
Using Interval Graphs in an Order Processing
Optimization Problem

Isabel Cristina Lopes∗ J.M. Valério de Carvalho†

Abstract—In this paper we address an order pro-
cessing optimization problem known as minimization
of open stacks (MOSP). We present an integer pro-
gramming model, based on the existence of a perfect
elimination scheme in interval graphs, which finds an
optimal sequence for the costumers orders.

Keywords: Integer programming, Interval graphs,

Open orders minimization, MOSP, Pathwidth.

1 Introduction

In this paper we address a problem in production plan-
ning, where the objective is to rapidly fulfill the clients’
orders. Each order may require several different products,
but the manufacturer can only produce one product at
a time. The problem is to know in which sequence the
different products should be made, to minimize the max-
imum number of simultaneously open orders. This is also
known in literature as the minimization of open stacks or
MOSP.

Previous research on the MOSP demonstrates that any
instance of the problem can be put in a graph with a
vertex for each client [9] and a solution can be obtained
by traversing the arcs of that graph, giving an ordering
of the vertices and consequently of the products [2]. In
our work, we also give an ordering of the vertices of the
clients’ graph, not as a consequence of any arc traversing
heuristics, but as a consequence of a modification of the
clients’ graph by adding edges to obtain an interval graph
that fits to the set of intervals of time in which the clients’
orders will be processed.

Section 2 gives more explanations on the order proccess-
ing optimization problem considered in this paper, along
with brief highlights of previous results. Section 3 recalls
some properties of interval graphs and the characteriza-
tion that will be used. Section 4 presents an IP model
for this problem based on interval graph completion and
some computational results are discussed in section 5.

∗Supported by FCT grant SFRH/BD/32151/2006 and IPP
grant SFRH/BD/49914/2009. Manuscript submited 6 March 2010.
ESEIG - Polytechnic Institute of Porto: Rua D.Sancho I - 981,
4480 876 Vila do Conde, Portugal. Email: cristinalopes@eu.ipp.pt

†Department of Production and Systems - University of Minho,
Portugal. Email: vc@dps.uminho.pt

2 Minimization of the maximum number
of open orders

Consider the case of a manufacturer who has a number
of orders from costumers to fulfill. Each order requires
the making of different products, but only one product
can be made at a time. A virtual stack is opened for each
client when the first product of that order is processed.
The stack is closed as soon as all products of that order
have been manufactured, so the order is completed and
ready to be sent to the client.

The setting costs usually prevent from switching be-
tween manufacturing different products, and transporta-
tion costs dissent from partial order deliveries to clients.
Also it is not advisable to have delays on deliveries, be-
cause, besides having resources tied up to stock, it will
cause delays on the clients’ payments. The objective is
to find an optimal sequence to manufacture the products
in order to minimize the maximum number of simultane-
ously open orders.

2.1 Previous research

This has been proved to be a NP-hard problem [7] that
is equivalent to problems arising in cutting industries
(like steel tubes, paper, flat glass, wooden panels), also
in other fields such as VLSI Circuit Design (Gate Ma-
trix Layout Problem and PLA Folding), and in classical
problems from Graph Theory such as Pathwidth, Modi-
fied Cutwidth and Vertex Separation.

There have been several approaches to this problem, with
heuristics, genetic algorithms, and a very successful one
with dynamic programming. As we are interested in us-
ing integer programming models, we may refer the reader
to the work of Yanasse [10] and to a MIP formulation by
Baptiste [1] submitted to the Constraint Modeling Chal-
lenge in 2005.

2.2 The MOSP in a graph

An instance of this problem can be put in a graph [9]
where each client’s order is represented by a vertex, and
two vertices are adjacent iff the corresponding orders have
common products.

A product that is required by k different clients will cor-

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

respond to a clique of size k in the MOSP graph, because
the k vertices must be connected to each other.

As an example, we will see an instance of the MOSP with
five clients and eight products taken from [5, p.322].

