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Properties of Modified p-Cyclic Self-Maps in
Metric Spaces

M. De la Sen

Abstract- This paper investigates p-cyclic self-maps
T : X = X in problems involving perturbations which satisfy a

distance constraint in a metric space which mixed
non-expansive or contractive properties and potentially
expansive properties related to some distance threshold. The
above mentioned constraint is feasible in certain real -world
problems. Two classes of self-maps are investigated, namely,
those which become p-cyclic strict contractions in the absence of
perturbations and those which in the same conditions become
p-cyclic contractions of Meir-Keeler type.

Keywords-strictly contractive maps, non-expansive maps,
metric space, fixed points, p-cyclic contractions, perturbations.

L INTRODUCTION

Recently, the subsequent
problems are under strong research activity: 1) In

set sophisticated related
the,

so-called, P (2 2) -cyclic non-expansive or contractive
selff-maps map each element of a  subset
Aj e{Al Ag i A P } of an either metric or Banach

space B to an element of the next subset A ,; in a strictly
ordered chain of p subsets of B such that A, ;=A;. If the

above subsets do not intersect then fixed points do not exist
and their potential relevance in Analysis is played by best
proximity points, [1-2]. Best proximity points are also of
interest in hyperconvex metric spaces, [3-4]. 2) The so-called
Kannan maps are also being intensively investigated in the
last years as well as their relationships with contractive maps.
See, for instance, [5-6], [11]. 3) Although there is an
increasing number of theorems about fixed points in Banach
or metric spaces, new related recent results have been proven.
Some of those novel results are, for instance, the
generalization in [7] of Edelstein’s fixed point theorem for
metric spaces by proving a new theorem. Also, an iterative
algorithm for searching a fixed point in a closed convex
subset of a Banach space has been proposed in [8]. On the
other hand, an estimation of the size of an attraction ball to a
fixed point has been provided in [9] for nonlinear
differentiable maps. 4) Self-maps T in complete (or compact)
metric spaces (X , d) are classified in four classes in [12],

namely: T is said to be of Leader-type (or Picard operator) if
it guarantees the convergence of any iteration through T to
the unique fixed point . Also, T is said to be of Unnamed-
type if convergence of all the iterations to the unique fixed
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point is not guaranteed . In the so-called Subrahmanyam
-type (or weakly Picard operator), all iterations converge to a
fixed point which can be non-unique. Finally, T is said to be
of Caristi-type if iterations not necessarily converge to some
eventually non-unique fixed points. 5) Fixed point theory can
be also used successfully to find oscillations of solutions of
differential or difference equations which can be themselves
characterized as fixed points. The formalism is also useful to
investigate stability and boundedness of the solutions in
time-delay and continuous/ discrete hybrid dynamic systems.
See, for instance, [9-10], [13- 15], [19], [25]. On the other
hand, the existence of positive solutions of some useful
differential equations can be investigated by using the fixed
point index . See, for instance, [22-23] and references
therein. This manuscript is devoted to investigate the
nonexpansive ([2], [7], [24]) and contractive properties of
self-maps T:X —X in a metric space (X,d) which

satisfy the constraint:

—Kpid(xy)+Kpd i+ M i (x,y)<d(Tx, Ty)-d(x.y)
<=Koid(x,y)+K 5id j+M 5 (x,y) (1.1)
;V(X, y)eAi x A i, for some real constants K ;j,K ,;j and
M jitAixAig>Ro
Viep:={1,2.., p} : =1, 2 where
Ros:={zeR :2>0} di:=dist(A;,Aiy)
Viep are the distances between adjacent subsets A and

some real functions

and

Aj, of X ; Viep .The p-cyclic restricted self -map
: - . (i.e. the domain and the i f
T'UieﬁAl_)UieﬁAl(le e domain and the image o

T:X —> X are restricted to U _A; ) is subject to the set of

iep
constraints T(A i )g A, Viep. The set of fixed points
of the map T is denoted through the manuscript by F (T ) .

II. MAIN RESULTS FOR MODIFIEC CYCLIC
CONTRACTIONS

This section is mainly concerned with the derivation of
some mathematical results about uniform boundedness of
the iteration of distances of pairs of points belonging to
adjacent subsets of X in the presence of perturbations given
by the functions M jitAjxAjg >Ry ;
Viep:={1,2.., p}; j=1, 2. First note that Eq.(1.1) is
equivalent to:

(1=K i Jd(x,y)+Kpid i+ M i (x,y)<d(Tx, Ty)

(1=K i Jd(x,y)+K 21 di+M 5 (x,y)  @.1)
that if dij=M,;(x,y)=0 , K,ie[0,1) ;
V(x,y)eAixAj, ; Viep then (2.1) implies that

Note
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T :U i Aj —>U e A is a strict contraction according
to Banach contraction principle. If M ,; ( X, y): 0; Viep
then T :U e Aj —)U e A satisfying (2.1) for each

(x, y)eAi xAj,; Viep is apo-cyclic contraction [2, 7] .
Through this section, it is proven that the contraction
principle does not hold, in general. However,

T :U iep A —>U iep A is not expansive for sufficiently

large distances between (X, y)e AixAj;Viep .Inthis
context and in view of (1.1), it is possible to speak about the
restricted  self-map T :U iep Aj —)U iep A; being
locally non expansive, contractive and expansive as follows.
In particular, note that d(Tx,Ty)<d(x,y) ; ie.
T:X|Aj = Aj, is locally non-expansive for a given pair
Koidi+M 5 (x,y)
K i '

Also, d(Tx,Ty)<d(x,y); ie T:X|A; >A, is
locally contractive for a given pair (X, y)eAi x Ay if
d(x, y)> Kzidi+M 5 (x,y)

K 2
(X, y)eAixA,:
dx,y)< Kyid i +M g, (x.y)
Ky

=d(Tx,Ty)>d(x,y); Vx,yeX
so that T:X|A; > A, is locally expansive for such a
T:X[A; oA,
simultaneously locally expansive and locally non-expansive
for any given pair (x, y)e A;xA,;, the following

(X’ y)EAiXAiH lfd(X, y)Z

. Finally , for any given

given pair.  Since cannot be

inequality is not feasible for any ( X, y)e AixAq

Kydi+M lii(x’y)>d(x, y)zK 2id i +M (Xv)’)
Kli K2i

(2.2)
The following result is concerned with sets of necessary
constraints for (1.1) to hold.

Propositions 2.1.
directly:
(i) If the constants K j; have to satisfy the sets of necessary

The following propositions follow

conditions:
M (X, y)/IMoi(x,y)<K i /Ky 5 iep; =1, 2
v (x, y)eAixAi, (2.3)

then the unfeasible condition (2.2) never holds in A;xA ;.
If

M i (X, ¥ )/ M 5i(x,y)>K i 1K 5 for some
(X, ¥)eAixAyy, iep, j=1,2 2.4)
then

Koidi+M 5 (x,y) Kpidi+M i (x,y)
d(x, y)e ,

K i
(1) (K =Ko Ja(x,y )+ (K2 =Ky Jd

K i

+(M i (x,y)-M i (x,y))20
v(x,y)eAixA”l,Vieﬁ
(i) If d;=0 (ie. A;nA;,#D) and M ;(x,y)=0 ;
V(X,y)eAixAHl for somei epthen 12K |j 2K ,; 20

2.5)

or 12K ,,20 and K ;; 21. In the second case, the first

inequality of (2.1) holds trivially everywhere in A;xA; ;.

