
Abstract— Multi-objective problems have been attractive for
most researchers because of its diversity in different areas,
reality coming from real life applications and insolvability in
polynomial time. Therefore, many algorithms including
heuristics and/or evolutionary ones were developed to solve
such problems.

In this research, we propose a genetic algorithm approach to
solve a bicriteria scheduling problem in identical parallel
machines. Based on different lambda values, we try to
minimize the combination of makespan (Cmax) and tardiness
(Tmax). The problems with those objective functions are proven
to be NP-hard in the literature and this combination of the
problem is not studied before for parallel machines, to the best
of our knowledge. The proposed solution is fairly broad to
adapt to other scheduling problems.

Index Terms— genetic algorithm, makespan, parallel
machine scheduling, tardiness

I. INTRODUCTION

Scheduling is one of the essential research areas which
deal with the optimization of some objective functions.
Those objective functions are mostly single criteria functions
in which the problem aims to optimize only one dimension of
the problem such as makespan (Cmax), lateness (Lmax),
tardiness (Tmax), earliness (Emax) and etc. Those problems
may also consider some constraints like due dates, release
times, precedence and etc. However, several researchers have
recognized the importance of considering multiple measures
of performance as a better representation of today's decision
making [1], since the real world problems do not always have
only one single criterion. Instead, they have two or more
criteria to be optimized. In this sense, decision-makers face
more complicated problems having multi-objective functions
to be optimized. Therefore, a compromise solution must be
found in accordance with the preferences of the
decision-maker.

Multi-objective scheduling was studied by many
researchers. Torres, Enscore, and Barton [2] proposed a
simulated annealing heuristic for the average flow time and

Manuscript received February 24, 2010.
S. Samur is a PhD student in Department of Industrial Engineering,

Marmara University, Istanbul, Turkey. She received her BS degree from
Computer Engineering in Fatih University and MS degree from Computer
Engineering in Marmara University. Her research interests include
Operations Research, Scheduling Theory and Game Theory. Her email
address is <sksamur@gmail.com>; phone: +90-506-268-42-05; fax:
+90-216-348-02-93.

S. Bulkan is an Assistant Professor in Department of Industrial
Engineering, Marmara University, Istanbul, Turkey. He received his BS and
MS degree from Management Engineering in Istanbul Technical University.
He also received another MS from Operations Research in Florida Institute
of Technology and PhD from industrial engineering in Cleveland State
University. His research interests include Operations Research, Production
planning and scheduling in manufacturing systems. His email address
is <sbulkan@marmara.edu.tr>

the number of tardy jobs in parallel machines. Koksalan and
Keha [3] considered two bicriteria scheduling problems on a
single machine. Stein and Wein [4] considered the problem
of minimizing the makespan and total weighted completion
time at the same time. Gupta and Ho [5] studied on the
problem of scheduling jobs on two parallel identical
machines where an optimal schedule is defined as one that
gives the smallest makespan among the set of schedules with
optimal total flowtime is studied. Gupta and Ruiz-Torres [6]
considered the problem of generating a set of efficient
(non-dominated) schedules on identical parallel machines
involving total flow-time and total number of tardy jobs. In
addition, there is also a survey on multi-objective
meta-heuristics [7] and two other surveys on multi-objective
scheduling as well [8, 9].

In this paper, we consider parallel machine scheduling and
try to minimize makespan and maximum tardiness
simultaneously. One of the criteria can be viewed as the
manufacturer’s objective and the other one as the customer’s;
resulting with the problem of a real life scenario. For such
simultaneous optimizations, there are two possible methods
as Gupta defines in [6]. First, a single objective function can
be constructed, a linear combination of the various criteria is
formed then it is optimized. Second, all efficient, which is
also called Pareto Optimal, schedules can be generated where
an efficient schedule is one in which any improvement to the
performance with respect to one of the criteria causes a
disintegration with respect to one of the other criteria.

In this research, we preferred to apply the first way which
is an optimization of the linear combination of two
measurements which are makespan and tardiness. To do so;
we implemented a genetic algorithm. In Section 2; we discuss
the problem and propose our solution. In Section 3; we test
our algorithm and comment on the obtained results and
finally in Section 4; we make the conclusion and present the
future work.

II. THE PROBLEM AND THE PROPOSED SOLUTION

A. The problem

Makespan (maximum completion time) minimization is
one of the most dealt objective functions in scheduling area.
Tardiness is also another important criterion for most
problems. Both problems are proven to be NP-hard. In this
research, we try to optimize those two criteria
simultaneously. In general; there are m identical machines to
process n jobs. Each job j has a deterministic processing time
pj and due date dj. All jobs are ready at time zero and there is
no precedence relation between jobs. Additionally,
preemption or cancellation of jobs is not allowed.