Table 1: An instance of the MOSP
Products: 1 2 3 4 5 6 7 8

Client 1 X X X X

Client 2 X X

Client 3 X X

Client 4 X X X

Client 5 X X X

This instance originates a graph with 5 vertices, one cor-
responding to each client, and with edges between the
vertices/clients that have ordered the same product.

5 1

42

3

Figure 1: Graph of the instance in Table 1

Notice that, for example, client 2 ordered only products 4
and 5, so vertices 2 and 4 are connected because product
4 is required by clients 2 and 4, and 2 and 5 are connected
because of product 5.

To optimize the processing of the costumers orders, it is
convenient to find the best sequence to manufacture the
products. Considering that the products do not appear
explicitly in the graph, how will we find that sequence for
products? We will focus on finding a sequence to process
the costumers’ orders, and the sequence for the products
will come out as a consequence.

A feasible solution of this problem corresponds to a se-
quence of arcs in the graph. Traversing that sequence
of arcs, a stack for client j is open when it is the first
time that an arc with an end in j is traversed and the
stack is closed when all arcs with an end in j have been
traversed. Going along the sequence of arcs, and the
corresponding ordering of the opening of the stacks, we
sequence a product Pi of the original problem when all
nodes corresponding to all clients that required Pi have
been opened.

There are some situations that, because of their simplic-
ity, can be removed from the original problem while solv-
ing it and inserted later in the solution. Clients who
ordered just one product will appear in the graph as iso-
lated vertices if that product is not required by any other
client. In this case, that product can be the first or last in

the sequence, and it will open and close a stack without
any other stacks open at that same time, so it does not
increase the maximum number of simultaneously open
stacks.

If a product is required by only one costumer, who has
also ordered other products, then that product should
be manufactured just before the first of the products of
that costumer’s order, and the number of simultaneously
open stacks will not increase [10]. In this example this
happens with products 1 and 8. This instance can be
reduced to only six relevant products (2, 3, 4, 5, 6 and 7)
generating the same graph. Product 1 can be sequenced
in the solution just before the first of the products 2,6,7,
and product 8 just before the first of the products 2 and
4, without increasing the MOSP number.

For the example above, a possible solution is the sequence
of vertices 1-5-3-4-2 that corresponds to the opening of
the clients’ orders and consequently the sequence to man-
ufacture the products would be 1-6-3-7-8-2-4-5.

As there are some orders that are not simultaneously
open at any time, like 3 and 4, or 1 and 2, those stacks can
use the same stack space, hence this sequence of products
gives a maximum of three simultaneously open stacks,
that is the optimum for this instance.

1

5

3

4

2

1

5

3 4

2

K �
Figure 2: Non simultaneous orders can share stack space

This means that it is natural to associate the lifetime of
a costumers’ order in the solution with intervals of time
measured not in minutes or hours but measured in terms
of the number of different products in the manufactur-
ing sequence. We have seen that we can start solving a
MOSP problem with a graph, and that in the solution of
the problem we can consider an interval for the time that
each stack is open. We will see that an interval graph can
be associated to the set of intervals in the solution and
we will also use some properties of interval graphs to find
the solution of MOSP instances.

3 Interval Graphs

In this section we recall Golumbic’s [6] definition of an in-
terval graph and some other concepts and theorems that
will be used in our model.

Definition 3.1. An undirected graph G is called an in-
terval graph if its vertices can be put into a one-to-one
correspondence with a set of intervals I of a linearly or-
dered set (like the real line) such that two vertices are

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

connected by an edge of G iff their corresponding inter-
vals have non-empty intersection. I is called an interval
representation for G.

This definition is useful, because by associating each open
stack of our MOSP problem to an interval in the real line
(the interval of time that the stack stays open), we can
associate a solution of the MOSP to an interval represen-
tation of an interval graph.

Definition 3.2. A chordal graph (sometimes called tri-
angulated graph) is a graph where every simple k-cycle,
with k > 3, has a chord.

