
 
 

 

                   
Abstract—By applying the direct boundary element 

technique for solving the problem of the 2D compressible fluid 
flow around obstacles a singular boundary integral equation, 
formulated in velocity vector terms, arises. A boundary element 
method with quadratic boundary elements of lagrangean type is 
developed in this paper in order to solve this singular boundary 
integral equation. The integral representation of the velocity is 
reduced by discretization to an algebraic system. All coefficients 
depend only on the nodes coordinates used for the boundary 
discretization so it can be easily implemented into a computer 
code, in order to get the numerical solution of the problem to be 
solved. We test the method solving a particular case in which 
the problem has an analytical solution. Comparing the values of 
the exact solution with the calculated ones we remark a high 
degree of accuracy.  
 

Index Terms— direct boundary element method, singular 
integral equation, compressible fluid flow, quadratic boundary 
element. 

 

I. INTRODUCTION 

 When solving problems of fluid flows around different 
kinds of obstacles, and in general boundary value problems 
for systems of partial differential equations, which imply the 
presence of an unbounded domain, a very efficient method 
which can be used is the boundary element method (BEM) 
([1],[2],[3]).  
 When applying this method there is no need to introduce a 
fictive boundary at great distances as in case of using other 
methods as finite differences, or finite element method, and 
also there is no need to make a mesh of the whole domain 
involved in the problem because BEM has the ability to 
reduce the problem dimension by one. Because only the 
boundary of the domain must be discretized the problems are 
reduced to systems of linear equations much smaller than in 
other cases.    As a consequence the computational efficiency 
is improved by applying this method.  
 To achieve this reduction of dimension it is necessary to 
formulate the problem  as a boundary integral equation, 
which is usually a singular one. Two techniques can be used 
to obtain the boundary formulation of the problem: the direct 
and the indirect technique(see [2],[3]).  
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 In this paper we use  higher order boundary elements to 
solve the singular integral equation resulting as an 
application of the direct integral technique to the 
bi-dimensional problem of subsonic compressible fluid flow 
around obstacles.  

Different types of numerical methods, have been applied 
by other authors (finite differences, finite elements, Galerkin 
collocation methods, and other techniques) to solve problems 
of fluid flow around obstacles. The BEM was used as well 
but some authors have considered the incompressible case 
only([4]), and  mostly have used the potential or stream 
function as initial unknowns of the problem. The velocity and 
pressure fields were deduced through a differentiation 
technique after finding the potential or stream function. In 
this approach the singular boundary integral equation to 
solve is obtained in velocity vector terms, so we find the 
perturbation velocity, without any differentiation. Therefore 
the errors which arise are expected to be smaller than in other 
cases.  

Using higher order boundary elements, we ensure a global 
continuity for the unknown function and a better 
approximation for it and for the geometry of the problem than 
in case of using a collocation method to solve the boundary 
integrals ([5], [7]), constant (see[8]) or linear boundary 
elements (as in [9]).  

II. THE SINGULAR BOUNDARY INTEGRAL EQUATION 

-DIRECT TECHINQUE  

 We consider that a uniform, steady, potential motion of an 

ideal inviscid fluid of subsonic velocity iU , pressure 

p and density   is perturbed by the presence of a fixed 

body of a known boundary , noted C, assumed to be smooth 
and closed. We want to find out the perturbed motion, and the 
fluid action on the body.  
Introducing dimensionless variables V  and p, through 
relations: 

  pUppViUV 2
11 ,     

we have:  
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The boundary condition is:   01  YX VNNU ,          (2) 

where N  is the normal unit vector outward the fluid (inward 
the body). 
 Because it is also required that the perturbation velocity 
vanishes at infinity we deduce relation:   p = - U. 
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  For VvUuYyXx  ,,,  , the system of 

equations becomes: 
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the boundary condition:  

  Convnnu yx 02   ,                 (4) 

and    0,lim 


vu , 
where 00 , yx nn  are the components of the normal unit vector 

outward the fluid (inward the body) in the point 

0x , 21 M (for the subsonic flow, M= Mach number 

for the unperturbed uniform motion).  
 Using a direct boundary element method integral 
representations for the components of velocity in the fluid 

domain,  , are first obtained,     vu , ,     

(seee[5]). Considering Cx  0  the perturbation 

velocity in any point of the boundary is obtained: 
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where  00 xnn  , ** ,vu are the fundamental solutions  

given by the following relations ( see[6]): 
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Denoting   xy vnnuG   , and  supposing that G 

is a holderian function on C, we get the representations: 
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and the singular integral equation: 
 

   

  00*0*
222

2
/

0*0*/

0

22

2

y
C

yx
yx

yx

C
yx

nGdsnunv
nn

nn
M

dsGnvnuxG














         (8) 

 
 The sign “′ “denotes the principal value in Cauchy sense of 
the integral (see[10]).  

