
 
 

 

 
     Abstract- This paper investigates p-cyclic self-maps 

XX:T   in problems involving perturbations which satisfy a 

distance constraint in a metric space which mixed 
non-expansive or contractive properties and potentially 
expansive properties related to some distance threshold. The 
above mentioned constraint is feasible in certain real -world 
problems. Two classes of self-maps are investigated, namely, 
those which become p-cyclic strict contractions in the absence of 
perturbations and those which in the same conditions become 
p-cyclic contractions of Meir-Keeler type. 
 
    Keywords-strictly contractive maps, non-expansive maps, 
metric space, fixed points, p-cyclic contractions, perturbations. 

 
I. INTRODUCTION 

 
    Recently, the subsequent  set sophisticated related 
problems are under strong research  activity: 1) In  the,  
so-called,   p  2 -cyclic non-expansive or contractive 

self-maps map each element of a subset 

 pi A,....,A,AA 21 of  an either  metric or Banach 

space  B to an element of  the next subset 1iA  in a strictly 

ordered chain of p subsets of B  such that 11 AA p  .  If the 

above subsets do not intersect then fixed points do not exist 
and their potential relevance in Analysis is played by best 
proximity points, [1-2]. Best proximity points are also of 
interest in hyperconvex metric spaces, [3-4]. 2) The so-called 
Kannan maps are also being intensively investigated in the 
last years as well as their relationships with contractive maps. 
See, for instance, [5-6], [11].  3)  Although there is an 
increasing number of theorems about fixed points in Banach 
or metric spaces, new related recent results have been proven. 
Some of those novel results are, for instance, the 
generalization in [7] of Edelstein´s fixed point theorem for 
metric spaces by proving a new theorem. Also, an iterative 
algorithm for searching a fixed  point in a closed convex 
subset of a Banach space has been proposed in [8]. On the 
other hand, an estimation of the size of an attraction ball to a 
fixed point has been provided in [9] for nonlinear 
differentiable maps. 4) Self-maps T in complete (or compact) 
metric spaces  d,X  are classified in four classes in [12], 

namely: T is  said to be of  Leader-type (or Picard operator) if 
it  guarantees the convergence of any iteration through  T to 
the unique fixed point . Also, T is said to be of  Unnamed- 
type if convergence of all the iterations to the unique fixed 
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point is not guaranteed . In the so-called Subrahmanyam 
-type (or weakly Picard operator), all iterations converge to a 
fixed point which can be non-unique. Finally, T is said to be 
of Caristi-type if iterations not necessarily converge to some 
eventually non-unique fixed points. 5) Fixed point theory can 
be also used successfully to find oscillations of solutions of 
differential or difference equations  which can be themselves 
characterized as fixed points. The formalism is also useful to 
investigate stability and boundedness of the solutions in 
time-delay and continuous/ discrete hybrid dynamic systems. 
See, for instance, [9-10], [13- 15], [19], [25]. On the other 
hand, the existence of positive solutions of some useful 
differential equations can be investigated by using the fixed 
point index . See, for instance, [22-23] and references 
therein. This manuscript is devoted to investigate the 
nonexpansive ([2], [7], [24]) and contractive properties of 
self-maps XX:T   in a metric space  d,X  which 

satisfy the constraint: 
  

       y,xdyT,xTdy,xMdKy,xdK iiii  111       

                   y,xMdKy,xdK iiii 222    (1.1) 

;   1 ii AAy,x for some real constants ii K,K 21 and 

some real functions   01 Riiij AA:M ; 

 p,...,:pi 21 ; j=1, 2 where 

 00   z:z: RR and  1 iii A,Adist:d ; 

pi are the distances between adjacent subsets iA and 

1iA  of X ; pi .The p-cyclic restricted self -map 

 pi ipi i AA:T


 (i.e. the domain and the image of 

XX:T   are restricted to  pi iA


) is subject to the set of 

constraints   1 ii AAT ; pi .  The set of fixed points 

of the map T is denoted through the manuscript by  TF . 

 
II. MAIN RESULTS FOR MODIFIEC CYCLIC 

CONTRACTIONS 
 

   This section is mainly concerned with the derivation of 
some mathematical results about uniform boundedness of  
the  iteration of distances of pairs of points belonging to 
adjacent subsets  of X in the presence of perturbations given 
by the functions   01 Riiij AA:M ; 

 p,...,:pi 21 ; j=1, 2. First note that Eq.(1.1)  is 

equivalent to: 
 
       yT,xTdy,xMdKy,xdK iiii  1111   

               y,xMdKy,xdK iiii 2221            (2.1) 

Note that if   02  y,xMd ii ,  102 ,K i ; 

  1 ii AAy,x ; pi   then (2.1) implies that 
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 pi ipi i AA:T


 is a strict contraction according 

to Banach contraction principle. If    02 y,xM i ; pi   

then  pi ipi i AA:T


   satisfying (2.1) for each 

  1 ii AAy,x ; pi   is a po-cyclic contraction [2, 7] . 

Through this section, it is proven that the contraction 
principle does not hold, in general. However, 

 pi ipi i AA:T


 is not expansive for sufficiently 

large distances between   pi;AAy,x ii  1  . In this 

context and in view of (1.1), it is possible to speak about the 

restricted self-map  pi ipi i AA:T


  being 

locally non expansive, contractive and expansive  as follows.  
In particular, note that    y,xdyT,xTd  ; i.e. 

1 ii AA|X:T  is locally non-expansive for a given  pair 

  1 ii AAy,x  if  
 

i

iii

K

y,xMdK
y,xd

2

22 
 .   

     Also,    y,xdyT,xTd  ; i.e. 1 ii AA|X:T  is 

locally contractive for a given  pair   1 ii AAy,x  if 

 
 

i2

i2ii2

K

y,xMdK
y,xd


 . Finally , for any given 

  1 ii AAy,x : 

 
 

i1

i1ii1

K

y,xMdK
y,xd i


  

   y,xdyT,xTd  ; Xy,x                 

so that  1 ii AA|X:T  is locally expansive for such a 

given  pair. Since 1 ii AA|X:T  cannot be 

simultaneously locally expansive and locally  non-expansive 
for any given  pair   1 ii AAy,x  the following 

inequality is not feasible for any   1 ii AAy,x  : 

 
 

 
i2

i2ii2

i1

i1ii1

K

y,xMdK
y,xd

K

y,xMdK
i





    

                                                                                         (2.2) 
   The following  result is concerned with sets of necessary 
constraints for (1.1) to hold. 
 
Propositions 2.1.  The following propositions follow 
directly: 
(i) If the constants ijK have to satisfy the sets of necessary 

conditions: 
    iiii K/Ky,xM/y,xM 2121  ; pi ;  j=1, 2; 

  1ii AAy,x                                                             (2.3) 

then the unfeasible condition (2.2) never holds in 1ii AA  . 

