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Abstract–The present study discusses the retailer’s
optimal replenishment policy for seasonal products
with a ramp-type demand pattern. In this study, we
focus on “Special Display Goods”, which are heaped
up in end displays or special areas at retail store.
They are sold at a fast velocity when their quantity
displayed is large, but are sold at a low velocity if the
quantity becomes small. We develop the model with
a finite time horizon (period of a season) to deter-
mine the optimal replenishment policy, which maxi-
mizes the retailer’s total profit. Numerical examples
are also presented to illustrate the theoretical under-
pinnings of the proposed model.
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1 Introduction

Inventory models with a finite planning horizon and time-
varying demand patterns have extensively been stud-
ied in the inventory literature[1-7]. Resh et al.[1] and
Donaldson[2] established an algorithm to determine both
the optimal number of replenishment cycles and the opti-
mal replenishment time for a linearly increasing demand
pattern. Barbosa and Friedman[3] and Henery[4] respec-
tively extended the demand pattern to a power demand
form and a log-concave function. Hariga and Goyal[5] and
Teng[6] extended Donaldson’s work by considering vari-
ous types of shortages. For deteriorating items such as
medicine, volatile liquids and blood banks, Dye[7] devel-
oped the inventory model under the circumstances where
shortages are allowed and backlogging rate linearly de-
pends on the total number of customers in the waiting
line during the shortage period. However, there still re-
main many problems associated with replenishment poli-
cies for retailers that should theoretically be solved to
provide them with effective indices. We focus on a case
where special display goods[8, 9, 10] are dealt in. The spe-
cial display goods are heaped up in the end displays or
special areas at retail store. Retailers deal in such special
display goods with a view to introducing and/or exposing
new products or for the purpose of sales promotions in
many cases. They are sold at a fast velocity when their
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quantity displayed is large, but are sold at a low veloc-
ity when their quantity becomes small. Baker[11] and
Baker and Urban[12] dealt with a similar problem, but
they expressed the demand rate simply as a function of
a polynomial form without any practical meaning.

Traditional retailers of seasonal merchandise have to com-
mit themselves to a single order to purchase before the
beginning of the season since the most of seasonal prod-
ucts have a relatively long ordering lead-time[13, 14]. The
retailers who deal with the seasonal merchandise have re-
cently been able to reorder the products during the sea-
son since Quick Response (QR) system has widely been
used by manufacturing industries. Quick Response is a
vertical strategy where the manufacturer strives to pro-
vide products and services to its retail customers in ex-
act quantities on a continuous basis with minimum lead
times[15].

The demand of seasonal merchandise such as clothes,
sporting goods, children’s toys and electrical home ap-
pearances consists of the following three successive peri-
ods: in the first phase the demand rate of the product
increases with time, and then its demand rate becomes
steady. In the final phase the demand rate decreases with
time up to the end of the selling season[16]. This type
of demand is classified into a time dependant ramp-type
demand pattern[16].

In this study, we develop an inventory model for seasonal
products with a ramp-type demand pattern over a finite
time horizon (period of a season) to determine the opti-
mal replenishment policy, which maximizes the retailer’s
total profit. Numerical examples are also presented to
illustrate the theoretical underpinnings of the proposed
model.

2 Notation and Assumptions

The main notations used in this paper are listed be-
low:

H: planning horizon.
n: the number of replenishment cycles during the plan-

ning horizon.
QU : maximum inventory level.
Qj, qj: the order-up-to level and the re-order point,

respectively, in the jth replenishment cycle(q0 = 0,
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Figure 1: Transition of inventory level (n = 3)

0 ≤ qj < Qj ≤ QU , j = 1, 2, · · · , n).
tj: the time of the jth replenishment (tj−1 < tj , t0 = 0,

tn = H).
p: selling price per item.
c: acquisition cost per item.
h: inventory holding cost per item and unit of time.
K: ordering cost per lot.
θ: salvage value, per item, of unsold inventory at the

end of the planning horizon.
λ: a proportional constant of the demand rate.
μ(t): demand rate, at time t, which is independent of
the quantity displayed.

The assumptions in this study are as follows:

(i) The finite planning horizon H is divided into n re-
plenishment cycles.