III. SOLVING THE SINGULAR BOUNDARY INTEGRAL 

EQUATION WITH QUADRATIC ISOPARAMETRIC 

BOUNDARY ELEMENTS 

 In [8] the boundary integral equation is solved by using   a 
constant boundary elements, and in paper [9] linear boundary 
elements are used.   

In the herein approach we consider quadratic 
isoparametric boundary elements for solving equation (8). 
Same kind of boundary elements were used in paper [11], but  
for solving the singular integral equation obtained by an 
indirect method with sources distribution on the boundary, 
for the same problem.  
 So we consider that the boundary is divided into N 

one-dimensional quadratic boundary elements, noted iL , 

each of them with three nodes: two extreme nodes and an 

interior one. The extremes of the segment iL  are noted 

iii xxx 321 ,, , in a local numbering. We have the relations: 

1,1,3
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1  Nixx ii , and 1
13 xx N   contour C being 

closed. 
We obtain the discrete form of equation (8): 
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(9) 
Considering that equation (9) is satisfied in every node 

( jxx 0 ), we obtain:   
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where j
y

j
x nn ,  are the components of  j

j xnn  , and 
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
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For describing the geometry and the behavior of the 

unknown f , on a boundary element, we use a quadratic 

model, with the same set of basic functions, noted 

321 ,, NNN . Using a local system of coordinates (the 

intrinsic system) we have: 
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  ixNx  ,   iyNy  ,   iGNG           (11) 

where  N  is a matrix with a single line, 

   321 NNNN  , 
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   ii yx ,  the column matrices made with the coordinates  of 

the nodes of element iL , and  iG  the column matrix made 

with the nodal values of the unknown function G on iL , 

   tiiii GGGG 321 . 

There are used two systems of notation: a global and a 

local one (global- iG  is the value of G for the node number 

i, Ni 2,1 -and local- NilGi
l ,1,3,1,   is the value for 

the node number l of element i).  
Introducing in equation  (10) the considered 

approximation models, and doing some calculus we get: 
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Further we obtain a simple form of the above equation: 
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Denoting by: 
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we obtain the following expressions for the first coefficients 
in (13): 
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    In order to be able to evaluate the coefficients l
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need to deduce expression of  
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    By differentiating  this relation we obtain the tangent field 
on the geometric support of the boundary element, and, 
taking into account the sense we have considered on the 
boundary we deduce that 
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Evaluating the last two terms in equation (12) we deduce: 
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Analogous we have: 
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(21) 

 Denoting by  l
ij

j
y

l
ij

j
x

l
ij CnBnMb  2  we can write 

equation (13) in a simple form: 
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By denoting l
ij

l
ij

l
ij baA  , Nji ,1,  3,1l  

equation (22) can be written as: 
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The above equation is satisfied in every node which we 
have chosen for the boundary discretization, so we obtain a 
system of linear equations 

Returning to the global system of notation, we obtain the 
following linear algebraic system:  

 

           N
N RBGRMABGA 2

2 ,,,   

       j
yj nB 2 .                                       (24) 

 G being the column matrix made with  the nodal values of 

the unknown function 
For evaluate the coefficients of the above system we must 

specify how we chose the global system of notation and the 
connection between the two systems of notation. 
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For that we consider the following schematic 
representation for the nodes used at the discretization. 

 
Table I Correspondence between local and global 

numbering 
Element nr. Local numbering Global numbering 
1 3

1
2
1

1
1 GGG  21 GG  

2 3
2

2
2

1
2 GGG  43 GG  

3 3
3

2
3

1
3 GGG  65 GG  

… … … 
k 321

kkk GGG  kk GG 212   

k+1 3
1

2
1

1
1  kkk GGG     12112  kk GG  

… … … 
N 321

NNN GGG  NN GG 212   

 
The following relations hold: 

1,1,12
1

1
3   NkGGG kkk    

1
1
1

3 GGGN                                                              (25) 

We can write system (23) as: 
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and further  we get the final form (24). 
The expressions of components of matrix A in (24) are: 
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Solving system (24) we find the nodal values of function 

G.  After finding iG  the velocity components can be found 

with the following relations: 
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(29) 
 

IV. NUMERICAL RESULTS 

The calculation of the matrix coefficients requires several 
evaluations of integrals with singular and non-singular 
kernels. These integrals can be calculated numerically with a 
computer but some of them are singular. For the singular 
integrals ordinary rules can’t be applied so for dealing with 
them we must use special formulas or techniques. Some of 

them are presented in papers [11], [12], [13]. The use of any 
of them makes possible the implementation of the method 
exposed into a computer code to get the numerical solution. 

As shown in paper [12] the best method that can be used to 
treat the singularities which arise in such problems is the 
regularization method, which we apply it in this case too.  

Even the expressions of the coefficients are a little bit 
complicated they depend only on the nodes chosen for the 
boundary discretization, so they can be computed using a 
computer.  