If  
    iiii K/Ky,xM/y,xM 2121  for some 

  1ii AAy,x  , pi ,  j=1, 2                                      (2.4) 

then 

 
   











 


i

iii

i

iii

K

y,xMdK
,

K

y,xMdK
y,xd i

1

11

2

22
 

(ii)       iiiii dKKy,xdKK 1221    

            012  y,xMy,xM ii                                 (2.5) 

  1ii AAy,x  , pi   

(iii) If 0d i  (i.e.  1ii AA ) and   0y,xM i  ; 

  1ii AAy,x   for some pi  then 01 21  ii KK  

or 0K1 i2   and 1K i1  . In the second case, the first 

inequality of (2.1) holds trivially everywhere in 1ii AA  . 

Proof: (i) Since (1.3) is unfeasible for any 
pair   1 ii AAy,x  ; pi   then 

   
i

iii

i

iii

K

y,xMdK

K

y,xMdK

1

11

2

22 



 

which is equivalent to (1.4), guarantees that (2.2) does not 
hold in 1ii AA  . Also, (2.4) together with the companion 

constraint for the distance guarantees that (2.4) does not hold. 
 
(ii)-(iii)  follow directly from (2.1)  which requires the 
necessary condition 
     y,xMdKy,xdK iiii 1111   

             y,xMdKy,xdK iiii 2221   

  1ii AAy,x  , pi                                             

    The following result proves uniform boundedness of the 
distance iterates independently of the iteration index but 
dependent, in general, of the initial  points. The limit 
superiors of the iterations are uniformly bounded 
independent of the iteration index and also independent of the 
initial points.  
 
Theorem  2.2.  The following properties hold: 
 (i) Assume that     iii yT,Txdy,xM 222   with 

 02 Ri , 10 22  ii K ;   1ii AAy,x  , 

pi . Then ,      y,xLyT,xTd pjpj ; 

  1 ii AAy,x , pi where  y,xL  being a bound 

dependent on the pair (x, y) ;   1 ii AAy,x ; 

pi which is uniform for all Zj  provided that 

 y,xd  is bounded. Furthermore,  

 yT,xTdsuplim pjpj

j 
 



 



 





















































p

i i

i

p

i i

iii
p

ik k

k

K

dKK

:

1 1

1

1 2

22

1 2

2

2

1

1
1

11

1

       (2.6) 

is uniformly bounded  pi iAy,x


 .Also,  there is an 

upper-bound  y,xj2  of  yT,xTdsup pp

j



 
; 

 pi iAy,x


 which is sufficiently close to 2  for 

sufficiently large  Zj  in the sense that , for any 

prescribed arbitrarily  small  R ,    22 y,xj  

;    ZNNj for some finite ZN . 
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(ii)  Assume that  Property  (i) holds and, in addition, 
    iii yT,Txdy,xM 111   with  

   021 Rii and    021 Rii and 

1
1

1
10

2

1
211 
















i

i
iii ,minKK  ; 

  1ii AAy,x  , pi .  

    Then,    0201  ,yT,xTd pjpj , 

    Z0N,Nmaxj  and some finite  000  NN  

where  



 



 





















































p

i i

i

p

i i

iii
p

ik k

k

K

dKK

:

1 1

1

1 1

11

1 1

1

1

1

1
1

11

1

.          

   Furthermore, there is a lower-bound  y,xj1  of 

 yT,xTdinf pp

j



 
;   1 ii AAy,x ; 

pi which  is sufficiently close to 1  for sufficiently 

large  Zj  in the sense that, for any given arbitrarily  

small  R0 ,   011  y,xj  ; 

   Z000 NNj for some finite Z0N . Also, 

    201 ,yT,xTd pjpj ; 

    Z0N,Nmaxj . 

 
(iii) Consider the restricted map 

 pi ipi i AA|X:T


  and assume that Property (i) 

holds and, furthermore, 02  i ; pi and 


 pi iA . Then , 

 pi ipi i AA|TFz








 and the p-cyclic 

restricted self-map  pi ipi i AA:T


 is strictly 

contractive. If, furthermore,  d,X is complete then the 

fixed point is unique. 
 
Proof: (i)  The  following chain of inequalities follows by 
direct inspection of (2.1)  provided that 

    iii yT,Txdy,xM 222   and 

10 22  ii K  ;   1ii AAy,x  , pi : 

       y,xMdKy,xdKyT,xTd iiii 2221 

      iiiii yT,TxddKy,xdK 22221   

         
i

iii

i

i dK
y,xd

K
yT,xTd

2

22

2

2

11

1









  

         y,xd
K

yT,xTd
p

i i

ipp





























 

1 2

2

1

1
 

      
  



































p

i i

iii
p

ij j

j dKK

1 2

22

1 2

2

11

1
       

            ;  Zj  

  2


yT,xTdsuplim pjpj

j

    20 ,yT,xTd pjpj                        (2.7) 

;   1ii AAy,x  , pi  for any given  R and 

some finite sufficiently large    ZNN  since 



















p

i i

iK

1 2

2
1

1

1
. Property (i) has been proven. 

(ii) If Property (i) holds and, furthermore,  
    iii yT,Txdy,xM 111  , ii 21   and 

ii 210   ;   1ii AAy,x  , pi .  Then  one 

gets in a  similar way    1


yT,xTdinflim pjpj

j
.  

Thus, for any given  R0 ,  0N    Z00N  

being sufficiently large so that 

    201 ,yT,xTd pjpj ; 

    Z0N,Nmaxj .  Property (ii) follows.  

 

(iii) Note that    0


yT,xTdlim pjpj

j
 ; 

  1ii AAy,x   for any pi   if 02  i ; pi , 

and 
 pi iA    pi;d i  0 as a result so that 







 

  pi ipi ipi i AA|X:T:A|T has a fixed 

point . This is obvious since   1 ii AAT . Thus , 









 pi ij A|TFAz for some pj  since 

 pi iAz


 . Thus, 1 jj AAzzT  and proceeding 

recursively: 

                       xTlimAzzT j

jpi i
p


  ; 

 pi iAx


  

 pi ipi i AA|TF








 is  proven as follows. 

Since   pi;AAT ii  1 , then 

i
i

pi i
j

j

k AATzA|TFxTlimzzT 







   

for some p ,  pi iAx


 , pi . Then,  pi iAz


  

which is unique from Banach contraction principle if 
 d,X is complete.                                                   

   The conditions  10 22  ii K  and 

1
1

1
10

2

1
211 
















i

i
iii ,minKK   

of  Theorem 2.2 are now weakened by replacing them by 
weaker ones related to the whole p-cycle of the restricted map 

 pi iA|T


as follows: 
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Corollary  2.3.  The following properties hold: 
(i) Assume that     iii yT,Txdy,xM 222  with  

10 2  iK and  02 Ri ;   1ii AAy,x  , 

pi and 1
1

1

1 2

2
2 
















 



p

i i

iK
: . Then, Theorem 

2.2 (i) holds. 
(ii)  Assume that Property (i) holds and, in addition, 

    iii yT,Txdy,xM 111   with, 

10 21  ii KK    021 Rii and

   021 Rii and 1
1

1

1 1

1
1 
















 



p

i i

iK
:  ; 

  1ii AAy,x  , pi . Then, Theorem 2.2 (ii) holds. 