Proof: (i) Since (1.3) is unfeasible for any
pair (x,y)eA;xA, ; Viep then
Koid i +M 5 (x,y) JKuidi+My; (x.y)

K i Kii

which is equivalent to (1.4), guarantees that (2.2) does not
hold in A;xA;,;. Also, (2.4) together with the companion

constraint for the distance guarantees that (2.4) does not hold.

(ii)-(iii)  follow directly from (2.1) which requires the
necessary condition
(1=K Jd Oy )+ Kyid i+ M i (x.y)
<(1-K o Jd(x,y)+K o d j+M 5 (x,y)

V(X,y)eAixAHl,Vieﬁ a

The following result proves uniform boundedness of the
distance iterates independently of the iteration index but
dependent, in general, of the initial points. The limit
superiors of the iterations are uniformly bounded
independent of the iteration index and also independent of the
initial points.

Theorem 2.2. The following properties hold:

(i) Assume that M 5 (X,y) <o d(Tx,Ty)+y,; with
Y2i€R 0y » 0Sapi<Koi<l; V(X y)eAixAp,,
Viep . Then d(ijx,ijy)SL(x,y)<oo :
V(x,y)eA; xAj,, Viep where L(x,y) being a bound
dependent on the pair (x, y) ; V(X,y)eAi xAig s
Viep which is uniform for all jeZ , provided that
d(x, y) is bounded. Furthermore,

lim sup d(ij x, TP y)

j—oo
Zp: P | 1-Kak
1—0(2k 1—G2i

1

is uniformly bounded VX,yeLJi 5 A .Also, there is an
S

Koidj+yai

(2.6)

upper-bound ezj(x,y) of Supd(Tl‘/pX,T[py);
>

‘v’x,yeLJi‘EB A which is sufficiently close to B, for

sufficiently large jeZ , in the sense that , for any

0,j(x,y)-B> ‘SS
; ¥V j>N=N(g)eZ +for some finite N €Z +.

prescribed arbitrarily small eeR .,
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(i) Assume that Property (i) holds and, in addition,
M 1i(X,Y)20L1i d(TX,TY)Hu with

alitﬁazi )eR 0o+ and and

Y i (SY 2i )ER 0+

l—a]iJ<1 :
1—0(2i
V(X, y)eAixAM, Viep .

Then, d(ijX.TjPY)E[Bl—So’Bz+80] .
Vj(=max(N,Ny))eZ ., and some finite Ny =N (&)

ﬁ {1_K1k:|
i=1\ k=i+1 1 &1k

0<a4j <K i=K i mln(l

Kyidi+ 4y

l—ali

Furthermore, there is a lower-bound 6 yj (x,y) of

inf d(T“’x,T“’y) :
02

V(X,y)eAixAM ;

Viep which is sufficiently close to §; for sufficiently
large jeZ . in the sense that, for any given arbitrarily
|91j(X,y)—l31|380 ;
VjzNg :No(s 0)eZ + for some finite Ny eZ + . Also,

d(ijx,ijy)e[ﬁl—so, B,+el ;
Vj(=max(N,N())ez,

small gpeR | ,

(iii) Consider the restricted map
T:X| Uieﬁ Aj—> Uieﬁ A; and assume that Property (i)
holds and, furthermore, vy,;=0 ; Viep and

Then s

ﬂ A =20
iep
EIZeF(TlLJIep i) ﬂlepAi and the p-cyclic

vy —>UiEﬁ A

contractive. If, furthermore, (X,d) is complete then the

restricted self-map T : Ui i is strictly
S

fixed point is unique.

Proof: (i) The following chain of inequalities follows by
direct  inspection of  (2.1) provided  that
M i (x,¥) Sagi d(TX,Ty)+7v 5 and

0< o, < Kyj<1; V(x, y)eAixAM, Viep :
d(Tx, Ty)<(I=K 5 Jd(x,y)+K 5 dj+M 5 (x,y)
(1=K i Jd(x,y)+K o dj+ g d(TX,Ty)+ 75,
1-K Koidj+ya

p Pol1-Koyi | Koidi+yai
j 2i Ui +72i
+ < o0
Z H |:1— :| 1—a2i
i=1\ j=i+1
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s VieZ,
= lim sup d(ijx,ijy)s B,
j—)oo
:>d(ijx,ijy)e[0,[32+a] 2.7)
V(X,y)eAixAM, Viep for any given € eR | and
N=N(g)ezZ,

some finite since

I

|
(i) If Property (i) holds and, furthermore,
My (%, y)2ag; d(TTY)+vyi ,  vii<yai and

V(x, y)eAixAi, Viep.

sufficiently large

] < 1. Property (i) has been proven.

0<aqifasy;; Then one

gets in a similar way  lim inf d(ijx,ijy)ZBI .
J—>®

0)eZ,

being sufficiently large o) that

d(ijx,ijY)G[Bl—SOv Bo+e] ;

Vi(zmax(N,N))ez,

Thus, for any given egeR ., INg= No(s

. Property (ii) follows.

lim d(TiPx,TiPy)=0
joe

V(x,y)eA;xA;,, for any iep if y,;=0; Viep ,

andﬂ
T|Uieﬁ ,._(T X|U A —>U

This is obvious since T(Ai)zAi+1

Note that

(iii)
A; 2@ (ed;j=0;Viep)as a result so that
i)hasaﬁxed

point . . Thus ,

ZGAij(T| Ui ; A
€
ZEUieﬁAi

recursively:

i) for some jep since

. Thus, Tz=zeAj NA j,; and proceeding

T "’z:ZGfWieﬁ
VXEUiEﬁ Ai
F(T| Uieﬁ

T(A{)cAi,;Viep ,

A =limT1x ;
joo

Aijc ﬂieﬁ A is proven as follows.

Since then

TKz=2= I|mTJ><eF[T|U

j—)oo

ji@:ZeTiAZQA“i

A

for some / € p,vXEU_ _A;»> Viep . Then, Zeﬂi
iep

which is unique from Banach contraction principle if
( X,d )is complete. O
The conditions 0< a ,j < K »j <1 and

I—Otli

<1
l—aziJ

of Theorem 2.2 are now weakened by replacing them by
weaker ones related to the whole p-cycle of the restricted map

T|U

OS(X,“<K1|_K2| mln[l

A as follows:
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Corollary 2.3. The following properties hold:
(i) Assume that M ,; (x,y) <o, d(Tx,Ty)+y,; with

0<K i<l and y,ieRq, ; V(X ,y)eA;xA; ,

P 11-K ,:
Viep and Pz5=H[1 aZI] <1. Then, Theorem
—%2i

2.2 (i) holds.

(i)  Assume that Property (i) holds and, in addition,
M i (x,y) 20y d(TX,Ty)+7v with,
OSK“SKzlﬁl a]i(sazi )ERCH_ and

P I-Ky;
i<v9i JeR and = <l
Yll(Y2|) 0+ P1 ”[1_(11i
V(x,y)eA;xA;,, Viep . Then, Theorem 2.2 (ii) holds.

(iif) Consider the restricted map
T:X| Uieﬁ Ai—> Uieﬁ A; and assume that Property (i)
holds and, furthermore, y,;=0 ; Viep and
ﬂ_ A 20 Then,
iep

EIZGF(T|UI . j ﬂlepAi and
T: Uieﬁ Aj - Uieﬁ A is strictly contractive.

Proof: It follows directly from Theorem 2.2. 0

Note that an important fact related to the applicability of
Corollary 23 is that the conditions
OSKjiSI;Vieﬁ; j=12 may be achieved in a
compatible fashion with max (p 1P 2 ) <1 with only
K'1i » K,j one such constraints being strictly less than

unity for some i,jep . O

The known previous result that the sets Aj; ie P have

identical pair-wide distances if non-expansive p-cyclic

self-maps on Ui 5
S

characterization.