The components of the velocity on the boundary are used 
to evaluate the local pressure coefficient with relation: 
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  (30) 

 
if 0M , or in case of an incompressible fluid flow with 
relation:  

uvuCp 222  . 

The effectiveness and the efficiency of the method 
proposed in this paper is shown through an analytical 
checking, by making a computer code in MATHCAD which  
is used to obtain numerical results for particular cases which 
have exact solutions. 

For an incompressible ideal fluid flow ( 1 ) and a 

circular obstacle the analytical expressions for the 
dimensionless components of the velocity and the local 
pressure coefficient are given by the following relations, see 
[6]: 

   2sin,2cos  vu , 2cos21cp . 

We use the computer code to get the numerical solution in 
this particular case. We have chosen 32 nodes for the 
boundary discretization. 

The numerical results are presented in Fig 1, where the 

analytical solution is represented as well. 

As we can see the error between the numerical and the 
exact solution is very small. 
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Fig.1. Numerical and exact solution for 1 and a 

circular obstacle - 32 nodes on the boundary  
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V. CONCLUSIONS AND FURTHER WORK 

The Direct Boundary Element Method (BEM) is an 
efficient numerical technique, which offers good numerical 
results when solving problems of 2D compressible fluid flow 
around obstacles, especially when higher order boundary 
elements are used.  Even when using a small number of nodes 
for the boundary discretization the numerical results are of 
great accuracy if suitable methods for the treatment of the 
singularities are used. As one can sees the errors are indeed 
very small, fact that shows the efficiency of the method.  

Comparisons between the exact solution and the numerical 
solutions obtained when solving the singular integral 
equation with constant, linear and quadratic boundary 
elements can also be performed, as well as a comparison 
between the exact solution, the numerical one obtained when 
an indirect technique with sources distribution and quadratic 
boundary elements is used. This comparison will establish 
which method offers better results in case of smooth obstacle. 

Even if the boundary equation is more complicated than 
the singular boundary integrals obtained when applying the 
indirect techniques, the direct boundary method can 
successfully be used in case of profiles with cusped trailing 
edge, because it can handles easier with the Kutta-Jukovsky 
condition. 
 

REFERENCES 
[1] Aliabadi M.H., Brebbia C.A., „Advanced formulations in boundary 

element  methods, Computational Mechanics Publications”, Elsevier 
Applied Science, 1993 

[2] Brebbia, C.A., Walker, S., Boundary Element Techniques in 
Engineering,  Butterworths, London, 1980. 

[3] Brebbia, C.A., Telles, J.C.F., Wobel, L.C., Boundary Element Theory 
and Application in Engineering,  Springer-Verlag, Berlin,1984 

[4] Carabineanu A.:  „A boundary element approach to the 2D potential 
flow problem around airfoils with cusped trailing edge”, Computer 
Methods in Applied. Mechanics and Engineering. 129(1996) 

[5] Dagoş, L., Metode Matematice în Aerodinamică  (Mathematical 
Methods in Aerodinamics), Editura Academiei Române, Bucureşti, 
2000. 

[6] Dragoş, L., Mecanica Fluidelor Vol.1 Teoria Generală  Fluidul Ideal 
Incompresibil  (Fluid Mechanics Vol.1. General Theory  The Ideal 
Incompressible Fluid), Editura Academiei Române, Bucureşti, 1999. 

[7] Dragoş L., Dinu A., A direct Boundary Integral Equations Methods to 
subsonic flow with circulation past thin airfoils in ground effect, 
Comput. Methods Appl. Mech. Engrg., 121(1995)163. 

[8] Grecu, L., Demian G., Demian M.: “Two boundary element 
approaches for the compressible fluid flow around a non-lifting body” 
U.P.B Sci Bull. Series A, Vol.71, Iss.1, 2009 

[9] Grecu, L., "A Boundary Element Approach for the Compressible flow 
Around Obstacles", Acta Universitatis Apulensis, 
Mathematics-Informatics, No 15/2008, pag 195-213.  

[10] Lifanov, I. K., Singular integral equations and discrete vortices, VSP, 
Utrecht, TheNetherlands, 1996. 

[11] I. Vladimirescu, L. Grecu, „An Efficient Technique to Treat 
Singularities when Applying BEM with Quadratic Boundary Elements 
to the Problem of Compressible Fluid Flow”, Lecture Notes in 
Engineering and Computer Science: Proceedings of The 2009 
International Conference of Applied and Engineering Mathematics,  
ICAEM 2009, 1-3 July, 2009, London, pp 984-988. 

[12] I. Vladimirescu, L. Grecu, „Weakening the Singularities when 
Applying the BEM for 2D Compressible Fluid Flow”,  Lecture Notes in 
Engineering and Computer Science: Proceedings of The International 
MultiConference of Engineers and Computer Scientists 2010, IMECS 
2010, 17-19 March, 2010, Hong Kong. 

 

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010