 
(iii) Consider the restricted map 

 pi ipi i AA|X:T


  and assume that Property (i) 

holds and, furthermore, 02  i ; pi and 


 pi iA . Then, 

 pi ipi i AA|TFz








 and 

 pi ipi i AA:T


  is strictly contractive. 

 
Proof:  It follows directly from Theorem 2.2.                     ⁭ 
 
    Note that an important fact related to the applicability of 
Corollary 2.3 is that the conditions 

2110 ,j;pi;K ij   may be achieved  in a 

compatible fashion with   121  ,max  with only  

iK 1 , jK 2 one  such constraints being strictly less than 

unity  for  some pj,i  .                                                   

   
   The  known previous result that the sets iA ; pi    have 

identical pair-wide distances  if non-expansive p-cyclic 

self-maps on  pi iA


 exist , [2] ,  adopts the following 

characterization. 
 
Proposition 2.4. If there exists a non-expansive p-cyclic 
self-map  pi ipi i AA:T


 then idd  ; pi . 

Proof: Take   1 ii AAy,x   such that  y,xdd i   for 

any pi  and assume that  pi ipi i AA:T


  is 

non-expansive. Then , 
     yT,Txd,dmaxy,xdd ii      

         j
pj

jj
i

jipj
dmaxyT,xTd,dmaxmax












1
       (2.8) 

Since  pi   is arbitrary 

  pi;dddmaxd ij
pj

i 


.                                 

   Proposition 2.4 applies in particular if  

 pi ipi i AA:T


  is strictly contractive as, for 

instance, to Theorem 2.2 (iii) and Corollary 2.3 (iii). Note  
 
   A relevant  result  in the context of this paper is related to 
the fact that under weak conditions the self-map 

 pi ipi i AA:T


  cannot be expansive or 

asymptotically expansive. That means that sufficiently large 
distances  lead to  local contractions in the sense that  such 
distances decrease through the iterative process. As a result, 
if  can only be locally expansive as it is proven in the 
subsequent result:     
                                   
Theorem 2.5.  Assume that: 

 0
11 2

22

2

22 


















i

iii

i

ii dK
,

K
min ; pi   so that 

there is at least one pj   such that 

0
11 2

22

2

22 


















j

jij

j

jj dK
,

K
min .Then, 

 pi ipi i AA:T


  is neither expansive nor 

asymptotically expansive. 
 
Proof :  Eq. (1.1) may be rewritten as follows: 

     
2

22

2

22

11 i

iii

i

ii dK
y,xd

K
y,xdyT,xTd











                                                                                         (2.9) 
;   1 ii AAy,x , pi  which implies: 

   y,xdyT,xTd pp       

  0
11

1

11

2

22

2

22 























p

i

ii

i

ii

i

iii
yT,xTd

KdK
  

                                                                                       (2.10) 
provided that   
 

  
 










p

i

p

i i

iiiii

i

ii dK
yT,xTd

K

1 1 2

2211

2

22

11
 

 and the given parametrical conditions hold. Now, assume 

that  pi ipi i AA:T


 is either expansive or 

asymptotically expansive. Thus, for any   1 ii AAy,x  

and any pi  , there exists a finite sufficiently large  positive 

integer   pi,y,xjj   such that 

  
 










p

i

p

i i

iiiijij

i

ii dK
yT,xTd

K

1 1 2

2211

2

22

11

 which implies that 

   yT,xTdyT,xTd jpjpjpjp 11    from (2.10). 

As a result , for each   1 ii AAy,x  and each pi  , 

there is a infinite  sequence  of positive integers  y,xS  

such that  
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













  yT,xTdyT,xTd kjkjkjkj 11 ; 

   y,xSy,xjj kk                                             (2.11) 

if  pi ipi i AA:T


 is either expansive or 

asymptotically expansive what is a contradiction which 
proves the result.                                                                                                                                                                 
 
   Note that Theorem 2.5 is applicable even if 2iK ; 

pi  are real constants non necessarily in  10 , . Note also 

that Theorem 2.5 does not guarantee that 

 pi ipi i AA:T


  so that it is not guaranteed that 

all distances between the subsets iA ; pi  arte identical. 

The following complementary result follows which also 

ensures that  pi ipi i AA:T


 is neither  globally 

expansive or asymptotically expansive although it is not 

ensured to be non-expansive for any points in  pi iA


 : 

Proposition 2. 6.  Assume that the constraint for 
 y,xM i2 of Corollary 2.3 (i) is generalized as  

    i
ii

i
i

jj
i yT,xTdmaxyT,xTM 222

21


 

  (2.12)                                                                     

with  02 Ri  and   pi;,K ii  122 , 

10 22  ii K ;  for some    0Zjkk  ; k=1, 2 

subject to 10 21  j ,   1ii AAy,x  , 

pi  . Then,  yT,xTd jj is iteration- uniformly 

bounded (in the sense that its upper-bound is independent of 
the integer Zj ) with uniform bound being dependent on 

the ( bounded) distance of the pair (x, y); 
  1 ii AAy,x ;  0Zj , pi so that 

 pi ipi i AA:T


 can be locally expansive although 

it cannot be either expansive or asymptotically expansive. If, 

furthermore,   pi;,K ii  122 and some 

 R then 

  







 i

iii

pi

kk

k

dK
maxyT,xTdsuplim

2

22

11

1
   

for some  10 ,R                                               (2.13) 

 
Proof : From (2.12),  

     yT,xTdKyT,xTd jj
i

jj
2

11 1  

 yT,xTMdK jj
iii 22        yT,xTdK jj

i21      

      iii
ii

ji
i dKyT,xTdmax 22

10
2 


         (2.14) 

Define  kjj   

     




















 




 yT,xTdmaxyT,xTdk:max: jj

kj

kk 11

0

11
0  Z  

for any  0Zk so that , one gets from (2.14) 

     yT,xTdKyT,xTdmax kk
i

jj

kj
2

11

0
1


 

       iii
jj

kj
i dKyT,xTdmax 22

11

0
2  


 

                    

     yT,xTdmaxyT,xTdyT,xTd jj

kj

kkjj 11

0

11 



 

    









2

22

1

dK
yT,xTd:y,xL kk   (2.15) 

provided that  122 ,K ii  ,   1 ii AAy,x ; 

   01 Zkj , pi  and p being defined as 

p
p

ik
PartIntik 







 


1
 .Then,   yT,xTd kk  

with uniform bound  0Zk depending on each 

given   1 ii AAy,x ; If,  Zk .  furthermore, 

 122 ,K ii  ; pi  then 1
1

1

2

2 





i

i
i

K
: ; 

pi   so that (2.13) follows from  (2.15) with  

i
pi

max: 


.                                                                         

      Proposition 2.6 implies has the following consequent 
result. 
 