A exist, [2], adopts the following

Proposition 2.4. If there exists a non-expansive p-cyclic
self—mapT:U_ A —>U _A;thend=dj; Viep.
IE

Proof: Take (x,y)eA; xAj, such that d;=d(x, y) for

A,—>U

any iep and assume that - U

non-expansive. Then ,

di=d(x,y)>max(d;,d(Tx,Ty))

Zmax( max (d )d(T Iy TJy)j> r_nax(d j) (2.8)
jep\ 1<i<j Jep
Since

d; Zmax(d
iep

iep is arbitrary

jJodi=d;viep. O

Proposition 24
T: Uieﬁ A, —>Uie5

instance, to Theorem 2.2 (iii) and Corollary 2.3 (iii). Note

applies in particular if

A; is strictly contractive as, for

A relevant result in the context of this paper is related to
the fact that under weak conditions the self-map

T:UieﬁAi —>Ui€5Ai expansive or

asymptotically expansive. That means that sufficiently large
distances lead to local contractions in the sense that such
distances decrease through the iterative process. As a result,
if can only be locally expansive as it is proven in the
subsequent result:

cannot be

Theorem 2.5. Assume that:

Kis—aij, Kirdi+7v;
min 12 '2, ERARRAE >0 ; Viep so that
l—ai2 l—OLiz
there is at least one jep such  that
Kis—aij Kirdj+y;
min 12 12, 12 12 =0 .Then,
l-a l-aj,
T:UieﬁAi_)UieﬁAi is neither expansive nor
asymptotically expansive.
Proof : Eq. (1.1) may be rewritten as follows:
Ki, —a Kird i +7;
d(Tx,Ty)-d(x,y)s-—2 2 q(x,y)r— "t 112 e
— Qi I-aj,
(2.9)

; (X,y)eAi x A1, Vi ep which implies:
d(Tpx pr)—d(x,y)

_Z K|2d +7i2 _Kiz—auz
-1 1—(1|2

provided that

d (T i’lx,T ily)JSO

P K.y -0 _ _ P Kind: 4v.
Z—'z 2 d(T "lx,T"ly)zz—

i 1% i=1

and the given parametrical conditions hold. Now, assume

that T: U _A; —>UIE

asymptotlcally expansive. Thus, for any (X , y)e A xAiy

i is either expansive or

and any i € P, there exists a finite sufficiently large positive

integer j=1] ( X,y ,i)e P such that
Pl Kiy —aj L .- PKind: +v-
z i2 i2 d(T J+I71X,T J+|,1y)zz i2di*T7i2
i=1 1_(Xi2 i-1 1—0, 2
which implies that

d(TPix, TP y)ed (TP TPHIY) from (2.10)
As a result , for each (X , y)eAi xAj, and each iep,
there is a infinite sequence of positive integers S(X,y)
such that
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Vik=ik(x.y)es(x,y) @.11)
if T:UieﬁAi —>Ui€5Ai is either expansive or

asymptotically expansive what is a contradiction which
proves the result. a

Note that Theorem 2.5 is applicable even if Kj, ;

i € P are real constants non necessarily in [0 1 ) Note also
that Theorem 2.5 does not guarantee that

: - i so that it is not guaranteed that
T UieaA'_’UieﬁA' gu

all distances between the subsets Aj; Vie P arte identical.

The following complementary result follows which also

ensures that T :UieﬁAi —>UieﬁAi is neither globally

expansive or asymptotically expansive although it is not

ensured to be non-expansive for any points in U _ A
iep

Proposition 2. 6.  Assume that the constraint for
M ,j (x,y) of Corollary 2.3 (i) is generalized as

Mzi(TjX,ij)Soczi max ol(T‘><,T‘y)+y2i (2.12)
0<i<l,

with  y,;€eRy, and 0c2ie[K2i,1) Viep
0< o ,j<K,j<1; forsome £ =/ (j)eZ (. ; k=1, 2
subject to 0</ <, <j+1 , Y(x,y)eA;xA,, ,
Viep Then, d (T Ix,T jy ) is iteration- uniformly
bounded (in the sense that its upper-bound is independent of
the integer jeZ , ) with uniform bound being dependent on
the ( bounded) distance of the y);
V(X,y)eAixAM ; VieZgy, , that

T :LJieﬁ A, —)Ljieﬁ A can be locally expansive although

pair (X,
Viep so

it cannot be either expansive or asymptotically expansive. If,

furthermore, a2ie[K2i+u,1) ;Viep and some

peR | then
Koidij+7vo;
limsup d(Tkx,T"y)s max 20 TiT o
kK — I-v iep 11— o p;
for some R>ve(0,1) (2.13)

Proof : From (2.12),
AT X, T3y )< (1=K 5 )a (T ix,T Iy )
max d(TiX’Tiy)Jeridini

0<i< j+1
Define j=j(k )

::{max (eZ g, : (£ <k )/\[d(Tk+1 x, Tk y):or<njai<kd(Tj+1 x, T y)j}

+0y; (2.14)

for any k € Z, so that, one gets from (2.14)

max a1 x Ty <o oty )

ISBN: 978-988-18210-8-9
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+0oyj Max d(TjJr1 x, T y)+K 2i di+7v2i
0<j<k

d(zj,ij)sd(Tk“ x, Tk y)zorsn;jaé(kd(Tj“ x,T 1+ y)
Kopdy+vay

<o (2.15)
1-a 20

< L(x,y)::d(T kx,T ky)+

provided that o 5je [K 2;.1)  V(X, y)eA;xA;,
Vij(sk+1)eZ,, , Viep and (e being defined as

k+i-1

€=k+i—lntPart( ]p .Then, d(TkX,Tky)<oo

with uniform bound VkeZ, depending on each

given (x,y)eAjxAj, ; If, VkeZ, . furthermore,
- 1=Ky,
azie[K2i+u,l) ; Viep then v ji=—— <1 ;
1—(12i
Viep so that (2.13) follows from (2.15) with
vi=max v;. O
iep

Proposition 2.6 implies has the following consequent
result.

Proposition 2.7. Under the conditions of Proposition 2.6, the
following set of relations for the distances between the
subsets A, iepof X hold:

K,,d
d;=dist(A;,Ap)<d j+——": Vi,j,lep
1—(12(
(2.16)
Proof : Eq. (2.15 ) implies directly:

i i Kopdy
dis<dTix Thy)<d(Tkx Ty J4—— 0
st Ty afrtarty). K

K,,d
<dy, g et (2.17)
Y]

V(X y)eAixAL, L Vi(sk+1)eZ,, , VkeZ,, any

i €P (since x and y are any points in AjxAj,; Viep)

+1

and some ﬁafzg(i,k):k+i_|ntpart(k+l—1jp
p

Since the integers i and k are arbitrary in pxZ_, ¢ takes
any value in P depending on the initial points x and y.
Therefore, Eq. (2.16) implies (2.17). O

Note that Proposition 2.7 is applied directly to the case that
all distances between adjacent subsets are identical. It is of
interest the investigation of the properties of the self-map

T, AU A

non-adjacent subsets. Assume the following cases:

a) X,yeAj forsome i €p sothat Tx,Ty € A, subject to:

(1=K i Jd(y) +M i (xy)<d(Tx, Ty)
(1=K 5 Jd(x,y)+M 5 (x.y)

b)  (x.y)eA;xA;