(ii) The demand rate, μ(t), which is independent of the
quantity displayed is a time dependent ramp-type
function and is of the form

μ(t) =

⎧⎨⎩ μ1(t), 0 ≤ t < γ1,
μ2(t), γ1 ≤ t < γ2,
μ3(t), γ2 ≤ t ≤ H.

(1)

We assume that μ01(t) > 0, μ02(t) ≤ 0, μ03(t) < 0,
limt→γ1−0 μ1(t) = μ2(γ1) and limt→γ2−0 μ2(t) =
μ3(γ2).

(iii) The demand rate is deterministic and significantly
depends on the quantity displayed: the items sell
well if their quantity displayed is large, but do not
when their quantity displayed becomes small. We
express such a behavior of special display goods in
terms of the following differential equation:

d

dt
mj(t) = λ [Qj−1 −mj(t)] + μ(t) (2)

where mj(t) denotes the cumulative quantity of the
objective product sold during [tj−1, t] (t < tj+1) and
Qj−1 signifies the order-up-to level at the beginning
of the jth replenishment cycle. A mathematically
identical equation has been used to express the be-
havior of deteriorating items and their optimal or-
dering policy has been obtained by Abad[17]. Under

the model proposed in this study, the demand de-
pends on the quantity heaped and thus depends on
time.

(iv) The rate of replenishment is infinite and the delivery
is instantaneous.

(v) Backlogging and shortage are not allowed.

(vi) The retailer orders (Qj − qj) units when her/his
inventory level reaches qj . Figure 1 shows the tran-
sition of inventory level in the case of n = 3.

(vii) v = (p− c− h/λ) > 0.

3 Total Profit

By solving the differential equation in Eq. (2) with the
boundary condition mj(tj−1) = 0, the cumulative quan-
tity, mj(t), of demand for the product at time t(≥ tj−1)
is given by

mj(t) = Qj−1
h
1− e−λ(t−tj−1)

i
+

Z t

tj−1

e−λ(t−u)μ(u)du. (3)

Since we have I(tj) = qj , the inventory level of the prod-
uct at time t becomes

I(t) = Qj−1 −mj(t)

= qje
λ(tj−t) +

Z tj

t

eλ(u−t)μ(u)du. (4)

Therefore, the initial inventory level in jth replenishment
cycle is given by

Qj−1 = I(tj−1)

= qje
λ(tj−tj−1) +

Z tj

tj−1

eλ(u−t)μ(u)du. (5)

By letting Qj−1 = I(tj−1) in Eq. (3), the cumulative
quantity of demand during [tj−1, tj) becomes

m(tj−1, tj) = qj

h
eλ(tj−tj−1) − 1

i
+

Z tj

tj−1

eλ(tj−tj−1)μ(u)du. (6)

There obviously exists a time t = tUj (> tj−1) when the
inventory level reaches zero, where tUj is unique positive
solution to Z tj

tj−1

eλ(u−tj−1)μ(u)du = Qj−1. (7)
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The left-hand-side of Eq. (7) indicates that the cumula-
tive demand of the product in jth replenishment cycle
when the re-order point qj is zero. The maximum value
of tj can therefore be given by t

U
j .

On the other hand, the cumulative inventory,
A(tj−1, tj), held during [tj−1, tj) (tj ≤ tUj ) is expressed
by

A(tj−1, tj) =

Z tj

tj−1

I(t)dt

=
1

λ

"
m(tj−1, tj)−

Z tj

tj−1

μ(u)du

#
. (8)

Hence, the total profit is given by

Pn =

nX
j=1

·
p ·m(tj−1, tj)− c · (Qj−1 − qj−1)

−h ·A(tj−1, tj)

¸
+ θqn − nK

= v
nX
j=1

m(tj−1, tj) + (θ − c)qH

+h/λ

Z H

0

μ(u)du− nK, (9)

where v = (p− c− h/λ)(> 0).

4 Optimal Policy

This section analyzes the existence of the optimal pol-
icy (Qj−1, qj , tj) = (Q∗j−1, q

∗
j , t

∗
j ) for a given n (j =

1, 2, · · · , n), which maximizes Pn in Eq. (9). It is, how-
ever, very difficult to conduct analysis under θ 6= c. For
this reason, we focus on the case where θ = c.