The objective is to generate the best possible schedule
which minimizes the makespan and the tardiness. If we use

An Evolutionary Solution to a Multi-objective
Scheduling Problem

Sumeyye Samur, Serol Bulkan

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

the 3-field notation introduced by Graham [10], we can
denote this problem as Pm|| λCmax+(1- λ)Tmax. We use lambda
(λ) to express the varying objectives of the decision-maker.
We use the following notations in the paper,
 m: machine size;
 n: job size;
 Cj: the completion time for job j;
 dj: the due date for job j;
 Tj =max(0; Cj-dj): the tardiness of job j;
 Cmax = maxj Cj: the maximum completion time

(makespan),
 Tmax = maxj Tj: the maximum tardiness.

B. The proposed solution

We developed a genetic algorithm (GA) to solve the
problem mentioned above. Before execution, we determined
the values of some important variables in GA as in the
following:
 Population size: There are 100 members in each

population. (Parent, Child, New Populations)
 Generation size: There are at most 1000 generations to be

performed.
 Stopping criteria: The algorithms stop either after 1000

(generation size) generations or if the best (fittest)
member in the population does not improve for the last
200 generations. Either condition can make the algorithm
stop.

 Mutation probability: It is 0.10.
 The job size and machine size: We run the GA for

different number of machines and jobs. For job size; we
tried 50, 100, 150, and 200 and for machine size; we tried
5, 10, 15, and 20.

Genetic Algorithm ()
{

Parent population, child population and new
population are empty at the beginning

Generate initial (parent) population
While (termination criteria is not met)
{

While (child population size < predetermined
population_size)

{
Perform Crossover on parent population
Optionally perform Mutation on the new

obtained child individuals
Add these children to the child population

if not exists already
}
Generate new population from parent and child

populations.
Equalize parent population to new population

}
}

1) Parent Population Generation (Initial population)

The initial parent population includes randomly created

job sequences. Each member of this population shows a
sequence, in other words; the order of the jobs to be
scheduled. There are n! possible sequences. However, it is

impossible to test all possible sequences; therefore we only
take 100 randomly generated members (job sequences).

And based on the sequence, we schedule the jobs onto the
machines one by one. To do so, we select the earliest ready
machine which has the minimum completion time at that
time.

Therefore, after this scheduling process, each individual in
the population has its own Cmax and Tmax values and the
objective function is calculated based on the predetermined
lambda value.

2) Crossover

Based on the Roulette Wheel Selection two parents are
chosen and crossover is applied. In this way, the fitter the
individual is, the more chance it has to be selected. In our
GA, we used two-point crossover.

Each job in a sequence is indexed beginning from 1 to job
size. Two points are selected randomly on a parent
chromosome. To create child1, the jobs corresponding to the
ones between the selected points are taken from parent1
without any change. And beginning after the second point,
the jobs in the parent2 chromosome are checked one by one,
and if not already exists, it is put on the next available
position in child1. Otherwise, next job in parent2
chromosome is checked and this process continuous until
child1 is fully obtained. A similar procedure applies for
child2.

A crossover example can be found in Fig.1 (job size is
assumed to be 10 to make the example clear)

3) Mutation

After performing crossover, 2 child sequences are

obtained. Based on a predetermined mutation probability
(which is 0.10 in this research) each child either mutates or
not. To do so, first a random double value is selected between
0 and 1, if the value is less than the mutation probability, the
mutation is done, otherwise it is not.

To perform the mutation again two random points in the
sequence are selected and the jobs in those points change
their positions with each other.

A mutation example can be found in Fig. 2 (mutation is
applied to child2 from Fig.1)

4) Child Population Generation

After crossover and mutation operations, child population
is updated. In other words, if the population does not include
the newly created child then the child sequence is added to
the child population. Otherwise, crossover and mutation
steps continue to repeat until the size of the child population
is equal to the predetermined population size (which is
already determined as 100).

5) New Population Generation

In this step, to get the fittest members of the child and
parent population and also not to leave the randomness, we
applied the following procedure to generate the new
population:

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

25% of new population are taken from the best (fittest)
members of parent population and added to the new
population

25% of new population are taken from the best (fittest)
members of children population and added to the new
population (if not already exists)

25% of new population are randomly chosen from the
worst 75% of parent population added to the new population
(if not already exists)

25% of new population are randomly chosen from the
worst 75% of children population added to the new
population (if not already exists)

III. EXPERIMENTAL TESTS AND THE RESULTS

We implemented the genetic algorithm in Java 1.6.
Datasets are randomly created for 50, 100, 150, 200 jobs and
5, 10, 15, 20 machines. Due dates are randomly selected
integer values between the processing time of the job and an
upper value as in the following:

dj = Random (pj, (Sum (pj)/machine_size)*tightness).
In this way, we aim to make the due date of a job based on

the processing time of the job itself and the total processing
times of all jobs. We determined the due date tightness as
1.10 which means the due time is at most as bigger as the
10% of the average processing time. In this way, we
guaranteed to make the due dates flexible since the dataset is
created randomly.

We test the same dataset for different lambda values

which are 0, 0.25, 0.50, 0.75, and 1 in order to define
different combinations in bicriteria objective.

To test the effectiveness of the algorithm, we looked at the
percentage improvement between the best objective value in
the first generation and that of the last generation.

