
 

 

 

  

Abstract—Resonance is a common thread that runs through 

almost every branch of engineering. Yet, this phenomenon often 

goes unobserved, silently resulting in inconveniences, such as 

causing a bridge to collapse or a helicopter to fly apart, to name 

a few. It is therefore of utmost importance to avert resonance, 

for which determining the frequency of the system becomes 

indispensible. In complex rotating structures as one considered 

in this paper, theoretical determination of frequency is as 

difficult and laborious as a task can be. Inspite of being an 

effective tool to reveal the natural frequency of a system, modal 

analysis falls short of providing any information about the 

amplitude and phase angle of vibration of the system. This 

paper presents an alternative procedure called harmonic 

analysis to identify frequency of a system through amplitude 

and phase angle plots. The unbalance that exists in any rotor 

due to eccentricity has been used as excitation to perform such 

an analysis. ANSYS parametric design language has been 

implemented to achieve the results. 

 
Index Terms—ANSYS Parametric Design Language, Critical 

Speed, Nelson rotor, Out-of-balance response 

 

I. INTRODUCTION 

  All rotors, unless under ideal conditions, possess an amount 

of unbalance due to material inhomogeneities, manufacturing 

processes, keyways or slots and will get into  resonance when 

they rotate at speeds equal to the bending natural frequency 

of the system. These speeds, called critical speeds, should be 
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avoided as far as possible. Such an unbalance has been used 

in the methodology presented in this paper as excitation force 

to produce forced vibrations in the system to obtain the 

response of the considered system in the form of amplitude 

and phase angle plots from which the critical speeds can be 

determined. 

    Harmonic response analysis is a technique used to 

determine the steady-state response of a linear structure to 

loads that vary sinusoidally (harmonically) with time and is 

used to predict the sustained dynamic behavior of structures 

to consistent cyclic loading.  Thus, it can be verified whether 

or not a machine design will successfully overcome 

resonance, fatigue, and other harmful effects of forced 

vibrations.  

    ANSYS Parametric Design Language (APDL) is a scripting 

language that has been used here to build the model and 

automate tasks by using parameters (variables). A sequence 

of ANSYS commands can be recorded in a macro file which 

enables the user to create a customized ANSYS command 

that executes all of the commands required for a particular 

analysis. APDL is the foundation for sophisticated features 

such as design optimization and adaptive meshing.  
    Model considered in this paper is the same model that was 

analyzed by Nelson and McVaugh[1]. The complexity of this 

model lies in the fact that it carries a rotor on a 

multi-sectioned shaft which is supported on fluid film 

bearings. Theoretical determination of frequency of such a 

system is a protracted procedure at best and often 

approximate. Nevertheless, modal analysis using FEA 

packages has proven to be an effective tool in determining 

frequency of such a system. This paper provides validation 

for the frequency found by modal analysis through harmonic 

analysis. 

 

II. METHODOLOGY  

A.  Model  

The model considered is a Nelson rotor [1] which is a 

0.355(m) long overhanging steel shaft of 14 different 

cross-sections (Table I).The shaft carries a rotor of mass 

1.401(kg) and eccentricity 0.635(cm) at 0.0889(m) from left 

end and is supported by two identical fluid film bearings at a 
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distance of 0.1651(m) and 0.287(m) from the left end 

respectively. Stiffness components of the bearing are 

kzz=kyy=3.503x107(N/m) and kzy=kyz=-8.756x106(N/m) while 

damping components are Czz=Cyy=1752(Ns/m). Six stations 

are considered during harmonic analysis as shown in Fig.1, 

where station numbers denote different nodes in the 

model-(1)Left extreme of shaft, (2)Disc, (3)First bearing 

node, (4) Between the two bearings, (5) Second bearing node 

and (6)Right extreme of shaft.  

