
Abstract— Multi-objective problems have been attractive for 
most researchers because of its diversity in different areas, 
reality coming from real life applications and insolvability in 
polynomial time. Therefore, many algorithms including 
heuristics and/or evolutionary ones were developed to solve 
such problems.  

In this research, we propose a genetic algorithm approach to 
solve a bicriteria scheduling problem in identical parallel 
machines.  Based on different lambda values, we try to 
minimize the combination of makespan (Cmax) and tardiness 
(Tmax). The problems with those objective functions are proven 
to be NP-hard in the literature and this combination of the 
problem is not studied before for parallel machines, to the best 
of our knowledge. The proposed solution is fairly broad to 
adapt to other scheduling problems. 
 

Index Terms— genetic algorithm, makespan, parallel 
machine scheduling, tardiness  

I. INTRODUCTION 

Scheduling is one of the essential research areas which 
deal with the optimization of some objective functions. 
Those objective functions are mostly single criteria functions 
in which the problem aims to optimize only one dimension of 
the problem such as makespan (Cmax), lateness (Lmax), 
tardiness (Tmax), earliness (Emax) and etc. Those problems 
may also consider some constraints like due dates, release 
times, precedence and etc. However, several researchers have 
recognized the importance of considering multiple measures 
of performance as a better representation of today's decision 
making [1], since the real world problems do not always have 
only one single criterion. Instead, they have two or more 
criteria to be optimized. In this sense, decision-makers face 
more complicated problems having multi-objective functions 
to be optimized. Therefore, a compromise solution must be 
found in accordance with the preferences of the 
decision-maker. 

Multi-objective scheduling was studied by many 
researchers. Torres, Enscore, and Barton [2] proposed a 
simulated annealing heuristic for the average flow time and 
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the number of tardy jobs in parallel machines. Koksalan and 
Keha [3] considered two bicriteria scheduling problems on a 
single machine. Stein and Wein [4] considered the problem 
of minimizing the makespan and total weighted completion 
time at the same time. Gupta and Ho [5] studied on the 
problem of scheduling jobs on two parallel identical 
machines where an optimal schedule is defined as one that 
gives the smallest makespan among the set of schedules with 
optimal total flowtime is studied. Gupta and Ruiz-Torres [6] 
considered the problem of generating a set of efficient 
(non-dominated) schedules on identical parallel machines 
involving total flow-time and total number of tardy jobs. In 
addition, there is also a survey on multi-objective 
meta-heuristics [7] and two other surveys on multi-objective 
scheduling as well [8, 9]. 

In this paper, we consider parallel machine scheduling and 
try to minimize makespan and maximum tardiness 
simultaneously. One of the criteria can be viewed as the 
manufacturer’s objective and the other one as the customer’s; 
resulting with the problem of a real life scenario. For such 
simultaneous optimizations, there are two possible methods 
as Gupta defines in [6]. First, a single objective function can 
be constructed, a linear combination of the various criteria is 
formed then it is optimized. Second, all efficient, which is 
also called Pareto Optimal, schedules can be generated where 
an efficient schedule is one in which any improvement to the 
performance with respect to one of the criteria causes a 
disintegration with respect to one of the other criteria. 

In this research, we preferred to apply the first way which 
is an optimization of the linear combination of two 
measurements which are makespan and tardiness. To do so; 
we implemented a genetic algorithm. In Section 2; we discuss 
the problem and propose our solution. In Section 3; we test 
our algorithm and comment on the obtained results and 
finally in Section 4; we make the conclusion and present the 
future work.  

II. THE PROBLEM AND THE PROPOSED SOLUTION  

A. The problem 

Makespan (maximum completion time) minimization is 
one of the most dealt objective functions in scheduling area. 
Tardiness is also another important criterion for most 
problems. Both problems are proven to be NP-hard. In this 
research, we try to optimize those two criteria 
simultaneously. In general; there are m identical machines to 
process n jobs. Each job j has a deterministic processing time 
pj and due date dj. All jobs are ready at time zero and there is 
no precedence relation between jobs. Additionally, 
preemption or cancellation of jobs is not allowed.   

The objective is to generate the best possible schedule 
which minimizes the makespan and the tardiness. If we use 
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the 3-field notation introduced by Graham [10], we can 
denote this problem as Pm|| λCmax+(1- λ)Tmax. We use lambda 
(λ) to express the varying objectives of the decision-maker. 
We use the following notations in the paper, 
 m:  machine size; 
 n: job size;  
 Cj: the completion time for job j; 
 dj: the due date for job j; 
 Tj =max(0; Cj-dj): the tardiness of job j; 
 Cmax = maxj Cj: the maximum completion time 

(makespan), 
 Tmax = maxj Tj: the maximum tardiness. 