(TX Ty)e Ay xA jo1 with i j#i+1 then one gets for

for  distances  between

(2.18)

for some i,jep so that
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any set of

points
{xjeAj :xi=x,xj=y;£e]\i+l}

satisfying
the

constraint by using the triangle inequality for distances
together with the upper-bounding constraint in (2.1):

d(Tx,Ty)sjzi1 d(Txf TX g )SJZI [(I—K zz)d(xﬁ VX g4 )]

(=i

following

+K oy d y+M 5, (x %041 )

< p max [(1—K 2/)d(X€lX/,+l )+K 20d ,+M 2((X€1X4+1 )]

i<r<j-1
(2.19)
<p isrpgnj(il(l—K N)d(xk,xﬂl)
+ max lezdé‘FM ZZ(X['X4+1 )J (220)

i<r<j-1
It follows from (2.20) that Theorem 2.2 [(i), (iii)] (i.e.

uniform boundedness distance of iterations for any two
initial points in any , in general, distinct non-adjacent, subsets

Ajof X under obtained via T:LJieﬁ Aj —>Ui65 Ai)

]<l,

J < lirrespective

1-K 5;
still holds irrespective of i,jep if p max{—ZI
iep| 1-a 5j

1-K »;
Corollary 2.3 (i) holds if p max[ 2
iep| 1-a 5j

of i,jep . Also, Proposition 2.6 holds under the

replacement v:=max v; — pv<l irrespective of i,jep .
iep

Note that Theorem 2.5 guaranteeing that

T:UieﬁAi_)UieﬁAi is  non-expansive  and

non-asymptotically expansive also holds under a close and
similar proof to the given one. If the initial points are within
the same subset Ajof X, the above results are still valid

under weaker conditions to the light of (2.18) by zeroing the
distances between subsets. Expressions for lower- bounds
can be also derived in a similar way using

p min (l—K zg)d(xf,x“l )

i<r<j-1

III.MAIN RESULTS ON MODIFIED MEIR-KEELER
CONTRACTIONS

p- cyclic Meir- Keeler contractions have been discussed in
a number of papers (see, for instance, [1-3], [7]). In the case

that mieﬁAi = then T : UieﬁAi _>LJi€5Ai has no
fixed points and their role is played in this case by the
so-called best proximity points, [1-4], [16-17]. This section

is concerned with the extension of p- cyclic Meir — Keeler
contractions to the case of constraints close to (1.1).

Roughly speaking T : LJiEﬁ A; —>LJiEﬁ A; 1s not
expansive for large distances of the initial points in a similar

context as that investigated in Section 2 to the light of Banach
contraction  principle. A p- cyclic self-map

T- UieﬁAi HUieEAi is a p-cyclic Meir—Keeler
contraction, [2], if for every eeR ., 38:6(8 )e R . if

d(x,y)<d+8+e =d(Tx,Ty)<d; +e 3.1

or, equivalently, d (T x,Ty)<min (d; +¢,d(x,y)-8) if
d ( X, y)z 6 .Consider now according to (1.1) , or (2.1), that

MZi(zj,ij)SaZi max d(Tix,Tiy)+y2i as

0,<i<t,
assumed in (2.12)  with =0 (j k=12 ;
V(x,y)e A xAjy ; Yiep , VjeZ o, which includes
the particular case M ,i (X,y) <o, d(TX,Ty)+ysi ,
studied in Section 2, for the modified Banach contraction
principle. Thus, T : UiEB A; —)UieﬁAi is a modified

p-cyclic Meir- Keeler contraction if:

d(x,y)-d;-M 5 (x,y)<d+e

= d(Tx,Ty)-di-Mai(xy)<e (3.2)
; V(x,y)eAi xAijg Also,
T: UieﬁAi —>Ui€ﬁAi is a worst —case modified p-

Viep

cyclic Meir-Keeler contraction if for any eeR | ;
38 ji =0 ji (8)2
d(TjX:TjY)_di_azi max d(Tix,Tiy)—72i<8ji +€

0<i<t,

:>d(T Iy T j+1Y)_d i ~Opj Mmax d(TiX'Tiy)_“i ¢

01<i<l,
(3.3)
Theorem 3.1. Assume that . UiEB A _)UieﬁAi is a

worst -case modified p- cyclic Meir-Keeler contraction.
Then, d (T jX,T jy) is bounded any
(X,y)eAixAi+1 ; Viep provided that d(x,y) is
bounded.

for

Proof : One gets from (3.3)
d (T Iy 74l y)

<min(s+d +o,  max d(Tix,Tiy)+yZ,d(T Ix.T jY)—SJ
0,sist,
:min(g+d +0ty d(T iJ'X,Ti" yj+y2 ,d(T J-X,T jy)—5)

(3.4)
V(x,y)e A xAiy ) for some integer

ije[él(j),éz(j)], some Eszk(j);kzl,z; Viep,

VjeZy, where d=maxd; , vy, =maxy,i .,
iep iep
o,=Mmax a,jand 6= max & ,; for some sequence of
iep iep,leZ ,

positive real constants {8“ }ij=0 ; VijeZg,, Viep .
Proceeding recursively with (3.4), one gets:
d(T j+]X,T j+1y)

<min[s+d+y ,+0, max d(Tix,Tiy), d(T ix,T jy)—SJ

f]SiSfZ
— mi iy Th iy 11
=min| e+d +y, +a, d| T !X, Ty |, d|\T 'x,T 'y]-08

3.5)
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provided that min (d (T x.T fy)zé /i ) . Assume that it
0</<j

exists (X,y)eAi xAj, such that the real sequence
{d (T Hy T j“y)}jezO is unbounded so that some

subsequence of it diverges as ¢ —+ oo . Thus, for some
arbitrarily large AcR (., 3k =k(no,A)(=ny)eZ , and
some sufficiently large n € Z | such that from (3.5), one
gets.

j+1 .
A <min (s+d +y 5 )[HZ a;}+aé+2
k=0

where d=maxd;, y, =max y,j, o, =max o ,j and
iep iep iep

0<i<j+l

8= max_ 3 ,;whatimpliesthat min d(T (X,Tfy)is
iep,leZ , 0</0<

unbounded leading to a contradiction. O

Some further properties of worst-case modified p-cyclic Meir
— Keeler contractions are now investigated. Define the

ils of
f j:(UiepAi)X(UiepAi)XRO+_>R; VijeZy,

from (3.3) for a given sequence of nonnegative real numbers
{m i }BO as follows:

sequence real functions

filaym;)
=-a,  max d(Tix,Tiy)—d—yz -m; (3.6)
j-ly<i<j-1,

fj+1 (X, Y My )Eg J'(X' y,m i+1)

::d(Tj”x,Tj”y)—a2 ) max d(Tix,Tiy)fdfyzfij
JHI=0 ) <i<j+l-0
3.7

where

d(Tj x,T"y)z(x2 max d(Tix,Tiy)+d+yz+mj+M

j-tysi<i-,
for some MeR,, ; VjeZ, and d=max d ;
iep
(XzzmaX(Xzi
iep

Yo =Maxy and
iep

V(X,y)e(uiEﬁ Ai)x(Uie5 Ai);Vie;‘). It is assumed

for simplicity that ¢, €Z ,, are constant with / ,>/,>0

b

The following result is an ad-hoc extension of [2], Lemma
2.2, [20-21], which is useful for studying worst-case
modified p-cyclic Meir-Keeler contractions:

Lemma 3.2. Assume that

d(Tj x,ij)2a2 max
j—lr<i<j-t,

; V(X,y)eY(;t@)c(UieﬁAijx(UieﬁAij ;

V jeZ (. Then, the following properties are equivalent:
(1) For MeR, =35=5(M )eR .
that

M<f j(x, y,m j)<M +6=0<f j+1(x, y,mj+1)<M

d(Tix,Tiy)+d+«/2 +mj+M

each such

for (X,y)eY andsome m j; ,m j,; €Ry,.