B. Geometric Modeling and Finite Element Modeling 

Using APDL  

  The multisection shaft has been modeled in ANSYS using 

Beam 188 [2] which is a linear/quadratic two-node beam 

element in three dimensions with six degrees of freedom at 

each node. This element facilitates the meticulous definition 

of all the cross-sections of the shaft. The rotor and the 

bearings have been modeled using Mass21 and Matrix27 

elements respectively. The nodes, elements, material 

properties, real constants, boundary conditions and other 

physical system-defining features that constitute the model 

have been created by exclusively using APDL commands 

such as ET, MAT, K, N, LSTR, R, RMORE, LATT, LESIZE 

and E.  

C. Solution and Post- processing 

Once the finite element model has been prepared, modal 

analysis is performed to extract the first mode frequency of 

vibration of the system. Then, harmonic analysis is 

performed by applying an unbalance force [3] at the rotor 

(assuming an eccentricity of 0.635(cm)). The range of 

excitation frequencies is decided by the APDL algorithm 

based on natural frequency that was obtained through modal 

analysis. The system is then solved using frontal solver to 

find response of the system in terms of amplitude and phase 

angle plots. Response is determined at 6 stations-(1) Left 

extreme of shaft, (2)Disc, (3)First bearing node, (4) Between 

the two bearings, (5) Second bearing node and (6) Right 

extreme of shaft. The resulting graphs are exported as jpeg 

files. The whole procedure explained above is carried out 

using an APDL macro, which is as explained below.  

D. APDL Macro Algorithm 

An APDL macro has been developed to generate all the 

required results, containing amplitude plots and phase angle 

plots at all the nodes of the model, with minimal effort on part 

of the user. The algorithm incorporated in the macro is as 

below- 

1. Setup the model. Impose boundary conditions and 

apply excitation force. 

2. Create scalar parameters ‘f’, to store frequency 

value, and ‘n’, to represent node number. 

3.  Perform modal analysis. Retrieve first mode 

frequency using ‘*GET’ command and store in ‘f’. 

Set n=1. 

4. Set the range of excitation frequencies to increment 

from ‘f-150’ (Hz) to ‘f+150’ (Hz) in 300 steps.  

5. Solve for unbalance response. Plot results to get 

unbalance response at node ‘n’. 

6. Increment parameter ‘n’ by 1. If n>18(since the 

model contains 18 nodes), then go to next step. 

Otherwise, go back to step 4.  

7. End of program. 

 

III. DISCUSSION OF RESULTS  

As explained earlier, detailed modal and harmonic 

analyses have been carried out on the considered model to 

study the unbalance response of the system at a range of 

excitation frequencies around the first mode frequency that 

was obtained from modal analysis and the corresponding 

amplitude and phase angle plots have been obtained. Forward 

whirl speeds are of utmost importance in the design of the 

rotor and the first mode of vibration is the most prominent 

mode of vibration of a system at which the system will 

vibrate, dominating all the higher frequency modes. We 

therefore present the results that correspond to 268.3Hz, 

which is the first forward whirl speed of the system as 

calculated by Nelson[1] and also the first mode of vibration 

as found from the methodology used in this paper. Fig. 2 

through 7 display the variation of amplitude of vibration of 

the system at the six identified stations respectively. It can be 

observed that the amplitude reaches a peak value at one 

particular excitation frequency. Fig. 8 displays the typical 

variation of phase angle with excitation frequency at all the 

stations. These results were generated using the said APDL 

program whose algorithm has been described under the 

section “APDL Macro Algorithm“. 

IV. INTERPRETATION OF RESULTS  

For a disc of mass M and eccentricity ’a‘ mounted on an 

elastic shaft supported by radial bearings, the centrifugal 

force of eccentric disc rotating about the shaft acts as an 

exciting force. The equivalent values of stiffness, mass and 

damping of the system are Keq, Meq and Ceq respectively. The 

equation of motion [4], considering excitation due to 

unbalance, is given by  

Meqr``+Ceqr`+Keqr=Mω2aeiωt                           (1) 

where ω=excitation frequency and r=whirl radius. The steady 

state solution of Eq. 1 is  

    r=Re
i(ωt-φ)

                                    (2)  

where amplitude   R= 
���

��������	�
����           (3) 

and phase angle    φ= tan
-1� 
������
                (4) 

where Ω= 
�
��

, with ωn being frequency of the system, and 

ξ� ���

�������

. 