B. The proposed solution 

We developed a genetic algorithm (GA) to solve the 
problem mentioned above. Before execution, we determined 
the values of some important variables in GA as in the 
following: 
 Population size: There are 100 members in each 

population. (Parent, Child, New Populations) 
 Generation size: There are at most 1000 generations to be 

performed. 
 Stopping criteria: The algorithms stop either after 1000 

(generation size) generations or if the best (fittest) 
member in the population does not improve for the last 
200 generations. Either condition can make the algorithm 
stop. 

 Mutation probability: It is 0.10. 
 The job size and machine size: We run the GA for 

different number of machines and jobs. For job size; we 
tried 50, 100, 150, and 200 and for machine size; we tried 
5, 10, 15, and 20. 
 
Genetic Algorithm () 
{ 

Parent population, child population and new 
population are empty at the beginning 

Generate initial (parent) population 
While (termination criteria is not met) 
{ 

While (child population size < predetermined 
population_size) 

{ 
Perform Crossover on parent population 
Optionally perform Mutation on the new 

obtained child individuals 
Add these children to the child population 

if not exists already 
} 
Generate new population from parent and child 

populations. 
Equalize parent population to new population 

} 
} 
 

1)  Parent Population Generation (Initial population) 
 
The initial parent population includes randomly created 

job sequences. Each member of this population shows a 
sequence, in other words; the order of the jobs to be 
scheduled. There are n! possible sequences. However, it is 

impossible to test all possible sequences; therefore we only 
take 100 randomly generated members (job sequences). 

And based on the sequence, we schedule the jobs onto the 
machines one by one. To do so, we select the earliest ready 
machine which has the minimum completion time at that 
time. 

Therefore, after this scheduling process, each individual in 
the population has its own Cmax and Tmax values and the 
objective function is calculated based on the predetermined 
lambda value. 

 
2) Crossover 
 

Based on the Roulette Wheel Selection two parents are 
chosen and crossover is applied. In this way, the fitter the 
individual is, the more chance it has to be selected. In our 
GA, we used two-point crossover.  

Each job in a sequence is indexed beginning from 1 to job 
size. Two points are selected randomly on a parent 
chromosome. To create child1, the jobs corresponding to the 
ones between the selected points are taken from parent1 
without any change. And beginning after the second point, 
the jobs in the parent2 chromosome are checked one by one, 
and if not already exists, it is put on the next available 
position in child1. Otherwise, next job in parent2 
chromosome is checked and this process continuous until 
child1 is fully obtained. A similar procedure applies for 
child2. 

A crossover example can be found in Fig.1 (job size is 
assumed to be 10 to make the example clear) 

 
3) Mutation 

 
After performing crossover, 2 child sequences are 

obtained. Based on a predetermined mutation probability 
(which is 0.10 in this research) each child either mutates or 
not. To do so, first a random double value is selected between 
0 and 1, if the value is less than the mutation probability, the 
mutation is done, otherwise it is not.  

To perform the mutation again two random points in the 
sequence are selected and the jobs in those points change 
their positions with each other. 

A mutation example can be found in Fig. 2 (mutation is 
applied to child2 from Fig.1) 

 
4) Child Population Generation 
 

After crossover and mutation operations, child population 
is updated. In other words, if the population does not include 
the newly created child then the child sequence is added to 
the child population. Otherwise, crossover and mutation 
steps continue to repeat until the size of the child population 
is equal to the predetermined population size (which is 
already determined as 100). 
 
5) New Population Generation 
 

In this step, to get the fittest members of the child and 
parent population and also not to leave the randomness, we 
applied the following procedure to generate the new 
population: 
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25% of new population are taken from the best (fittest) 
members of parent population and added to the new 
population 

25% of new population are taken from the best (fittest) 
members of children population and added to the new 
population (if not already exists) 

25% of new population are randomly chosen from the 
worst 75% of parent population added to the new population 
(if not already exists) 

25% of new population are randomly chosen from the 
worst 75% of children population added to the new 
population (if not already exists) 

III. EXPERIMENTAL TESTS AND THE RESULTS  

We implemented the genetic algorithm in Java 1.6.  
Datasets are randomly created for 50, 100, 150, 200 jobs and 
5, 10, 15, 20 machines. Due dates are randomly selected 
integer values between the processing time of the job and an 
upper value as in the following: 

dj = Random (pj, (Sum (pj)/machine_size)*tightness). 
In this way, we aim to make the due date of a job based on 

the processing time of the job itself and the total processing 
times of all jobs. We determined the due date tightness as 
1.10 which means the due time is at most as bigger as the 
10% of the average processing time. In this way, we 
guaranteed to make the due dates flexible since the dataset is 
created randomly. 