(2) 3 a nondecreasing  continuous  L-function
®:Roy, >Ro, (ie. ¢(0)=0 and 38R, fulfilling
0<¢ (t)<s ; Vte[s,s+8], [2],[20-21]) such that for
m j.,m j, €Ro, fulfilling the above property (1):
f j(x, y,m j)> 0= f J-H(x, y,mj+1) , for
(X Y )e Y , the second inequality following sine ¢ is an
L-function, and
f j(x, y,m j):0:> f j+1(x, y,mj+1)=0
<o(f30cymy))<f il ym;) o

max d(Tix,Tiy), min (d(Tix,T'y)—S

<i<j

0<
The

following  concerns the boundedness of
[d(TJ x,T) y)—a2 max d(Tix,Tiy)J-
J—(o<i<j-0

Lemma 3.3. Assume that T : LJieﬁ Aj —>Ui€ﬁAi is a

worst —case modified p- cyclic Meir-Keeler contraction

which satisfies

d(zj,ij)2a2_ max: d(Tix,Tiy)+d+«/2 +m; +M
J=,<i<j-1,

; V(X,y)eY(;tQ)c(LJieﬁ Ain(Uieﬁ Ai)

; VjeZ o, . Assume also that Lemma 3.2 holds with
{m J}(')O being an uniformly bounded nonnegative real

sequence ; V jeZ (.. Then, the real sequence

d(T‘x,T‘y)}:

(3.8)

max
j—0,<i< -,

S::{sk::d(Tj x,T] y)—(xz

is uniformly bounded from below and from above .

Proof : It is directly bounded from below since . It is now

proven that it is  bounded from  above.
d(TJ x,TJy)—az o omax d(T'x,T'y)2d+y2 +mj+M
j—ly<i<j-t

First note that sy €eR, . The proof follows by

contradiction. Assume that S is unbounded to that there is a

strictly monotone increasing subsequence

S':= {S ; } , with Z ' Z being countable, such
Jk Jk e’

that s; —>o as jy—>oo. Then, s; 26 for any

prefixed arbitrary 0cR, and all /(> N)eS’ for some

N = N(G)eS’ From Lemma 3.2(i), for
MeR, =38=58(M )eR , such that

E%SJ-+M>1°j(x,y,mj):zd(Tj x,ij)

each

—0ly max d(Tix,Tiy)—d—yz—mj

j-ty<i<j-t,
>max(M,0-d -y, -m ) (3.9)
M > f j+l(xn yom ju )>9—d —Y2 —Mju

=0<M+d+y, +mj <M+d+y, + max m
0<j<oo

(3.10)
so that 0 cannot be fixed arbitrarily what leads to a
contradiction. O
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The above result together with Lemma 3.2 lead to the
self-map T : UieﬁAi —>Ui€ﬁAi to be neither

expansive nor asymptotically expansive.

Proposition 3.4. Assume that T : | J o A U g A

a worst —case modified p- cyclic Meir-Keeler contraction
whichsatisfies

d(Tj x,ij)Zaz d(Tix,Tiy)+d+yZ +mj+M

: v(x,y)ev(igl)zc(oiep Ai)x(Uiep Aij :

VjeZy, . Assume also that Lemma 3.2 holds with
{m ]}80 being a nonnegative nonotone decreasing real
sequence. Then, T: Uieﬁ Aj %Uieﬁ A; 1is neither

expansive nor asymptotically expansive.

Proof. Note that

(d(Tj+1 x,Tj“y)—az max

d(Tix,Tiy)j
JHl=l o <i<j+l-1,

d(Tix,Tiy)j

(3.11)

From Lemma 3.3, the real sequence S consisting of
elements

Sk :d(Tj x,T) y)—az

max
j—ty<i<j-t,

—(d(Tj x,ij)—ocz

<mj+1—mj

max
j—t,<i<j-t,

d(Tix,Tiy) is
uniformly bounded forke Z , :
w>2C>d(Th x, Tly)-d(ti x, Ti*ly]

+o max
=0, <i<jr1-0,

=[d(Tj x,ij)—ocz

max d(Tix,Tiy)]
j—ty<i<j-ry

d(Tix,Tiy)J
d(Tix,Tiy)j

(3.12)

The following situations can occur for the sequences
below:

D od(Tdx Thy)-d(Tiex Tify ),

[ max d(Tix,Tiy)—
JHl=0,<i<j+1-1,

d(Tix,Tiy)f

max
j—t,<i<j-1,

max
JHl=l,<i<j+1-1,

—[d(TJ'+1 x, T+ y)—ocz

>mj—mj+120

max
j—ty<i<j-1r,

d(Tix,Tiy)J

(3.13)
if a,#0 are both bounded real sequences. Then |,

T:UieﬁAi_)UieﬁAi is neither expansive nor

asymptotically expansive.
2) d(T‘ x,T1 y)—d(TJ+1 x,Tl“y)

max d(Tix,Tiy)—

(o) max
JH1=0,<i<j+1-¢,

j—l,<i<j-r,

d(Tix,Tiy)J

(3.14)
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are unbounded sequences with the first one having a
sequence diverging to +oo and the second one having a
sequence diverging at the same rate to —oo or vice-versa. In

the first case, d(Tj x, T y)>d(Tj+1 x,T i+ y) for
jeZ o cZ (. and Z , being countable of infinite cardinal.
This implies that T - Uieﬁ Aj %Uieﬁ A; is neither

expansive nor asymptotically expansive. In the contrary
case, there is a diverging sequence fulfilling

max d(Tix,Tiy)> max d(Tix,Tiy) so that
Ity <i< it i—ty<i<j-t,

q (T fis iy T dit y)>d (T Jitiy it y)

for some
integers it =G (i+1)>7i=17: () with
jie[i‘lei—fl] Again,

T:UieﬁAi_)UieﬁAi is neither expansive nor

asymptotically expansive. O

Remark 3.5. Note that if £{=/(k)=0, then Lemmas

d+y,+m; +M

3.3-3.4 imply that d (T Iy 1l y) > while

1—(12
. . . 1S neither expansive nor
T-UieﬁAI*)UieﬁAl P

asymptotically expansive. O

Some elementary results concerning the comparative
values of interest of distances through the worst-case

modified p-cyclic self-map T : LJieﬁ Aj —>LJiEﬁ A; are

provided in the next two Propositions. Some conditions for
the above self-map being non expansive, non asymptotically
expansive or expansive are discussed in the next two results.