The maximum value of amplitude ‘R‘occurs when 
��
�� � 0 

i.e. at � � ��
���
��                                                     (5)     
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From Eq. 4, it can be seen that only when excitation 

frequency and frequency of the system are equal i.e. when 

Ω=1, phase angle attains a value of 90°. From Fig.8, it can be 

observed that a phase angle of 90° is caused by excitation 

frequencies of 268.3Hz which happens to be the first mode 

frequency of the system as obtained from modal analysis. 

This validates the point that the frequency obtained from 

modal analysis is indeed the natural frequency of the system 

and therefore the critical speed of the system which, by 

definition, means that speed at which a system gets into 

resonance. Resonance [5] causes an increase in amplitude of 

oscillation of a mechanical system that is exposed to a 

periodic force whose frequency is equal to the natural 

frequency of the system. This phenomenon reveals itself in 

the amplitude plots, given in Fig.2 through Fig.7, which 

graphically illustrate the amplitude reaching a peak value 

only when Eq. 5 is satisfied i.e. only when excitation 

frequency lies near the natural frequency of the system. Thus, 

both phase angle and amplitude plots obtained through 

harmonic analysis serve as functional pointers towards 

critical speed of a rotor-bearing system. 

 

 

V. SUMMARY  

A novel way to reduce time and effort involved in 

performing modal analysis and multiple iterations of 

harmonic analysis to obtain unbalance response of the 

considered system has been suggested through adept use of 

ANSYS Parametric Design Language, an advanced feature 

of ANSYS. A method of identifying critical speeds with the 

help of amplitude and phase angle plots has been described. 

This method has been found to validate the critical speed 

results obtained from modal analysis. 
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Table I: Position and diameters of various sections of shaft 

Sec No. Origin 

(m) 
Inner 

Diameter 

(m) 

Outer Diameter 

        (m) 

1 0 - 0.0102 

2 0.0127 - 0.0204 

3 0.0508 - 0.0152 

4 0.0762 - 0.0406 

5 0.1016 - 0.0660 

6 0.1067 0.0304 0.0660 

7 0.1143 0.0356 0.0508 

8 0.1270 - 0.0508 

9 0.1346 - 0.0254 

10 0.1905 - 0.0304 

11 0.2667 - 0.0254 

12 0.3048 - 0.0762 

13 0.3150 - 0.0406 

14 0.3454 0.0304 0.0406 

 

 
Figure  1: Model of Nelson rotor with various sections, disc and 

bearings. Numbers in red indicate station numbers 
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Figure 2:Variation of amplitude of vibration(m)(on Y axis) at 

station 1 with excitation frequency (Hz)(on X axis) 

 

 

Figure 3:Variation of amplitude of vibration(m)(on Y axis) at 

station 2 with excitation frequency (Hz)(on X axis) 

 

 

Figure 4:Variation of amplitude of vibration(m)(on Y axis) at 

station 3 with excitation frequency (Hz)(on X axis) 

 

Figure 5:Variation of amplitude of vibration(m)(on Y axis) at 

station 4 with excitation frequency (Hz)(on X axis) 

 

Figure 6:Variation of amplitude of vibration(m)(on Y axis) at 

station 5 with excitation frequency (Hz)(on X axis) 

 

Figure 7:Variation of amplitude of vibration(m)(on Y axis) at 

station 6 with excitation frequency (Hz)(on X axis) 
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Figure 8: Typical variation of phase angle with excitation 

frequency. ωn denotes natural frequency of the system. 
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