Definition 3.3. A comparability graph is an undirected
graph which is transitively orientable, i.e., each edge can
be assigned a one-way direction in such a way that the
resulting oriented graph (V, F) satisfies:

ab ∈ F ∧ bc ∈ F ⇒ ac ∈ F ∀a, b, c ∈ V

One theorem that characterizes interval graphs is the fol-
lowing (Gilmore and Hoffman, 1964):

Theorem 3.4. Let G be an undirected graph. The fol-
lowing are equivalent:

• G is an interval graph

• G is chordal and its complement is a comparability
graph

• The maximal cliques of G can be linearly ordered
such that, for every vertex x of G, the maximal
cliques containing x occur consecutively.

This ordering of the maximal cliques in the interval graph
will allow us to set an ordering of the vertices, helped by
the following theorems from [3].

Theorem 3.5. An interval graph G has an interval rep-
resentation such that all endpoints of intervals are dis-
tinct integers.

By using the left endpoints of the intervals, we say that
i ≺ j if interval i precedes interval j. This leads to a natu-
ral order of the vertices, and therefore to edge directions,
directing the edge ij if i ≺ j.

Definition 3.6. A perfect vertex elimination scheme is a
sequence σ = [v1, v2, ..., vn] of the vertices of the graph in
which each set Xi = {vj ∈ Adj(vi) : j > i} is complete.
A vertex is simplicial if its adjacency set is a clique.

Theorem 3.7. For any vertex vi represented by an in-
terval that starts at si, Pred(vi) is the set of all vertices
with intervals that start before si and end after si; as
these intervals overlap at si, Pred(vi) is a clique. This
vertex order is a perfect elimination scheme.

This theorem conjugates the vertex order defined by the
left endpoints of the intervals with the sequence of cliques
that will appear in the interval graph of the solution of a
MOSP problem.

We are interested in defining an ordering of the vertices
that corresponds to a perfect elimination scheme. It is
known that an interval graph H is chordal and it has at
least two simplicial vertices where a perfect vertex elimi-
nation scheme can be started. Locating a simplicial ver-
tex and eliminating it will create another simplicial vertex
and its subsequent elimination and so on. Also because
H is an interval graph, its maximal cliques can be linearly
ordered in such a way that, for every vertex vi in H, the
maximal cliques containing vi occur consecutively. The
perfect elimination scheme sets the order of the intervals,
because if we follow the reverse order of the eliminated
vertices we have the order in which intervals must start.

An alternative characterization of interval graphs given
by Olariu [8] uses this linear ordering as well.

Theorem 3.8. G = (V,E) is an interval graph if and
only if there exists a linear ordering ϕ : V → {1, ..., N}
such that ∀i, j, k ∈ V : ϕ(i) < ϕ(j) < ϕ(k) we have
[ik] ∈ E ⇒ [ij] ∈ E.

We will use in our model inequalities derived from this
characterization to guarantee that the graph obtained in
the solution of the problem is an interval graph.

4 An IP model

For an instance of the problem, we first build a graph
G = (V,E), associating each order to a vertex and creat-
ing an arc joining vertex i and j iff order i has a product
in common with order j. This graph may not be an inter-
val graph at the start, but we will add some arcs to it in
such a way that it will become one. We need this graph
to become an interval graph because, if we associate each
order to the interval of time in which the order is being
processed, we can use the graph to model what intervals
should occur simultaneously and what intervals should
precede others. According to the sequence in which the
products are made, there may be more or less open or-
ders simultaneously. Each arc of the future interval graph
means that, for a period of time, the two orders (the re-
spective vertices of the arc) will remain both open. The
initial graph contains only the arcs that must be there,
in any possible sequence in which the products can be
made. The rest of the arcs that are added later to the
graph will differ according to the sequence of the prod-
ucts. It is the choice of these arcs that defines which are
the other simultaneously open orders. Our model con-
sists in finding out which edges should be added to the
original MOSP graph G = (V,E) in order to get an inter-
val graph H = (V,E ∪ F) that minimizes the maximum
number of simultaneously open orders.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

4.1 The decision variables

We set an ordering for starting the clients’ orders by
assigning a number to each, with a bijective function
ϕ : V → {1, ..., N}. This linear ordering of the vertices is
set by the decision variables xij :

xij =
{

1 if ϕ(i) < ϕ(j)
0 otherwise

∀i, j ∈ V

Notice that xii = 0 for any i ∈ V and also that we have

xij = 1 ⇔ xji = 0

These variables are setting an orientation into the arcs,
for us to keep track of the sequence of the orders in the
current instance. If xij = 1 then the order i starts being
processed before the order j opens, even though they may
overlap or not, i.e., in spite of having an arc between the
two vertices or not.