Proposition 3.6. Assume that IMeR, ,

36 ;=8 j(M JeR ., and Ei{m J}f)o being a nonnegative
monotone nonincreasing real sequence such that
M < f j(x, y.m )=d(TJ x, T y)+M

max

j—t,<i<j—r,

d(TiX7Tiy)_d—'\{2 —mj <81
= [fj+1 (X' Y, Mjiy )Eg j(X. y,m J-+|)<M
<:>d(Tj+1 x, T y)J

max d(Tix,Tiy)+d+y2 +m 1+ M

%)
JH—(,<i< j+1-1

(3.15)
, equivalently f ;(x,y,m;)=m , for

(x,y)eYc(Uiep Ai)X(Uiep Aij :

Then, the following inequalities hold:
d(TJ+1 x,T I+t y)sd(TJ X,T! y)

max d(Tix,Tiy)s max d(Tix,Tiy)
jHi—f,<i< jri-r, j—tysi<j-r,
max d(Tix,Ti y)
j—0,<i< j—t,
max

£max(d(Tj_Z2x,Tj_42 y), d(Tix,Tiy)]

JHI=05<i<j+1-14
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(3.16)
or, equivalently one has according to Lemma 3.2:
Filaym;)>0= (5 (xymg)<olfj(x ym;))<f5(xy.m;))
A f j(x, y.m )=O:> f j+1(x, y.m g )=0] (3.17)
Two cases can occur, namely:
a) Case 1:
max d(T'x,T'y)s max d(T'x,T'y)
=0, <i< jHI—1, i—ty<i<j-r,
(3.18)
:max(d (T I=tay 7102 y), d(TJJrl“}lx,T'“‘/‘1 y))
< max d(T‘x,T‘y) (3.19)
j—t,<i<j-r,

Then, it follows that
d(Tj+1 X ,Tj+1y)<d(Tj x,T] y)+m

Aj > U B
or asymptotically expansive.

b) Case 2:
d(T JH=fy T i y)=

1fmjsd(Tj x,ij)
(3.20)
A; is not either expansive

J+

so that T : U _
iep

max d(Tix,Tiy)

JHI=C,<i< j+1-1,

> max d(Tix,Tiy)

j—ly<i<j-t,

:d(T I=hiy 7170 y)<d (T =ty g i+l=0 y);

VieZ o, (3.21)

then {d(TjH_élx,TjH_é1 y)} o is unbounded so that it
With no loss in
that

has a subsequence which diverges .
generality, assume

{d (T =4 X, T =4 y)} o diverges so that, one gets
from the worst-case modified p-cyclic contraction properties
in Lemma 3.2:

fj+1(X,y,ij):d(Tj+1 X ,Tj+1y)

max d(Tix,Tiy)—d—yz—ij

JHI=0 5 <i<j+l-0
:d(T Ly i y)_% d(T =Ly T y)
—-d-v, —Mmj, <M
<:>d(Tj”x,Tj”y)f

—a,

max d(Tix,Tiy)

JHI—0,<i<j+1-¢;

~\1-a, by TNy b d 4y, +m o+ M <
<—(1=0y )d (T I 0x T Iy g (o1 + M <0

(3.22)
provided that 0<a,<1 and
d(TJ'+1—elxlTj+1_tzly)>d+y2+mj+1+M As a

1—(12
result, if{ d(TjJrl_/‘lx,TjJrl_zl y)} o is unbounded then
lim sup d(TjX,ij)<oo :

j—oo

V(x,y)eYc(UiEp Ain(Uiep Aij what leads to a
Aj —>Ui€5Ai

cannot be either expansive or asymptotically expansive. O

contradiction. As a result, T : U _
iep
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Proposition 3.7. The following properties hold:
(i) If

d(T! x,Tly)> d(T'x,T'y)+d L+ M

( X, y) o, j—ZZTiin—fl ( X, y)+ +y, M+

; VjeZ, then

d(Tj+1x,Tj+1y)> max d(Tix,Tiy)
j-ry<i<j—r,

if and only if

d(Tj x,T] y)Zaz max[. max d(Tix,Tiy),d(Tj“x,Tj”y)—pJ-HJ
j-l<i<j-1,

+d+y, +mj+M

for some positive real sequence {pk }80 Also,

d(THxTi*y)>  max  d(TixTiy) ifand onlyif
j—l,<i<j-t,
the constraint holds with the above sequence being

identically zero.

(ii) If

d(zj,ij)z max

d(Tix,Tiy)+d +y,+m;j+M
j-l,<i<j-,

, VjeZy, (ie. a,=1)then

T: UieﬁAi —>Ui€ﬁAi

Proof: It follows directly from the following relations:
d(Tj x,T) y)Zaz

is expansive.

max

d(Tix,Tiy)+d ty, +mj+M
j-ty<i<ij-t,

=a2(d(Tj+1x,Tj+1y)—pj+1)+d +y, +Mmj+M

<:>d(Tj x,ij)—a2 d(Tj”x,Tj”y)z apjatd+y, +mj+M

Ifo, e[O 1 ), one gets proceeding recursively:

dex,Tj >a max dTix,Ti +d + +m;+M
( y) 2 j—t,5i18 j—t, ( Y) Y2 j
) ) k-1
>0k max d(T'x,T'y)+ oh (d+y2 +mj+M)
j—l,—k+1<i<j-1, =0
k— k

_—az(d +7, +mj+M)

d+y2 +mj+M):
—0

Z

for any fixed keZ ., and

; ; d+y, +m;+M
timinfd (11 x 71y )2 12 0 :
joo I-a,

V(X,y #x)eAjxAj,; Viepeven in the event that a

fixed point Zeﬂi 5 A; exists if the sets Aj intersect
€

provided that either x#2z or y #2Z since it exists keZ

such thaVieﬁtTkx;tTky: max d(Tix,Tiy);tO. On

0<i<o

the other hand, if a , >1then from the above relationships:

lim d(Tj x,Tiy)= lim Supd(Tj X,ij)

jow joo
“tim infd (T x,T1y) =+
jow
so that T : UieﬁAi _)UieﬁAi is expansive. O
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Remark 3.8, [2]. An important result for p-cyclic contractive
self- maps T: UieﬁAi _)UieﬁAi , namely,
aai=v2=M(X,y)=0; Viep, VX,ye LJieﬁ A s

that since they are non-expansive they have the same distance

between any pair of subsets ; i.e. d j=d ; VieD so thata
fixed point exists in ﬂ _ Aj provided that such an
iep

intersection is non-empty. If the intersection of the subsets is
empty and those subsets are closed and convex then

lim d(TiP* x TiP+iy )

jow

—tim d(TIPH 2, TPV, )d (2, T2)

jow
; V(X,y)EAi xAj wherezjeAj, zj,1€Aij: Viep
are best proximity points. a
IV. EXAMPLES

Example 4.1. In order to discuss the feasibility of (1.1) for
p=1; i.e. the self-mapT : X — X is not p-cyclic under the

constraint M »; (X,y):M Z(X,y):M eRg VX, yeX ,
note the following:
1) If M=0 and Ke(0,1] then (2.1) is the usual

contractive constraint of Banach contraction principle and
T:X —> X is strictly contractive . If K=M =0 then
T:X —> X is non-expansive. If M =0, K=1 and the
inequality in (2.1) is strict for X, y(;t X )e X then
T:X — X is weakly contractive.

2) If K=1 then d(T X, T y)S M; Vx,ye X .SinceTisa

self-map on X, the validity of the constraint (2.1) is limited to
the set family

Ar:={A; cx:(diam(A;)<M AT(A;)cA; some A cAq )}
of bounded subsets of X. In this
d(Tix,Tiym 5 vijez,
X, yeA, eAT and T maps X to some member A; of AT

case,
provided  that
for each given X, y € X . In other words, the image of T is

restricted so that T : X— X | Aj (for some Aj e AT which
depends, in general, on x and y) so that d (T X, T y)£ M in
order to (2.1) to be feasible, i.e. T X, T yare in some set of

the family A 1 ifthe pair x, y in X is such that d( x, y)> M.
Note that T : X — X is not necessarily a retraction from X

to some element of AT since T(A;)cA j for

AiAj(#A;)eAr . Note that T :X—>X|A; can
possess a fixed point if K=1 and (2.1) holds.