Proposition 2.7. Under the conditions of Proposition 2.6, the 
following set of relations for the distances between the 
subsets  iA , pi  of  X  hold : 

 




2

2
1 1 

 
dK

dA,Adist:d jiii ; p,j,i      

                                                                                       (2.16) 
Proof :  Eq. (2.15 ) implies directly:  

   




2

2

1 


dK
yT,xTdyT,xTdd kkjj

ij        

                 




2

2

1 
 

dK
d ik                                       (2.17) 

;   1 ii AAy,x ,    01 Zkj  ,  0Zk  any 

pi  (since x and y are any points in 1 ii AA ; pi  ) 

and some   p
p

ik
PartIntikk,ip 







 


1
 .    

Since the  integers i and k are arbitrary in Zp ,   takes 

any value in p  depending on the initial points x and y. 

Therefore, Eq. (2.16) implies (2.17).                               
 
   Note that Proposition 2.7 is applied directly to the case that 
all distances between adjacent subsets are identical. It is of 
interest the investigation of the properties of the self-map 

 pi ipi i AA:T


 for distances between 

non-adjacent subsets. Assume the following cases: 
a) iAy,x   for some pi   so that 1 iATy,Tx subject to: 
       yT,xTdy,xMy,xdK ii  111          

              y,xMy,xdK ii 221                           (2.18) 

b)   ji AAy,x   for some pj,i   so that 

  11   ji AATy,Tx with 1 iji  then one gets for 
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any set of points satisfying 

 1 i\j;yx,xx:Ax jijj   the following 

constraint by using the triangle inequality for distances 
together with the upper-bounding constraint in (2.1): 

        








 

1

12

1

1 1
j

i

j

i

x,xdKxT,xTdTy,Txd







    

                          122   x,xMdK  

      12212
1

1 


 


x,xMdKx,xdKmaxp
ji

                                                                                       (2.19) 
      12

1
1 


 


x,xdKmaxp

ji
    

     122
1




 


x,xMdKmax
ji

                   (2.20) 

   It follows from (2.20)  that Theorem 2.2 [(i), (iii)] (i.e. 
uniform boundedness distance of iterations  for any two 
initial points in any , in general, distinct non-adjacent, subsets 

iA of X  under obtained via  pi ipi i AA:T


 ) 

still holds irrespective of pj,i   if 1
1

1

2

2 














 i

i

pi

K
maxp , 

Corollary 2.3 (i) holds if 1
1

1

2

2 














 i

i

pi

K
maxp irrespective 

of pj,i  . Also, Proposition 2.6 holds under the 

replacement 1


pmax: i
pi

 irrespective of pj,i  . 

Note that Theorem 2.5 guaranteeing that 

 pi ipi i AA:T


  is non-expansive and 

non-asymptotically expansive also holds under a close and 
similar proof to the given one. If the initial points are within 
the same subset iA of X, the  above results are still valid  

under weaker conditions to the light of (2.18) by zeroing the 
distances between subsets. Expressions for lower- bounds 
can be also derived in a similar way using  

   12
1

1 


 


x,xdKminp
ji

. 

 
III.MAIN RESULTS ON MODIFIED MEIR-KEELER 

CONTRACTIONS 
 

   p- cyclic Meir- Keeler contractions have been discussed in 
a number of papers (see, for instance, [1-3], [7]).  In the case 

that 
 pi iA  then  pi ipi i AA:T


  has no 

fixed points and their role is played in this case by the 
so-called best proximity points, [1-4], [16-17].  This section 
is concerned with the extension of  p- cyclic  Meir – Keeler 
contractions to the case of  constraints close to  (1.1).  
Roughly speaking  pi ipi i AA:T


  is not 

expansive for large distances of the initial points in a similar 
context as that investigated in Section 2 to the light of Banach 
contraction principle.  A p- cyclic self-map 

 pi ipi i AA:T


  is a p-cyclic Meir–Keeler 

contraction, [2], if for every  R ,  


 R if  

     ii dyT,xTddy,xd                  (3.1) 

or, equivalently,      y,xd,dminyT,xTd i  if 

  y,xd .Consider now according to (1.1) , or (2.1),  that 

    i
ii

i
i

jj
i yT,xTdmaxyT,xTM 222

21


 

as 

assumed in (2.12) with   21,k;jkk   ; 

  1 ii AAy,x ; pi   ,  0Zj which includes 

the particular case     iii yT,Txdy,xM 222  ,  

studied in Section 2,  for  the modified Banach contraction 
principle. Thus,  pi ipi i AA:T


  is a modified 

p-cyclic Meir- Keeler contraction  if: 
 
     y,xMdy,xd ii 2       

            y,xMdyT,xTd ii 2                           (3.2) 

;   1 ii AAy,x ; pi    .  Also, 

 pi ipi i AA:T


 is a worst –case modified  p- 

cyclic  Meir-Keeler  contraction  if  for any  R  ; 

  ijij :                                                                

    


iji
ii

i
ii

jj yT,xTdmaxdyT,xTd 22
21 

 

                                  

    



i

ii

i
ii

jj yT,xTdmaxdyT,xTd 22
11

21 

                                                                                        (3.3) 
Theorem 3.1. Assume that  pi ipi i AA:T


 is a 

worst -case modified p- cyclic  Meir-Keeler  contraction. 

Then,  yT,xTd jj  is bounded for any 

  1 ii AAy,x ; pi    provided that  y,xd  is 

bounded. 
 
Proof : One gets from (3.3) 

 yT,xTd jj 11       

    










yT,xTd,yT,xTdmaxdmin jjii

i
22

21 
  

                             

  





 





 yT,xTd,yT,xTddmin jjii jj

22  

                                                                                   (3.4) 
  1 ii AAy,x , for some integer 

    j,ji j 21  , some   21,k;jkk   ; pi  , 

 0Zj  where i
pi

dmaxd


 , i
pi

max 22 


, 

i
pi

max 22 


and i
,pi

max 



 Z

 for some sequence of 

positive real constants   j
ii 0   ;  0Zj , pi  . 

Proceeding recursively with (3.4), one gets: 

 yT,xTd 1j1j       

    










yT,xTd,yT,xTdmaxdmin jjii

i
22

21 
  

  





 





 yT,xTd,yT,xTddmin jjii jj

22                 

                                                                                        (3.5)   
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provided that   i
j

yT,xTdmin 





0
 . Assume that it 

exists   1 ii AAy,x such that the real sequence 

  



0

11
Zj

jj yT,xTd  is unbounded so that some 

subsequence of it diverges as  . Thus, for some 

arbitrarily large  0R ,      Z00 n,nkk  and 

some sufficiently large Z0n  such that from (3.5), one 

gets. 