4.1 Optimal Re-order Point

At retail stores, they have a maximum value for the in-
ventory level arrowed for some reasons, which is denoted
by QU . It can easily be shown from Eq. (5) that Qj−1 is
a function of qj (0 ≤ qj < Qj−1 ≤ QU ), and furthermore,
Qj−1 ≤ QU agrees with

qj ≤ e−λ(tj−tj−1)

×

"
QU −

Z tj

tj−1

eλ(u−tj−1)μ(u)du

#
. (10)

Let R(tj−1, tj) express the right-hand-side of Inequal-
ity (10). We obviously have R(tj−1, tj) ≥ 0 for tj−1 ≤
tj < min(t

U
j , tj+1).

By differentiating Pn in Eq. (9) with respect to qj , we
have

∂

∂qj
Pn = v

h
eλ(tj−tj−1) − 1

i
(> 0). (11)

Since v(tj−1) = [(p− c)g(tj−1)− h] > 0 from assumption
(vii), we have ∂

∂qj
Pn > 0, and consequently (Q

∗
j−1, q

∗
j ) =

(QU , R(tj−1, tj)).

By letting (Qj−1, qj) = (QU , R(tj−1, tj)) in Eq. (9), the
total profit on (Qj−1, qj) = (QU , R(tj−1, tj)) becomes

Pn = v

nX
j=1

n
QU − e

−λ(tj−tj−1) [QU − m̃(tj−1, tj)]
o

+h/λ

Z H

0

μ(u)du− nK, (12)

where

m̃(tj−1, tj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z tj

tj−1

eλ(u−tj−1)μ1(u)du,

tj−1 < tj < γ1,Z γ1

tj−1

eλ(u−tj−1)μ1(u)du

+

Z tj

γ1

eλ(u−tj−1)μ2(u)du,

tj−1 < γ1 ≤ tj < γ2,Z γ1

tj−1

eλ(u−tj−1)μ1(u)du

+

Z γ2

γ1

eλ(u−tj−1)μ2(u)du,

+

Z tj

γ2

eλ(u−tj−1)μ3(u)du,

tj−1 < γ1 < γ2 ≤ tj ,Z tj

tj−1

eλ(u−tj−1)μ2(u)du,

γ1 ≤ tj−1 < tj < γ2,Z γ2

tj−1

eλ(u−tj−1)μ2(u)du

+

Z tj

γ2

eλ(u−tj−1)μ3(u)du,

γ1 ≤ tj−1 < γ2 ≤ tj ,Z tj

tj−1

eλ(u−tj−1)μ3(u)du,

γ2 ≤ tj−1 < tj ≤ H.

(13)

4.2 Optimal Replenishment Time

This subsection makes an analysis of t∗j that maximizes
Pn, for a given (tj−1, tj+1).

By differentiating Pn in Eq. (12) with respect to tj , we
have

∂

∂tj
Pn = v

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

−λQUe
−λ(tj+1−tj)

+μ(tj)
h
1− e−λ(tj+1−tj)

i¾
(14)

Let L(tj) express the terms enclosed in braces { } in
the right-hand-side of Eq. (14). Since it can easily be
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Figure 2: Sensitivity analysis

proven from assumption (vii) that the sign of v is positive,
∂
∂tj
Pn ≥ 0 agrees with

L(tj) ≥ 0. (15)

Furthermore, we have

L0(tj) = −λ

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

+μ(tj) + e
−λ(tj+1−tj) [λQU + μ(tj)]

¾
+μ0(tj)

h
1− e−λ(tj+1−tj)

i
, (16)

L(tj−1) = [λQU + μ(tj−1)]

×
h
1− e−λ(tj+1−tj−1)

i
(> 0), (17)

L(tj+1) = −λ

½
e−λ(tj+1−tj−1)m̃(tj−1, tj+1)

+QU

h
1− e−λ(tj+1−tj−1)

i¾
(< 0), (18)

L(tUj ) = μ(tUj )
h
1− e−λ(tj+1−t

U
j )
i

−λQUe
−λ(tj+1−tUj ). (19)

In the case of tj+1 ≥ tUj , L(t
U
j ) < 0 coincides with

tj+1 <
1

λ
ln

λQU + μ(tUj )

μ(tUj )
+ tUj . (20)

Let us denote, by ϕ(tUj ), the right-hand-side of Inequal-
ity (20).