 
We test the same dataset for different lambda values 

which are 0, 0.25, 0.50, 0.75, and 1 in order to define 
different combinations in bicriteria objective. 

To test the effectiveness of the algorithm, we looked at the 
percentage improvement between the best objective value in 
the first generation and that of the last generation.  

Since the dataset is created randomly, we run the 
algorithm 10 times (repetition size) on the same dataset and 
take the average of the improvements in order to eliminate 
the effects of randomness.  

In summary; for each job-machine pair, we create a 
dataset and on this dataset we try 5 different lambdas, in other 
words we try to optimize 5 different bicriteria objectives. 
And for each lambda value we run the GA 10 times and 
calculate the improvement. At the end; we take the average of 
these 10 improvements. Finally, we obtain average 
improvement values for each job-machine size datasets and 
interpret those results and show in a graph to observe the 
improvements more properly.  

The graphs showing the relation between the 
improvement and different lambda values for varying 
machine sizes when the job size is fixed can be analyzed in 
Fig.3. 

The results in Fig.3 can be interpreted as follows: 
Independent of job size, when lambda is equal to 0, i.e. the 

objective is purely Tmax, improvement over initial population 
is very large. These improvements decrease when lambda 
value is increased, i.e. the objective is bicriterion.  

The minimum improvement is obtained for lambda is 
equal to 1 that is the objective is purely Cmax. The reason for 
this result comes from scheduling field. In scheduling, when 
the number of jobs is very large compared to the number of 

machines, the makespan value for a randomly generated 
schedule is not very far away than the optimum makespan. 

The graphs showing the relation between the improvement 
and different lambda values for varying job sizes when the 
machine size is fixed can be analyzed in Fig.4. 

The results in Fig. 4 can be interpreted as follows: 
Independent of machine size, when lambda is equal to 0, 

i.e. the objective is purely Tmax, improvement over initial 
population is very large. These improvements decrease when 
lambda value is increased, i.e. the objective is bicriterion.  

The minimum improvement is obtained for lambda is 
equal to 1 that is the objective is purely Cmax. The reason for 
this result comes from scheduling field. In scheduling, when 
the number of jobs is very large compared to the number of 
machines, the makespan value for a randomly generated 
schedule is not very far away than the optimum makespan. 

In summary, the proposed GA improved initial objective 
values independent of machine and job sizes. The 
improvement is the largest for the objective function with a 
lambda value of 0 and the smallest with a lambda value of 1. 

IV. CONCLUSION AND FUTURE WORK 

In this research, we studied parallel machine scheduling 
with a bicriteria objective function which we tried to 
minimize makespan and maximum tardiness simultaneously. 
We also added lambda to the objective function to express 
decision maker’s priorities between single objectives. As a 
solution; we proposed a genetic algorithm and made 
experimental studies to test the effectiveness of the method. 
Since there is no similar studies or appropriate lower bound 
calculations to test the effectiveness, we analyzed the 
improvement obtained by GA. The proposed GA gave quite 
good results and the improvement was at least 50% and even 
100% for most cases. The method is fairly general to be 
applied to some other bicriteria objective functions. 

In the future, we plan to compare proposed GA results to 
other heuristic solutions for bicriteria optimization. 
Moreover, we also want to improve the method by 
developing a better crossover operator in order to obtain 
superior results. 
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Parent 1 3 1 2 5  9 10 8 7  4 6 

Parent2 9 10 6 3  2 8 4 7  5 1 

Crossover points     *     *   
Child 1 6 3 2 4  9 10 8 7  5 1 

Child 2 1 5 9 10  2 8 4 7  6 3 

 
Fig 1. Crossover sample between randomly selected parents based on roulette wheel selection 

 
 
 
 

 
Child 2 before mutation 1 5 9 10 2 8 4 7 6 3 
Mutation points       *   * 
Child2 after mutation 1 5 9 10 2 8 3 7 6 4 

 
Fig 2. Mutation sample 

 
 
 

 
 

  
(a)                                                                                 (b) 

 

  
(c)                                                                                 (d) 

Fig 3. Improvement values based on number of jobs : (a) 50 jobs  (b) 100 jobs (c) 150 jobs  (d) 200 jobs
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(a)                                                                                     (b) 

 

  
(c)                                                                                      (d) 

Fig 4. Improvement values based on number of machines : (a) 5 machines  (b) 10 machines (c) 15 machines (d) 20 machines 
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