      






































 yT,xTdmin,yT,xTdmaxdmin ii

ji

ii

ji

j
j

k

k

010

2
2

1

0
22 1

where i
pi

dmaxd


 , i
pi

max 22 


, i
pi

max 22 


and 

i
,pi

max 



 Z

what implies that  yT,xTdmin
j



0
 is 

unbounded  leading to a contradiction.                                                                            
   
Some further properties of worst-case modified p-cyclic Meir 
– Keeler contractions are now investigated. Define the 

sequence  0jf of real functions 

RR 














 0 pi ipi ij AA:f ;  0Zj  

from (3.3) for a given sequence of nonnegative real numbers 

 0jm as follows: 

 jj m,y,xf  

  j
ii

jij
mdyT,xTdmax: 


22

12 

                       (3.6) 

   111   jjjj m,y,xgm,y,xf  

    12
11

2
11

12




  j
ii

jij

jj mdyT,xTdmaxyT,xTd:


                                                                                         (3.7) 
where 
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

 for some  0RM  ;  0Zj and i
pi

dmaxd


 , 

i
pi

max 22 


 and  i
pi

max 22 


, 

  pi;AAy,x
pi ipi i 















  . It is assumed 

for simplicity that  021 Z, are constant with 012    

The following result is an ad-hoc extension of [2], Lemma 
2.2, [20-21], which is useful for studying worst-case 
modified p-cyclic Meir-Keeler contractions: 
  
Lemma 3.2. Assume that  
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

;     














  pi ipi i AAYy,x  ; 

 0Zj . Then , the following properties are equivalent: 

(1) For each     RR MM  such 

that
    Mm,y,xfMm,y,xfM jjjj   110  

for   Yy,x  and some   01 Rjj m,m . 

(2)   a nondecreasing continuous L-function 

  00 RR: ( .e.i   00  and  R  fulfilling 

  st 0 ;   s,st , [2],[20-21]) such that for 

  01 Rjj m,m  fulfilling the above property (1): 

           110  jjjj m,y,xfm,y,xf , for 

  Yy,x  , the second inequality following  sine   is an 

L-function, and  
             00 11   jjjj m,y,xfm,y,xf                 

                                  jjjj m,y,xfm,y,xf      

   
 The following concerns the boundedness of 

    










yT,xTdmaxyT,xTd ii

jij

jj

12
2


 . 

 
Lemma 3.3. Assume that  pi ipi i AA:T


 is a 

worst –case modified  p- cyclic  Meir-Keeler  contraction 
which satisfies 
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

;     














  pi ipi i AAYy,x  

 ;  0Zj . Assume also that Lemma 3.2 holds with 

 0jm  being an uniformly bounded nonnegative real 

sequence ;  0Zj . Then,  the  real sequence  

    

 








0

2
12

yT,xTdmaxyT,xTd:s:S ii

jij

jj
k


   

                                                                                         (3.8) 
is uniformly bounded from below and  from above . 
 
Proof : It is directly bounded from below since . It is now 
proven that it is bounded from above. 
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

First note that  0Rks . The proof follows by 

contradiction. Assume that S is unbounded to that there is a 
strictly monotone increasing subsequence 

  ,Z


k
k jj

, s:S , with ZZ ,  being countable, such 

that  
kjs  as kj .  Then, 

kjs for any 

prefixed arbitrary  R and all   ´SN  for some  

  ´SNN  . From Lemma 3.2(i), for each 

    RR MM  such that 

   yT,xTd:m,y,xfM jj
jjj   

                 j
ii

jij
mdyT,xTdmax 


22

12 
 

       jmd,Mmax  2                                   (3.9) 

  1211   jjj mdm,y,xfM  

  j
j

j mmaxdMmdM


 
0

212  

                                                                                       (3.10) 
so that   cannot be fixed arbitrarily what leads to a 

contradiction.                                                                      
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   The above result together with Lemma 3.2 lead to the 
self-map  pi ipi i AA:T


 to be neither 

expansive nor asymptotically expansive. 
 
Proposition 3.4. Assume that  pi ipi i AA:T


 is 

a worst –case modified  p- cyclic  Meir-Keeler  contraction  
whichsatisfies
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

;     














  pi ipi i AAYy,x  ; 

 0Zj . Assume also that Lemma 3.2 holds with 

 0jm  being a nonnegative nonotone decreasing real 

sequence. Then,  pi ipi i AA:T


 is neither 

expansive nor asymptotically expansive. 
 
Proof. Note that 

   











 yT,xTdmaxyT,xTd ii

jij

jj

12 11
2

11



    










yT,xTdmaxyT,xTd ii

jij

jj

12
2



jj mm  1                                                                  (3.11) 

   From Lemma 3.3, the real sequence S consisting of 
elements 

   yT,xTdmaxyT,xTds ii

jij

jj
k

12
2

 
  is 

uniformly bounded for  0Zk : 

   yT,xTdyT,xTdC jjjj 112 

    










yT,xTdmaxyT,xTdmax ii

jij

ii

jij 1212 11
2



   










yT,xTdmaxyT,xTd ii

jij

jj

12
2


    

   











 yT,xTdmaxyT,xTd ii

jij

jj

12 11
2

11


    

01  jj mm                                                         (3.12) 

   The following situations can occur for the sequences 
below: 

1)    yT,xTdyT,xTd jjjj 11   ,  

    










yT,xTdmaxyT,xTdmax ii

jij

ii

jij 1212 11 
   

                                                                                     (3.13) 
if 02   are both bounded real sequences. Then , 

 pi ipi i AA:T


 is neither expansive nor 

asymptotically expansive. 

2)    yT,xTdyT,xTd jjjj 11   

     










yT,xTdmaxyT,xTdmax ii

jij

ii

jij 1212 11
2


 

                                                                                   (3.14) 

are unbounded sequences with the first one having a 
sequence diverging to   and the second one having a 
sequence diverging  at the same rate to   or vice-versa. In 

the first case,    yT,xTdyT,xTd jjjj 11   for 

  0ZZj  and Z  being countable of infinite cardinal. 

This implies that  pi ipi i AA:T


 is neither 

expansive nor asymptotically expansive. In the   contrary 
case, there is a diverging sequence fulfilling 

   yT,xTdmaxyT,xTdmax ii

jij

ii

jij 1212 11  
  so that 

   yT,xTdyT,xTd ijijijij iiii   11  for some 

integers    ijjijj iiii   111   with 

 12   i,iji . Again, 

 pi ipi i AA:T


 is neither expansive nor 

asymptotically expansive.                                                 
 

Remark 3.5. Note that if   011  k , then  Lemmas 

3.3-3.4 imply that  
2

2

1 




Mmd
yT,xTd

jjj while 

 pi ipi i AA:T


 is neither expansive nor 

asymptotically expansive.                                                  
 
   Some elementary results concerning the comparative 
values of interest of distances through the worst-case 
modified p-cyclic self-map  pi ipi i AA:T


 are 

provided in the next two Propositions.   Some conditions for 
the above self-map being non expansive, non asymptotically 
expansive or expansive are discussed in the next two results. 
               
