ν is assumed to be 
constant. 
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The resultant forces and moments of the stresses are 
given by 
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where K is the shear correction coefficient in the first-
order shear deformation plate theory, which is set to 
5 6⁄ . Substituting Eq. (11) into Eq. (12) results in the 
following relations between resultant forces and 
moments and the strains. 
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The thermal membrane forces ௥ܰ
்and ఏܰ

்  and thermal 
bending moments ܯ௥

்and ܯఏ
்are calculated by 
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Equilibrium equations of the circular plate with 
axisymmetric deformations can be obtained by using 
stationary potential energy method as follows 

௥ܰ,௥ ൅
௥ܰ െ ఏܰ

ݎ
ൌ 0 (16a) 

ܳ௥ ൅ ௥,௥ܳݎ ൅ ൫ݎ ௥ܰݓ,௥൯,௥ ൌ 0 (16b) 

௥,௥ܯ ൅
௥ܯ െܯఏ

ݎ
െ ܳ௥ ൌ 0 (16c) 

Substituting Eqs. (8)-(10) and (13) into Eq. (16) gives 
the equilibrium equations in terms of the displacement 
components. 
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One can obtain all the configurations of the plate 
from the above equation. There are two types of 
equilibrium configurations possible for a plate under in-
plane loading, which are undeflected and buckled 
configurations. When buckling happens the plate 
configuration will turn from the undeflected 
configuration into the buckled one. The intersection of 
these two equilibrium configurations is called the 
bifurcation point. This point can be obtained by 
solution of linear differential equations of stability. The 

linear equations of stability necessary for this process 
may be derived from the nonlinear equilibrium 
equations, Eq. (17), by use of a perturbation technique 
in which the displacement field, (u, w,߮), is replaced by 
(u0+u1, w0+w1, ߮଴+߮ଵ), where (u0, w0, ߮଴) represents 
an equilibrium configuration in the undeflected state, 
and (u1, w1, ߮ଵ) is a small increment. This method is 
called adjacent equilibrium criterion [2]. Therefore, the 
stability equations can be expressed as  
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The stability equations are homogenous and linear 
and have solutions only for discrete values of the 
applied load, which refers to an eigenvalue problem. 
The smallest eigenvalue is termed the critical buckling 
load Pcr. It should be noticed that Eq. (18a) is 
decoupled from the Eqs. (18b) and (18c).The boundary 
conditions for the stability equations are 
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In Eq. (18) Nr0 is the prebuckling load, which must 
be obtained from the equilibrium equations of the plate. 
But since the plate is in its undeflected configuration, 
w0 and ߮଴  are equal to zero, and the equilibrium Eq. 
(17) can be revised into the following equation called 
the membrane equation. 
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Solving the above equation, u0 may be obtained and 
therefore, Nr0 can be calculated from Eq. (13a).The 
boundary conditions for membrane equation can be 
expressed as 
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଴ݑ ൌ 0                                      ݁݃݀ܧ                (21b)

The shooting method, consisting of the well known 
Runge-Kutta method in conjunction with a  
Newton-Raphson iterative formulation, is employed to 
numerically solve the membrane equation, Eq. (20). 
 

III. NUMERICAL SOLUTION METHODS 

The pseudospectral method is employed to 
numerically solve the eigenvalue problem, Eqs. (18) 
and (19). The basic idea in this method is to assume that 
the answer of the differential equations can be 
approximated by a sum of finite number of basis 
functions. Usually when the solution is not especially 
periodic, Chebyshev polynomials are the best choices 
as basis functions (from J. P. Boyd [3]). To 
approximate the answers with Chebyshev polynomials, 
the solution range should be changed from ݎ ∈ ሾ0, ܾሿ 
to ݔ ∈ ሾെ1,1ሿ. The following dimensionless parameters 
are introduced to make the stability equations 
dimensionless  
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where x1 and x2 are dimensionless transverse 
displacement and rotation about the radial axis, 
respectively. Therefore, the stability equations, Eq. 
(18), and the boundary conditions, Eq. (19), can be 
rewritten in the following form, where ሺ ሻᇱ  shows the 
derivative with respect to x. 
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x1 and x2 are approximated by a sum of n+1 Chebyshev 
polynomials as follows 
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where indexes i and j refer to the ith collocation point 
and the jth Chebyshev polynomial, respectively, and aj 
and bj are unknown coefficients.  

In order to solve the equations, 2n+2 algebraic 
equations are needed. The boundary conditions, Eq. 
(24), provide four of the required equations. Besides, 
satisfying Eqs. (23a) and (23b) in n-1 collocation points 
supplies 2n-2 remained algebraic equations. To 
minimize the error, based on the Gauss-Lobatto 
interpolation points, the optimal collocation points can 
be selected as follows. 
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The results are represented in dimensionless form 
using the buckling load factor  defined by 
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IV. NUMERICAL RESULTS AND DISCUSSIONS 

A. Homogenous plates 
Since there are no results submitted for the problem 

being studied, the problem is solved for a homogenous 
plate in order to validate the present study, and for this 
purpose hf is considered to be equal to zero. 