3)If K>1 then
d(x,y)zM/(K%):Osd(Tx,Ty)Sd(x,y)fKM_1<d(x,y)
if x,y(#x)eX

As a result, if X,yeX exist such that

d(X,y)e(O,%] then the constraint (2.1) is

impossible for any self-map T on X since it would imply
d (TX Ty )<O. But for large enough distances satisfying

d(x,y)e{ KM ,ooj , the

M
, o0 d(x,
— ] ( d( y)e(K_1
self-map T :X — X is locally non-expansive (locally

contractive). This can be expected to the light of some results
provided in [18]. Fixed points can exist only in trivial cases

as, for instance , X :={X:d(x,y )2 KM 1 ;VyeX}isaset

of isolated points with a minimum pair-wise distance
threshold so that T :X — X is such that T(y)=xeX ;
VyeX .

4) The case of interest discussed through this paper for (2.1)
is when M >0 and Ke[O 1) . It is shown that the

selff-map T :X — X exhibits contractive properties for

sufficiently large distances which exceed a minimum real
threshold while it might possibly be expansive for distances
under such a threshold. A related motivating example
follows.

Example 4.2: Note that the second inequality in (2.1) with
p=1,K,idi+M,i(x,y)= K, d+M,(x,y)=M ,d=0

;VX,y € X is equivalent to :
d(Tx,Ty)<(1-K)d(x,y)+M
; VX,ye X, for some M >0.

4.1
Eq. (4.1) is relevant, for

instance, in the following important problem. Let a linear
time-invariant n-th order dynamic system be:

%(t)=Ax(t)+n (1) (4.2)

with Ae R™" being a stability matrix whose fundamental
matrix satisfies He At “S K Oe—aot ; V>0 for some
positive real constants K (, (being norm- dependent) and

o gand n: [O , 00 )>< X — R " being an unknown uniformly

bounded perturbation of essential supremum bound

satisfying ess sup [ny (t)|<M g<o ; ¥xeX . The
0

o >t>
unique solution of (4.3) for X(O )=x is:
x(t)=e A x o +18 e Aty (1)dx
Direct calculation with (2.4) for the norm —induced
distance d(X,y)::" X—y|| ; VX, Yy e X yields:
d (x(t), y(t))=[x(t)-y(t)[< K ge " [xg—yo]

+ 20 sup (1) y (5]
A 0<t<0

<(1-K)d(xg,yo)+M

(4.3)

4.4
K 2K ¢ M
; Vtzh0:=L In—%  with o>M =200
Ao 1- a o
K:i=1-Kge “0M"0¢c(0,1). Now, let XcR" the
state space of (4.1), generated by (4.4) , subjectto Xy € X
and (X ,d )is a complete metric space. Define the state

transformation Thx(kh):X|:(k+1)h } on X which
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generates the sequence of states {x(kh)}

o0 . .
_o being in X
if Xge X with h being any real constant which satisfies
h >h. Then, the self-map T j, : X — X satisfies (4.1).

Note that the system (4.3) is always globally Lyapunov
stable for any bounded initial conditions in view of (4.5). If
the perturbation is identically zero then the origin is globally
asymptotically Lyapunov stable since A is a stability matrix.
This follows also from (4.5) since the self-map T |, on X is a

contraction which has zero as its unique fixed and
equilibrium point so that x(kh+t)=e A" x(kh)—>0 as
k—>ow; Vte[0,h); Yh>h,. Thus, x(t)—>0 as
t—> oo . However, in the presence of the perturbation, the
origin is not globally asymptotically stable (although the

system is globally stable) and it exhibits ultimate
boundedness since for sufficiently large distances
d(T px(kh),T hy(kh))z% (respectively,

d( x(kh),y(kh))>% ), the self-map is non-expansive

(respectively, contractive). Then,
0<d(T px(kh),T y(kh))<d(x(kh), y(kh)) respectively,

d(T px(kh),T y(kh))<d(x(kh), y(kh)) ). But

properties are not guaranteed if d(x(kh),y(kh))< %

such

which can leadto T |, : X — X being expansive. O

Examples 4.1-4.2 emphasize the fact that some real-world
problems exist where certain self-maps T from X to X are
neither contractive nor expansive everywhere in X while
such a map is guaranteed to be contractive for sufficiently
large distances between any two points in X exceeding a
known real threshold. For small distances, the self-map could
be potentially expansive, or, as in the dynamic system of
Example 4.1, unclassified as expansive, non-expansive or
contractive since those potential behaviors have a local
character. Note that in the self-map X on X is point-wise
nonexpansive, contractive or potentially expansive for each
given pair in X accordingly to the distance between them.

Example 4.3: Let the metric space be (R ,d) endowed with
Euclidean distance. Consider the self- map T:X - X
defining the discrete scalar dynamic controlled system:

Xie1=ay X +bu s VkeZ o, x(0)=x, (4.5)
subject to b > b> 0 under the control law
—K i X sgn Xy if x o #0
Uy = k Xk S9 ke 1T XK (4.6)
0 if x,=0
kk+ak
Kg=Kg{xg)= ——— 4.7
=K (xy) b SignX ¢ (4.7)

is a sequence from (R\{0})xZ o, > RxZ o, where A is
a discrete real sequence on [0,1). Consider the self-map
T : R— R defining the discrete closed-loop dynamic system
obtained by combining (4.5)-(4.7).

Xiar =TX g =a X +b U =(ay —b K sign x o )x = A Xy
; VkeZ o, x(0)=xo (4.8)

which is also valid for X =0 . Define subsets A;=R (. and

A,=R_ of R and note that the self-map is a 2-cyclic
self-map from R=A; UA, to itself with A; " A,={0}
fulfiling TA;,=A,; . Note that 0eF(T) .
Ae [0,1) , Xk—>0€F(T) for any Xye€R so that
T:A; VA, —> AjUA, is a2-cyclic strict contraction.

Since

Example 4.4: Example 4.3 is re-examined under a class of
parametrical perturbations. Let the system be modified as
follows:

X1 =(@k +@ o)Xk +b U s VkeZ gp, x(0)=x

subject to by > b>0 under the parametrical penurbagfigz
constraint Aok € [ 0,a 0] Now, redefine
Aj=Rg.={zeR:z>¢>0} and
A,=R_g,={zeR:z<-e<0} for some given
e€ R | as two disjoint sets of R. The control law is:

uk=Kksz—ﬁ(Hak+a0—6ksignxk)xk (4.10)

A direct calculation shows that

Xk€A1:>[X k+l = — Xk —(ao—a()k +6k)XkS—(1+5k)8]
:>Xk+1€A2

XkEA23[X k+1:(1+a0—a0k +8k)|Xk|Z(1+6k )8]

= X4 €A (4.11)

where {8 k}()'o is any arbitrary nonnegative real sequence.

One gets from (4.11) that

142K — (@ —a g +84); VkeZ o,
Xk

(4.12)

If {8}y is identically zero and ag =ag;VkeZ o,
then ag—ag+0k=0

~X a1 =X =(=1)"sign x

so that Xy, €Ajq if Xy €Aj provided that |X0|28. If
then
SignX .1 =-signx and Xy, >—-Xx—>L as kK >

ag-ag+ox—>0 as k—> o
for some real constant Le (-0 ,—g]U[e,0) provided
that | X 0|2 ¢ .If the control law (4.10) is replaced with:

k
1-

Uk=Kka=—[ ](1+ak+a()k)xk for some

acl0,1), YkeZ o, (4.13)
Then , signxy,;=-signXy , Xy, >—Xx—>*e as

k > o0 if [X o[> €.