Proposition 3.6. Assume that  RM , 

   RMjj and   0jm being a nonnegative 

monotone nonincreasing real sequence such that  

    MyT,xTdm,y,xfM jj
jj   

  jj
ii

jij
mdyT,xTdmax 


22

12 
 

    Mm,y,xgm,y,xf jjjj   111     

                         yT,xTd jj 11    

  MmdyT,xTdmax j
ii

jij
 


12

11
2

12 
   

                                                                                     (3.15) 
, equivalently   Mm,y,xf jj  , for 

                  














  pi ipi i AAYy,x  .  

   Then, the following inequalities hold: 

   yT,xTdyT,xTd jjjj  11 ; 

   yT,xTdmaxyT,xTdmax ii

jij

ii

jij 1212 11  
  

 yT,xTdmax ii

jij 12  
     

   











 yT,xTdmax,yT,xTdmax ii

jij

jj

12

22

11 

   
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                                                                                      (3.16) 
or, equivalently one has according to Lemma 3.2:  
 

         jjjjjjjj m,y,xfm,y,xfm,y,xfm,y,xf   110  

    00 11   jjjj m,y,xfm,y,xf   (3.17) 

   Two cases can occur, namely: 
a) Case 1:  

   yT,xTdmaxyT,xTdmax ii

jij

ii

jij 1212 11  
   

                                                                                      (3.18) 

    yT,xTd,yT,xTdmax jjjj 1122 11    

         yT,xTdmax ii

jij 12  
                                (3.19) 

Then, it follows that 
     yT,xTdmmyT,xTdyT,xTd jj

jj
jjjj  


1

11      

                                                                                       (3.20) 
so that  pi ipi i AA:T


  is not either expansive 

or asymptotically expansive.      
b) Case 2:  

   yT,xTdmaxyT,xTd ii

jij

jj

12

11

11

11







   

                              yT,xTdmax ii

jij 12  
  

                           

   yT,xTdyT,xTd jjjj 1111 11    ; 

                                          0Zj                              (3.21) 

then    
0

11 11 yT,xTd jj   is unbounded so that it 

has a subsequence which diverges . With no loss in 
generality, assume that 

   
0

11 11 yT,xTd jj  diverges so that, one gets  

from the worst-case modified p-cyclic contraction properties 
in Lemma 3.2: 

   yT,xTdm,y,xf jj
jj

11
11


   

  12
11

2
12




 j
ii

jij
mdyT,xTdmax


 

   yT,xTdyT,xTd jjjj 11 11
2

11     

Mmd j  12  

   yT,xTdmaxyT,xTd ii

jij

jj

12 11

11

 

          

    01 12
11

2
11  

 MmdyT,xTd j
jj    

                                                                                       (3.22) 
provided that  10 2  and 

 
2

1211

1
11




  Mmd

yT,xTd
jjj  . As a 

result, if    
0

11 11 yT,xTd jj  is unbounded then 

  


yT,xTdsuplim jj

j
;

  














  pi ipi i AAYy,x  what leads to a 

contradiction. As a result,  pi ipi i AA:T


  

cannot be either expansive or asymptotically expansive.        

 
Proposition 3.7. The following properties hold: 
(i) If  
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

;  0Zj  then  

   yT,xTdmaxyT,xTd ii

jij

jj

12

11

 

   

 if and only  if  

      







 




1

11
2

12
j

jjii

jij

jj yT,xTd,yT,xTdmaxmaxyT,xTd


Mmd j  2  

for some positive real sequence   0k . Also, 

   yT,xTdmaxyT,xTd ii

jij

jj

12

11

 

   if and  only if 

the constraint holds with the above sequence being 
identically zero. 
 
(ii) If  

    MmdyT,xTdmaxyT,xTd j
ii

jij

jj 


2
12 

 

,  0Zj  (i.e. 12  ) then 

 pi ipi i AA:T


  is expansive. 

 
Proof: It follows directly from the following relations: 
    MmdyT,xTdmaxyT,xTd j

ii

jij

jj 


22
12 

 

   MmdyT,xTd jj
jj  


21
11

2  

    MmdyT,xTdyT,xTd jj
jjjj  


212
11

2

 
If  102 , , one gets  proceeding recursively: 

    MmdyT,xTdmaxyT,xTd j
ii

jij

jj 


22
12 

 

   MmdyT,xTdmax j

k
ii

jikj

k 













 




2

1

0
2

1
2

12 





   MmdMmd j

k

j

k



















 




2

2

2
2

1

0
2 1

1



  

for any fixed  Zk , and 

 
2

2

1 






Mmd
yT,xTdinflim

jjj

j
; 

  1 ii AAxy,x ; pi  even in the event that  a 

fixed point  pi iAz


  exists if the sets iA intersect 

provided that either zx   or zy  since it exists Zk  

such tha pi  t  yTxT kk   0
0




yT,xTdmax ii

i
. On 

the other hand, if 12  then from the above relationships: 

   yT,xTdsuplimyT,xTdlim jj

j

jj

j 
  

  


yT,xTdinflim jj

j
  

so that  pi ipi i AA:T


  is expansive.                                  
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Remark 3.8, [2].  An important result for p-cyclic contractive 
self- maps  pi ipi i AA:T


 , namely, 

  022  y,xMii ; pi  ,  pi iAy,x


  is 

that since they are non-expansive they have the same distance 
between any pair of subsets ; i.e. dd i  ; pi   so that a 

fixed point exists in  pi iA


 provided that such an 

intersection is non-empty. If the intersection of the subsets is 
empty and those subsets are closed and convex then  
 

 yT,xTdlim ipjipj

j




 

       iii
ipj

i
ipj

j
zT,zdzT,zTdlim  




1  

;   1 ii AAy,x  where ii Az  , 11   ii Az ; pi   

are best proximity points.                                                         
 

IV. EXAMPLES 
 
Example 4.1. In order to discuss the feasibility of (1.1) for 
p=1 ; i.e. the self-map XX:T   is not p-cyclic under the 

constraint     Xy,x;My,xMy,xM i  022 R , 

note the following: 
1) If 0M  and  10 ,K  then (2.1) is the usual  

contractive constraint of Banach  contraction principle and 
XX:T   is strictly contractive . If 0 MK  then 

XX:T   is non-expansive. If 0M , 1K  and the 

inequality in (2.1) is strict for   Xxy,x   then 

XX:T   is weakly contractive.  

2)  If K=1 then   MyT,xTd  ;  Xy,x  . Since T is a 

self-map on X, the validity of the constraint (2.1) is limited to 
the set family 

     TjjiiiT ÂAsome;AATMAdiam:XA:Â 

 of bounded subsets of X. In this case,  

  MyT,xTd jj  ;  Zj provided that 

TÂAy,x    and T maps X to some member iA  of TÂ  

for each given Xy,x  . In other words, the image of T is 

restricted so that iAXX:T |  (for some Ti ÂA   which 

depends, in general, on x and y) so that   MyT,xTd   in 

order to (2.1) to be feasible,  i.e. yT,xT are in some set of 

the family TÂ  if the pair  x, y in X is such that   My,xd  . 