Since the dataset is created randomly, we run the
algorithm 10 times (repetition size) on the same dataset and
take the average of the improvements in order to eliminate
the effects of randomness.

In summary; for each job-machine pair, we create a
dataset and on this dataset we try 5 different lambdas, in other
words we try to optimize 5 different bicriteria objectives.
And for each lambda value we run the GA 10 times and
calculate the improvement. At the end; we take the average of
these 10 improvements. Finally, we obtain average
improvement values for each job-machine size datasets and
interpret those results and show in a graph to observe the
improvements more properly.

The graphs showing the relation between the
improvement and different lambda values for varying
machine sizes when the job size is fixed can be analyzed in
Fig.3.

The results in Fig.3 can be interpreted as follows:
Independent of job size, when lambda is equal to 0, i.e. the

objective is purely Tmax, improvement over initial population
is very large. These improvements decrease when lambda
value is increased, i.e. the objective is bicriterion.

The minimum improvement is obtained for lambda is
equal to 1 that is the objective is purely Cmax. The reason for
this result comes from scheduling field. In scheduling, when
the number of jobs is very large compared to the number of

machines, the makespan value for a randomly generated
schedule is not very far away than the optimum makespan.

The graphs showing the relation between the improvement
and different lambda values for varying job sizes when the
machine size is fixed can be analyzed in Fig.4.

The results in Fig. 4 can be interpreted as follows:
Independent of machine size, when lambda is equal to 0,

i.e. the objective is purely Tmax, improvement over initial
population is very large. These improvements decrease when
lambda value is increased, i.e. the objective is bicriterion.

The minimum improvement is obtained for lambda is
equal to 1 that is the objective is purely Cmax. The reason for
this result comes from scheduling field. In scheduling, when
the number of jobs is very large compared to the number of
machines, the makespan value for a randomly generated
schedule is not very far away than the optimum makespan.

In summary, the proposed GA improved initial objective
values independent of machine and job sizes. The
improvement is the largest for the objective function with a
lambda value of 0 and the smallest with a lambda value of 1.

IV. CONCLUSION AND FUTURE WORK

In this research, we studied parallel machine scheduling
with a bicriteria objective function which we tried to
minimize makespan and maximum tardiness simultaneously.
We also added lambda to the objective function to express
decision maker’s priorities between single objectives. As a
solution; we proposed a genetic algorithm and made
experimental studies to test the effectiveness of the method.
Since there is no similar studies or appropriate lower bound
calculations to test the effectiveness, we analyzed the
improvement obtained by GA. The proposed GA gave quite
good results and the improvement was at least 50% and even
100% for most cases. The method is fairly general to be
applied to some other bicriteria objective functions.

In the future, we plan to compare proposed GA results to
other heuristic solutions for bicriteria optimization.
Moreover, we also want to improve the method by
developing a better crossover operator in order to obtain
superior results.

REFERENCES

[1] Nagar, J. Haddock, and S. Heragu, European Journal of Operational

Research 81, 88-104, 1995
[2] Ruiz-Torres, E. E. Enscore, R. R. Barton, Computers ind. Engng VoI.

33, Nos 1-2, pp. 257-260, 1997
[3] M. Koksalan, A. B. Keha, European Journal of Operational Research

145, 543–556, 2003
[4] Stein, J.Wein, Oper. Res. Lett. 21, 115–122, 1997
[5] J. N. D. Gupta, J. C. Ho, Computers &Operations Research 28,

705-717, 2001
[6] J. N. D. Gupta, A. J. Ruiz-Torres, European Journal of Operational

Research 167, 679–695, 2005
[7] Jones, S. K. Mirrazavi, M. Tamiz, European Journal of Operational

Research 137, 1-9, 2002
[8] V. T’kindt, J.C. Billaut, Springer, Berlin, 2002.
[9] Hoogeveen, European Journal of Operational Research 167, 592-623,

2005
[10] R.L. Graham, SIAM Journal of Applied Mathematics 17, 416–429,

1969

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Parent 1 3 1 2 5 9 10 8 7 4 6

Parent2 9 10 6 3 2 8 4 7 5 1

Crossover points * *
Child 1 6 3 2 4 9 10 8 7 5 1

Child 2 1 5 9 10 2 8 4 7 6 3

Fig 1. Crossover sample between randomly selected parents based on roulette wheel selection

Child 2 before mutation 1 5 9 10 2 8 4 7 6 3
Mutation points * *
Child2 after mutation 1 5 9 10 2 8 3 7 6 4

Fig 2. Mutation sample

(a) (b)

(c) (d)

Fig 3. Improvement values based on number of jobs : (a) 50 jobs (b) 100 jobs (c) 150 jobs (d) 200 jobs

10

20

5

15

10

20

15

5

5

10
20

15

5

10
15

20

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

(a) (b)

(c) (d)

Fig 4. Improvement values based on number of machines : (a) 5 machines (b) 10 machines (c) 15 machines (d) 20 machines

150

50
200

50

100

100

50

200

150

150

200

100

50

150

100

200

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