The other decision variables that will be used are con-
cerned to the arcs that are necessary to add to the original
graph G = (V,E) to get an interval graph H = (V,E∪F)
and, together with variables x, determine which intervals
will overlap in the desired interval graph. To decide which
of these additional arcs are to be added, we define a vari-
able yij for each arc ij that didn’t exist before in the
graph:

yij =
{

1 if [ij] /∈ F and ϕ(i) < ϕ(j)

0 if [ij] ∈ F or ϕ(i) ≥ ϕ(j)
∀i, j ∈ V : [ij] /∈ E

Variables y depend on the linear ordering of vertices, so
it follows that there is an anti-reflexive relation:

yij = 1 ⇒ yji = 0

When yij = 1, the arc [ij] is not needed in the interval
graph, so, by definition of interval graph, if there is not
an arc [ij], then the intervals i and j do not intersect.
Consequently, one of the intervals should finish before
the other one starts. As i ≺ j, the interval i opens and
finishes before the interval j starts. It means that the
orders from clients i and j will never be processed at the
same time, so they can share the same stack space, as
seen in Figure 3.

Client i Client j

Figure 3: Interval i opens and closes before j starts

To explain the relations between the intervals horizon-
tally, we will also use a set of variables s, based on
the asymmetric representatives formulation for the vertex
coloring problem by Campelo et al [4].

Definition 4.1. Given a graph G = (V,E), a linear or-
dering of V , and a coloring of V such that adjacent ver-
tices have different colors, we say that a vertex i ∈ V is

a representative if i precedes all other vertices with the
same color of i. We say that vertex i ∈ V represents
vertex j ∈ V if i and j have the same color and if i is a
representative.

In the graph correspondent to Figure 3, vertex i would
represent vertex j. If we assign colors to the vertices
of the desired interval graph, such that no two adjacent
vertices have the same color, we can count the maximum
number of simultaneously open orders by counting the
minimum number of different colors needed, because si-
multaneously open orders will get different colors, and
orders that do not overlap can have the same color. The
variables that we will use are:

sij =
{

1 if vertex i represents vertex j

0 otherwise
∀i, j ∈ V : [ij] /∈ E

Note that if i ∈ V is a representative then sii = 1.

We will use the variable K ∈ N to denote the maximum
number of simultaneously open orders.

4.2 The main restrictions of the model

We will now study the relations between the binary in-
teger variables x, y, s and the integer variable K to build
the restrictions for our model.

4.2.1 Linear ordering of the vertices

The linear ordering of the vertices brings two basic in-
equalities. The first one states that either vertex i pre-
cedes vertex j or vice-versa. This is expressed by:

xji + xij = 1 ∀i, j ∈ V, i �= j (1)

The second one prevents directed 3-cycles, by stating that
if vertex i precedes vertex j and vertex j precedes vertex
k, than vertex i should precede vertex k. This transitivity
property of the linear ordering can be expressed by:

xij + xjk + xki ≤ 2 ∀i, j, k ∈ V, i �= j �= k (2)

An important remark upon the variables yij is that they
establish the precedences between the closing and open-
ing of the intervals. As one of the conditions for the vari-
able yij to be equal to 1 is that vertex i precedes vertex
j, equal to say that xij = 1, then we must have:

yij ≤ xij ∀i, j ∈ V, i �= j, [ij] /∈ E (3)

4.2.2 Obtaining an interval graph

To guarantee that the graph H = (V,E∪F) is an interval
graph, we use in the model the characterization given in

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Theorem 3.8. We will consider three different vertices
i, j, k ∈ V and analyze in what circumstances the arcs
[ik] and [ij] exist or have to be added. Let us separate in
two cases: the arc [ik] ∈ E and [ik] /∈ E.