Note that XX:T   is not necessarily a retraction from X 

to some element of TÂ  since   ji AAT   for 

  Tiji ÂAA,A  . Note that  iA|XX:T   can 

possess a fixed point  if  K=1 and (2.1) holds. 
3) If 1K  then  

       y,xd
K

M
y,xdyT,xTd)K(/My,xd 




1
01  

if   Xxy,x   

As a result,  if Xy,x   exist such that 

  










1
0

K

M
,y,xd  then  the constraint (2.1) is 

impossible for any self-map T on X  since it would imply 
  0yT,xTd . But for large enough distances satisfying 

  




 


 ,

K

M
y,xd

1
(   






 


 ,

K

M
y,xd

1
, the 

self-map XX:T   is locally non-expansive (locally 

contractive). This can be expected to the light of some results 
provided in [18].   Fixed points can exist only in trivial cases 

as, for instance ,  






 


 Xy;

K

M
y,xd:x:X

1
is a set 

of isolated points with a minimum pair-wise distance 
threshold so that XX:T   is such that   XxyT   ; 

Xy   . 

4) The case of interest discussed through  this paper for (2.1) 
is when 0M  and  10 ,K .  It is  shown that the 

self-map XX:T   exhibits contractive properties for 

sufficiently large distances which exceed a minimum  real 
threshold while it might possibly be  expansive for  distances 
under such a threshold. A related motivating example 
follows.  

 
Example 4.2:  Note that the second inequality in  (2.1) with 

    01 2222  d,My,xMdKy,xMdK,p iii

Xy,x;  is equivalent to : 

      My,xdKyT,xTd  1                          (4.1) 

; Xy,x  , for  some 0M .   Eq. (4.1) is relevant, for 

instance, in the following important  problem. Let a linear 
time-invariant n-th order dynamic system be: 
 
     ttxAtx x                                                   (4.2) 

with  nnA R  being a stability matrix whose fundamental 

matrix satisfies ttA eKe 0
0

 ; 0 t  for some 

positive  real constants 0K  (being norm- dependent)  and 

0 and   nX,: R 0  being an unknown uniformly 

bounded  perturbation  of essential  supremum  bound 
satisfying   


0

0
Mtsupess x

t
; Xx . The 

unique solution of (4.3) for   00 xx   is: 

        
 dexetx x

t tAtA
00                        (4.3) 

   Direct calculation with (2.4)  for the norm –induced 
distance   yx:y,xd   ; Xy,x  yields: 

         000
0 yxeKtytxty,txd t    

                       





yxsup
K

00

0  

                      My,xdK  001                          (4.4) 

;  
K

K
ln:ht




1

1 0

0
0   with 

0

002




MK
M , 

 101 00
0 ,eK:K h   .  Now, let  nX R  the 

state space of (4.1), generated by (4.4)  , subject to Xx 0  

and  d,X is a complete metric space. Define the state  

transformation     



  hkxhkxT h 1  on X which 
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generates  the sequence  of states    
0


k

hkx  being in X 

if Xx 0  with h being any  real constant  which satisfies  

0hh  . Then, the self-map XX:T h   satisfies (4.1).  

     Note that the system (4.3) is always globally Lyapunov 
stable for any bounded initial conditions in view of (4.5). If 
the perturbation is identically zero then the origin is globally 
asymptotically Lyapunov stable since A is a stability matrix. 
This follows also from (4.5) since the self-map hT  on X is a 

contraction which has zero as its unique fixed and 

equilibrium point so that     0  hkxehkx A   as 

k ;  h,0  ; 0hh  . Thus,      0tx   as 

t  . However, in the presence of the perturbation, the 

origin is not globally asymptotically stable (although the 
system is globally stable) and it exhibits ultimate 
boundedness since for sufficiently large distances 

    
K

M
hkyT,hkxTd hh   (respectively, 

    
K

M
hky,hkxd  ),  the self-map is non-expansive 

(respectively, contractive). Then,    
         hky,hkxdhkyT,hkxTd hh 0 respectively, 

         hky,hkxdhkyT,hkxTd hh   ). But such 

properties are not guaranteed if      
K

M
hky,hkxd    

which can  lead to XX:T h   being  expansive.                                            

    Examples 4.1-4.2 emphasize the fact  that  some real-world 
problems exist where certain self-maps T from X to X are 
neither contractive nor expansive everywhere in X while 
such a map is guaranteed to be contractive for sufficiently 
large distances between any two points in X exceeding a 
known real threshold. For small distances, the self-map could 
be potentially expansive, or, as in the dynamic system of  
Example 4.1, unclassified as expansive, non-expansive or 
contractive since those potential behaviors have a local 
character. Note that in the self-map X on X is point-wise 
nonexpansive, contractive or potentially expansive for each 
given pair in X accordingly to the distance between them.   
   
Example 4.3:  Let the metric space be   d,R  endowed with 

Euclidean distance. Consider the self- map XX:T   

defining the discrete scalar dynamic controlled system:  

kkkkk ubxax 1 ;  0Zk ,   00 xx               (4.5) 

subject to 0 bb k under the control law 









00

0

k

kkkk
k xif

xifxsgnxK
u                                  (4.6) 

 
kk

kk
kkk xsignb

a
xKK


                                          (4.7) 

is a sequence from      000 ZRZR \ where k  is 

a discrete real sequence on  10 , . Consider the self-map 

RR:T defining the discrete closed-loop dynamic system 

obtained by combining (4.5)-(4.7).   
  kkkkkkkkkkkkk xxxsignKbaubxaTxx 1

;  0Zk ,   00 xx      (4.8) 

which is also valid for 0kx . Define subsets  01 RA and 

 02 RA  of  R and note that the self-map is a 2-cyclic 

self-map from 21 AA R to itself with  021  AA  

fulfilling 1221 ,, AAT  . Note that  TF0  . Since 

 10 , ,  TFx k 0  for any R0x  so that 

2121 AAAA:T  is  a 2-cyclic strict contraction. 

 
Example 4.4:  Example 4.3 is re-examined under a class of 
parametrical perturbations. Let the system be modified as 
follows: 

  kkkkkk ubxaax  01 ;  0Zk ,   00 xx     

                                                                                         (4.9) 
 subject to 0 bb k under the parametrical perturbation 

constraint  00 0 a,a k  . Now, redefine 

 001   z:z:A RR and 

 002   z:z:A RR  for some given 

 R as two disjoint sets of R . The control law is: 

  kkkk
k

kkk xxsignaa
b

xKu  01
1

   (4.10)   

A direct calculation shows that 
      kkkkkkk xaaxxAx 10011

                                                     21 Ax k    

      kkkkkk xaaxAx 11 0012                   

11 Ax k                                                                      (4.11) 

where   0k  is any arbitrary nonnegative real sequence.  