Example 4.5: A variant of Example 4.4 is re-examined under
additive perturbations. Let the system be modified as follows:
Xjp1 =@k X +b Uy + g ys VkeZ op, x(0)=x,
(4.14)
The control law is computed so that X, ;=—A Xk

provided that the real additive perturbation sequence { Jk } 0
is identically zero. This yields:
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Ug=-bi' (A k+ay)x= Xya =—AgXg+0gy (4.15)

XkZS :[xk+1:—kak+ng—s] @gkskkxk—s
(4.106)
and the last implication is  guaranteed  if

gk<(r-1)e<(ry-1)e. Also,

Xg<-—¢ :>[Xk+l:_7\'kxk+gk28] <:>ng7\.ka +&
4.17)

and the last implication is  guaranteed if

g kz(l— A )82(1—kk)a.Then,

[XkeAl /\ng<7\.—1)8] =Xy €Ay,

XieAs ngizli-2)e] = x4 €A, 4.18)

provided that

I<h< min A j=glee[l-n  n 1] ;
— 0<j<w -— —

VkeZ .. Note thatif A =1 then {g }{ is identically
zero and no disturbance is admitted. The 2-cyclic self-
mapT:Al UAz—) Al UAZ fulfils T A]V2: A2,1 and is

expansive for the class of perturbations fulfilling

g k/ee[l—k A =1 ] if £>1 and nonexpansive if
& =1 with g_kz_(). If gyl/ee[1-1y Ay —1]; with
Ak=l , VkeZ . then T can be iteration-dependent
locally expansive or non-expansive depending on A | being
unity or larger than unity.

Example 4.6: Example 4.5 is reformulated by modifying the
controls to better overcome the perturbations as follows.
Assume that the perturbation sequence is unknown but
upper- bounding and lower-bounding sequences of it

{9418, {9 k2§ are known and the controls are corrected

with the sequence {(ok }BO by using the above knowledge
so that:

Up=-bi' [(A+ray)xy+oy] : VkeZ ., (4.19)
in order to achieve that that T:A; WA, > A; UA, be a

2-cyclic self-map so that:

XpeA = X (EAL) == D X +0y —0y =64V 26

Xk eAr= X1 (€A )= A X + 0 -0 ==(e+V ) <—¢
(4.20)

with {vk }BO being some real nonnegative sequence.

Combining these two constraints with (4.19) and replacing
the obtained results in (4.14) yields for the elements

of{vk }%O
Vk+1=7uka—gk+(Dk—SZO

VkeZ ,. Thus, the controller is given by (4.19) together
with the companion equation:

O X tote i X €A,
@k _{ O —AkXg —o,—¢ Iif x, €A
Aiel0,1);0,20:VkeZ, (4.23)
The controlled system through (4.19) becomes
Xy =— A X +9 -0 VkeZ o, (4.24)
subject to (4.23). Combining (4.22) - (4.24) yields:
X €AI= Vi =0k~ +0k
Xg€AL = V=0 - gk +0ok (4.25)
X €A = Xy =V +E=0k — Qg +Ok +¢
XA, =X == (Vi +8)= 0~ 9o — (o +&)  (4.26)
Define 6:2021&)(000,( Then, one gets proceeding
inductively from (4.26) provided that
0« :=max(|g_k1| ,|g_k2|)£9 max (X ; | for some positive

0<j<k

real constant 9 <1

| X k1|<T k+G+e< 9 max |x i |+6+s:>

0< j<k
max ‘xj‘ss max ‘xj‘+6+g+|x0|
0< j<k 0<j<k
G+e+|X,|
= max Xj|S—<oo 4.27)
0<j<k 1-9
since max |X ;|< max |X j | It has been proven the
0<j<k 0<j<k+l
following:

Proposition 4.7. Assume that the system of Example 4.6 is
subject to a controller (4.20), (4.23). Then , the self-map
T:AjUA,—> A; UA, which defines the trajectory

solution is a 2-cyclic self-map. Furthermore, assume that the

perturbation satisfies | gk| <9 max max
0<j<k 0<j<k

Then, the controlled system (4.14), (4.20), (4.23) is
globally Lyapunov stable so that the 2-cyclic self-map
T:AjUA,—> AjUA, is neither expansive nor

asymptotically expansive. O
The conditions for a modified 2-cyclic contraction under
perturbations are obtained by taking three consecutive points
of the controlled system trajectory solution as follows:

<<

).

Xk (2e)eAss yi=Xyu (S —e)e Ay

2 (e ) =X =Y k=Ty k =T?xy €A, (4.28)

Proposition 4.8. Assume that Assume that Proposition 4.7
holds. Assume also that

M(XkvXk+I)£ad(Xk+lle+2)+Yk:a(|xk+1 )+Yk

+|Xk+2

S0k =0k —AkXg TOK+E 2Qg —AgXg +¢€ 4.21)

VKkeZ o, if X €A, ,and ; VkeZ o, for some uniformly bounded nonnegative real
Vi = A XK+ -0k —£20 sequence {y}o . Then, T:A;UA,—> A UA, a
S0, =0 —AXk —Ok—€ <Ox—AeXg—€ (422 2-cyclic strict contraction if a<021k{:1<xw(?»k7»k+l )E(O,l)
; VkeZ o, if x, €A, by using an arbitrary bounded OT@(@(xkxk“) ory

nonnegative real sequence {Gk }000 with o <G ; and K, i=— o e c [0.1). 1f e=0

then F(T)=A, nA,={0}
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Proof: Direct calculations yield:

d(xk+2lxk+1):d(TXk T 2x ):|Xk+2|+|xk+1|
<(1=K)d (X yy - Xk )+2Ks+a(|xk|+|xk+l|)+yk
:(I_K)(|Xk+1|+|Xk|)+2K8+a(|xk+2|+|xk+1|)+7k

(4.29)

VkeZ, provided that

1-K K-
|Xk+2|§1 |Xk|+2K8+(Yk_ a‘XkHU:

-a 1-o

_ K-
(1—K0)|xk|+2Kog+(y+a(1—KO)— 1_0(:|xk+1|j
;VkeZ oy (4.30)
where K g =% - 12K C1o.1) i
I-a 1-a

a<K:= max (LA, )e(0,1)and 7:= max y,. Since
0<k<w 0<k<o

Xi|225vkeZ o, then (4.9) implies that

[X o] (1=K )% [+2K g& 5 VkeZ o, (4.31)

so that T:AjUA,—> AjUA, a 2-cyclic strict

contraction if K 5 < ety [0,1). O
+¢e

Note that if the perturbation is subject to

M (X ko X k+1)50‘d(x kX ke )+ Y= 0L(|X k |+|X k|)+Y K s
VkeZ ,then Proposition 4.8 can be formulated “ mutatis-
mutandis” under alternative sufficiency-type conditions.

Remark 4.9: Note that if Proposition 4.8 holds then from
(4.30) since |Xk|28; VkeZ g, :

X ke =X | <= K g [ X i +2K g = [X | <[ X4

; VkeZ g, and forany deR ,

|Xiia]<poi=2e<|X|<po+8 5 VkeZ o, (4.32)

which is equivalent to

d(xk+2’xk+1 ):|Xk+2|+|x k+1|<p(k):=p0+|x k+1|

<d (Xppr X ) =[x x| +[x ] < pk)+8 5 VkeZ o,
(4.33)

so that T:A{ UA, > A UA, is also a worst-case

modified 2-cyclic Meir-Keeler contraction.
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