For the purpose of verifying the buckling behavior, 
a comparison study for thick circular plates with 
constant thickness is made with those obtained by 
Wang et al. [4] using Rayleigh-Ritz energy approach, 
Raju and Rao [5] using Galerkin’s method, and Özakça 
[6] applying FEM in Table 1. 

Table 1. Comparisons of the present buckling load factors   

   h0/b 
Reference  

0.2 0.1 0.05 0.001 

12.572414.0909 14.5296 14.6819Present C 

12.572514.0909 14.5296 14.6819[4]
12.572514.0910 14.5299 14.6825[5]
12.284313.9885 14.5014 14.6819[6]
14.684214.6842 14.6842 14.6842[1]

 
4.00564.1480 4.1852 4.1978PresentSS
4.00564.1480 4.1853 4.1978[4]
4.00564.1481 4.1852 4.1978[5]
3.99384.1448 4.1844 4.1978[6]
4.2025 4.2025 4.2025 4.2025 [1] 
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B. FGM plates 
In this section, the results of thermal stability 

analysis of variable thickness FGM circular plates 
under radial compression are presented. The FGM face 
sheets are made from a mixture of aluminum (Al) and 
zirconia (ZrO2) whose properties are summarized in 
Table 2 and the homogenous core is also made of 
aluminum. Poisson’s ratio is considered to be constant 
and equal to 0.3. 

Table 2. Material properties of aluminum and zirconia in the FGM 
face sheets from Praveen and Reddy [7] 

Materials 
Young’s 
modulus 
(GPa) 

Thermal expansion 
coefficient (1/◦C) 

Aluminum 70 23×10-6 
Zirconia 151 10×10-6 

 
Fig. 2 displays the variations of the buckling factor 

 with the volume fraction index N for specified 
values of hH0/hf. The results are presented for a plate 
with constant core thickness (=0.5) and aspect ratio 
h0/b=0.06. It can be seen that as the volume fraction 
index N is increased, the buckling factor  increases. 
The reason is that an increase in the volume fraction 
index N results in an increase in the volume fraction of 
ceramic; and as the thermal expansion of ceramic is 
lower than metal, the plate’s resistance to the buckling 
increases. Increase in the volume fraction of ceramic is 
possible with both increase in the volume fraction index 
N and decrease in the core-to-face sheet thickness ratio 
hH0/hf. Increasing the volume fraction index N in the 
approximate range of 0 to 5 causes significant increase 
in the buckling load factor , and after that it varies 
slowly until the plate becomes almost ceramic. From 
Fig. 2 it can be observed that, for a specified value of N, 
the maximum value of the buckling factor  
corresponds to hH0/hf=0, which refers to a plate without 
a homogenous core. On the contrary, a plate with thin 
FGM face sheets (hH0/hf=10) has the minimum value of 
the buckling factor. 

In order to investigate the effect of the volume 
fraction on the buckling behavior from another point of 
view, variations of the buckling load factor  with the 
core-to-face sheet thickness ratio hH0/hf for specified 
values of the volume fraction index N for a plate with 
constant core thickness (=0.5) and aspect ratio of 
h0/b=0.06 is displayed in Fig. 3. The maximum 
buckling factor  corresponds to N=100 and hH0/hf=0 
that refers to a plate without a homogenous core and 
with almost ceramic face sheets and the lowest one 
corresponds to N=0, which refers to a plate with fully 
metal face sheets. It is obvious that when N=0, the plate 
is fully metal and variations of the ratio hH0/hf is of no 
effect on the buckling factor . 

 

 
Fig. 2. Relationship between the buckling load factor  and the 

volume fraction index N for specified values of core-to-face sheet 
thickness ratio hH0/hf. (a) Clamped edge (b) Simply supported edge. 

 
V. CONCLUSION 

The thermal stability of laminated FGM circular 
plates with variable thickness under radial compression 
based on the first-order shear deformation plate theory 
and nonlinear von-Karman displacement field is 
studied. Numerical solution for both clamped and 
simply supported boundary conditions and for either 
linear or parabolic taper is presented. Since there are no 
results submitted for the problem being studied, for the 
purpose of verifying the accuracy of the results, the 
critical temperature rise for homogenous plates is 
compared with the previous researches. The 
comparison shows that the results derived using the 
current method compare very well with them. 
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Because variation in the volume fraction of ceramic 
and metal is possible with both variations in the volume 
fraction index N and the core-to-face sheet thickness 
ratio hH0/hf, the effect of these two parameters on the 
buckling behavior is investigated. Increasing the 
volume fraction index N and decreasing the core-to-
face sheet thickness ratio hH0/hf both result in increase 
in the volume fraction of ceramic in the plate and 
therefore, increase in the buckling load factor . 

 

 

Fig. 3. Buckling load factor  with respect to the core-to-face sheet 
thickness ratio hH0/hf for specified values of the volume fraction index 

N. (a) Clamped edge (b) Simply supported edge 
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