One gets from (4.11) that 

 kk
k

k aa
x

x
 

00
11 ;  0Zk                        (4.12)                   

If   0k  is identically zero and  000 Zk;aa k  

then 000  kkaa  

  01 1 xsignxx k
kk    

so that 11   ik Ax  if ik Ax  provided that 0x . If 

000  kkaa  as k then 

kk xsignxsign 1 and Lxx kk 1  as k  

for some real constant     ,,L  provided 

that 0x .If the control law (4.10) is replaced with: 

  kkk
k

k

kkk xaa
b

xKu 01
1










 
  for some 

 10 , ,  0Zk                                                    (4.13) 

Then , kk xsignxsign 1 ,  kk xx 1  as 

k  if 0x . 

 
Example 4.5:  A variant of Example 4.4 is re-examined under 
additive perturbations. Let the system be modified as follows: 

kkkkkk gubxax 1 ;  0Zk ,   00 xx    

                                                                                       (4.14) 
   The control law is computed so that kkk xx 1  

provided that the real additive perturbation sequence  0kg  

is identically zero. This yields: 
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   
kkkkk xabu 1

kkkk gxx 1          (4.15)                                                                               

    kkkkkkkk xggxxx 1       

                                                                                       (4.16) 
and the last implication is guaranteed if 

     11 kkg . Also, 

    kkkkkkkk xggxxx 1

                                                                                       (4.17) 
and the last implication is guaranteed if 

     kkg 11 . Then, 

   211 1 AxgAx kkk    ,   

   112 1 AxgAx kkk                  (4.18) 

provided that 

 111
0




,/gmin kj
j

; 

 0Zk . Note that if 1 then  0kg  is identically  

zero and no disturbance is admitted. The 2-cyclic self- 
map 2121 AAAA:T   fulfils 1221 ,, AAT   and is 

expansive for the class of perturbations fulfilling 

 11  ,/g k if 1  and nonexpansive if 

1 with 0kg . If  11  kkk ,/g ; with 

1 k ,  0Zk  then T can be iteration-dependent  

locally expansive or non-expansive depending on k  being 

unity or larger than unity. 
 
Example 4.6:  Example 4.5 is reformulated by modifying the 
controls to better overcome the perturbations as follows. 
Assume that the perturbation sequence is unknown but 
upper- bounding and lower-bounding sequences of it 

   
0201 kk g,g  are known and the controls are  corrected 

with the sequence   0k  by using the above knowledge 

so that: 

  kkkkkk xabu  1 ;  0Zk              (4.19) 

in order to achieve that that 2121 AAAA:T  be a 

2-cyclic  self-map so that: 
    1211 kkkkkkk gxAxAx   

      1112 kkkkkkk gxAxAx   

                                                                                       (4.20)   

with   0k being some real nonnegative sequence. 

Combining these two constraints with (4.19) and replacing 
the obtained results in (4.14) yields for the elements 

of   0k  : 

01   kkkkk gx   

 kkkkkkkk xgxg: 2        (4.21) 

,  0Zk if 2Ax k   , and  

01   kkkkk gx   

 kkkkkkkk xgxg: 1       (4.22) 

;  0Zk  if 1Ax k   by using an arbitrary bounded  

nonnegative real sequence   0k with  k ; 

 0Zk . Thus, the controller is given by (4.19) together 

with the companion equation: 









11

22

Axifxg

Axifxg

kkkkk

kkkkk
k  

  010  kk ;, ;  0Zk                                     (4.23) 

The controlled system through (4.19) becomes  

kkkkk gxx 1 ;  0Zk                          (4.24) 

subject to (4.23).  Combining (4.22) - (4.24) yields: 

kkkkk ggAx   111

kkkkk ggAx   212                                (4.25) 

  kkkkkk ggxAx 1111   

     kkkkkk ggxAx 2112       (4.26) 

Define k
k

max: 
0

. Then, one gets proceeding 

inductively from (4.26) provided that 

  j
kj

kkk xmaxg,gmax:g



0

21 for some positive 

real constant 1  




 j
kj

kk xmaxgx
0

1  

0
00

xxmaxxmax j
kj

j
kj




 

         





 1
0

0

x
xmax j

kj
                        (4.27) 

since j
kj

j
kj

xmaxxmax
100 

 . It has been proven the 

following: 
 
Proposition 4.7. Assume that the system of Example 4.6 is 
subject to a controller (4.20), (4.23). Then , the self-map 

2121 AAAA:T  which defines the trajectory 

solution is a 2-cyclic  self-map. Furthermore, assume that the 

perturbation satisfies j
kj

j
kj

k xmaxxmaxg



00

.  

    Then, the controlled system (4.14), (4.20), (4.23) is 
globally Lyapunov stable so that the 2-cyclic self-map 

2121 AAAA:T  is neither expansive nor 

asymptotically expansive.                                                 
The conditions for a modified 2-cyclic contraction under 
perturbations are obtained by taking three consecutive points 
of the controlled system trajectory solution as follows:  
 

  2Ax k  ;    11 Axy kk   ;  

   2
2

12 AxTTyyx:z kkkkk                (4.28)   
 
Proposition 4.8. Assume that Assume that  Proposition 4.7 
holds. Assume also that  

      kkkkkkkk xxx,xdx,xM   21211  

;  0Zk for some uniformly bounded nonnegative real 

sequence   0k . Then, 2121 AAAA:T   a 

2-cyclic strict contraction if    101
0

,max kk
k

 


 

and 
 









1

1
0

0

kk
k

max
:K  10 ,




 . If 0  

then    021  AATF . 
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Proof: Direct calculations yield: 

    12
2

12   kkkkkk xxxT,xTdx,xd

      kkkkk xxKx,xdK   11 21   

      kkkkk xxKxxK   121 21      

                                                                                       (4.29) 

 0Zk   provided that    
















  12 1

2
1

1
kkkk x

K
Kx

K
x    

    










 1000 1
121 kk x

K
KKxK            

;  0Zk                                                                     (4.30)   

where  10
1

1
1

10 ,
KK

:K 








  if  

   101
0

,max:K kk
k

 


and k
k

max: 
0

.  Since  

kx ;  0Zk  then  (4.9) implies that 

   002 21 KxKx kk  ;  0Zk                   (4.31)                                                                             

so that 2121 AAAA:T   a 2-cyclic strict 

contraction if  100 ,K 



 .                                          

Note that if the perturbation is subject to 

      kkkkkkkk xxx,xdx,xM   11  ; 

 0Zk then  Proposition 4.8 can be formulated “ mutatis- 

mutandis”  under alternative sufficiency-type conditions.   
 
Remark 4.9: Note that if Proposition 4.8 holds then from 
(4.30) since kx ;  0Zk : 

kkkkk xxKxKxx   2002 2  

;  0Zk and for any  R   

 002 2 kk x:x ;  0Zk                  (4.32)  

which is equivalent to  
    101212   kkkkk x:kxxx,xd  

      kxxx,xd kkkk 11 ;  0Zk  

                                                                                       (4.33) 
so that 2121 AAAA:T   is also a  worst-case 

modified 2-cyclic Meir-Keeler contraction. 
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