It can easily be shown from Eq. (16) that L0(tj) < 0 in the
case of tj ≥ γ1 since we have μ

0
2(tj) ≤ 0 and μ03(tj) < 0.

In the case of tj < γ1, in contrast, the sign of L
0(tj) may

possibly be positive since μ01(tj) > 0. The analysis with
respect to existence of t∗j becomes considerably compli-
cated under L0(tj) > 0 for tj < γ1. For this reason, when
tj < γ1, we focus on the case where

μ01(tj) <
λ

1− e−λ(tj+1−tj)

×

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)] + μ1(tj)

+e−λ(tj+1−tj) [λQU + μ1(tj)]

¾
. (21)

On the basis of the above results, for a given (tj−1, tj+1),
we show below that an optimal replenishment time t∗j
exists:

(1) tj+1 < ϕ(tUj ):

In this subcase, the sign of ∂
∂tj
Pn changes from pos-

itive to negative only once, and thus there exists a
unique finite t∗j (tj−1 < t

∗
j < min(t

U
j , tj+1)) that max-

imizes Pn.

(2) tj+1 ≥ ϕ(tUj ):

In this subcase, Pn is non-decreasing in tj , and con-
sequently we have t∗j = t

U
j .

If there exists t∗j < t
U
j for all j = 1, 2, · · · , n− 1, the total

profit is given by

Pn = ṽ

½
1

λ

n−1X
j=1

£
λQU + μ(t∗j )

¤ h
1− e−λ(t

∗
j+1−t∗j )

i
m(t∗n−1, H)

¾
+ h/λ

Z H

0

μ(u)du− nK. (22)

5 Numerical Examples

This section presents numerical examples to illustrate the
proposed model.

Suppose that the demand rate which is independent of
the quantity displayed is given by

μ(t) =

⎧⎨⎩
αeβt, t < γ1,
αeβγ1 , γ1 ≤ t < γ2,

αeβ(γ1+γ2−t), t ≥ γ2,
(23)

where α > 0 and β > 0[16].
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Figure 2 reveals the transition of inventory level
along with behavior of (q∗j , t

∗
j ) in the case of

(H,QU ,λ, p, c, h, θ,α,β.γ1, γ2) = (100, 350, 0.01, 600, 30
0, 1, 300, 0.1, 0.15, 30, 70) for K = 2000, 5000, 8000.

It is observed in Fig. 2 that the number of replenishment
cycles decreases with increasing K. This is because when
the ordering cost per lot becomes large, the total ordering
cost should be slashed by means of increasing the time
interval between replenishments.

We can also notice in Fig. 2 that q∗j takes a constant value
on the whole in the region of γ1 < t ≤ γ2. In contrast, in
the regions of t < γ1 and t ≥ γ2, the value of q

∗
j relatively

becomes larger, which signifies that, in these regions, the
cumulative quantity displayed increases as the demand
rate which is not affected by the inventory level decreases.
Heaping up the products to a large quantity reflects the
situation where the demand velocity is large. When the
demand rate becomes small, the retailer can therefore
maintain her/his profit as large as possible by increasing
the quantity displayed.

6 Conclusions

In this study, we have proposed an inventory model for
seasonal products with the ramp-type demand pattern
over a finite time horizon (period of a season) to de-
termine the optimal replenishment policy, which maxi-
mizes the retailer’s total profit. We particularly focus on
the case where the retailer is facing her/his customers’
demand by dealing in the special display goods. They
are sold at a fast velocity when their quantity displayed
is large, but are sold at a low velocity if the quantity
becomes small. We have clarified the existence of the
optimal order quantity at time tj , along with the opti-
mal replenishment time which maximize the retailer’s to-
tal profit. In the real circumstances, retailers frequently
place a mirror at their display area, or they display prod-
ucts on a false bottom to increase their quantity displayed
in appearance. Taking account of such factors is an in-
teresting extension.
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