For the first case, the arc [ik] ∈ E, let us suppose that
arc [ij] /∈ E, otherwise H is already an interval graph. If
i ≺ j ≺ k then as [ik] ∈ E then for H to be an interval
graph it must be [ij] ∈ F , i.e., xkj = 0 ⇒ yij = 0 which
can be stated by the linear inequality

yij ≤ xkj ∀i, j, k ∈ V, [ij] /∈ E, [ik] ∈ E (4)

This is valid too if i ≺ j but k ≺ j, because we have
xkj = 1. If j ≺ i then xij = 0 and by (3) we have yij = 0
and the inequality is also valid.

Now let us consider the second case where [ik] /∈ E and
also consider [ij] /∈ E, because otherwise the result was
guaranteed. Start by supposing that i ≺ j ≺ k. This
means that xjk = 1 or equivalently xkj = 0. If we decide
to add the arc [ik] then we must also add the arc [ij] for
the graph to be an interval graph.

i j k

⇑

Figure 4: Olariu’s characterization of interval graphs

Using the correspondent variables y this is to say that

xkj = 0 ∧ yik = 0 ⇒ yij = 0

and this can be represented by the inequality

yij ≤ xkj + yik ∀i, j, k ∈ V, [ij], [ik] /∈ E (5)

This inequality is also true if the arc [ik] is not added be-
cause then yik = 1 and yij would be free. This inequality
is also valid in all other possible orderings of the vertices
i, j, k. If k ≺ j, the adding of the arc [ik] to the graph
does not force to add the arc [ij]. In the remaining three
cases, j ≺ i forces yij = 0 because of (3).

The model can also be strengthened with the following
three inequalities that can be proved simply by observing
that in an interval graph both variables on the left are
not allowed to be simultaneously equal to one without
contradicting Theorem 3.8.

yij + yki ≤ 1 ∀i, j, k ∈ V with [ij], [ik] /∈ E, [jk] ∈ E (6)
yij + yjk ≤ 1 ∀i, j, k ∈ V with [ij], [jk] /∈ E, [ik] ∈ E (7)

yij + ylk ≤ 1 ∀i, j, k, l ∈ V with [ij], [kl] /∈ E, [jl], [ik] ∈ E (8)

4.3 A lower bound

By Theorems 3.4 and 3.7, at each node of interval graph
H, except at the first K ones, there is an interval that

begins and one that ends, so that all the cliques in the
sequence of the perfect elimination scheme are maximal,
except the first K ones. And because every appearance
of a vertex in these cliques must be consecutive and there
must be N cliques in the sequence, at each instant only
one vertex changes in the cliques. This change corre-
sponds to the closing of an interval and the beginning of
another.

The precedences of the opening and closing of the inter-
vals are declared by the variables yij . For every vertex j,
the sum

∑N
i=1 yij counts how many intervals must finish

before interval j starts and the sum
∑N

j=1 yij counts how
many intervals will start after i finishes. The vertex that
finishes first is the one that has the greatest

∑N
j=1 yij .

If we sum up the variables xij we will find the position of
each vertex in the sequence of vertices. For every vertex
j, the sum

∑N
i=1 xij counts how many vertices precede j,

i.e., the number of intervals that start before i starts. The
beginning of an interval j happens at instant

∑N
i=1 xij+1.

It is the number of intervals that have started before j
plus the interval j itself. So the number of intervals that
are open at that instant is

∑
i xij + 1 − ∑

i yij because
we need to subtract the number of intervals that have
already been closed before that instant. This leads to
the main lower bound for the MOSP:

N∑
i=1
i�=j

xij −
N∑

i=1
[ij]/∈E

yij + 1 ≤ K ∀j = 1, ..., N (9)

If one puts each interval in a line, as in Figure 2, the
number of lines that we have open when there comes an
interval that does not overlap with the first interval is a
lower bound for the maximum number of open stacks.

4.4 Strenghtening the model

The inequalities that we have seen so far are sufficient to
have a valid model and to guarantee that the solution will
be an interval graph. But we can reinforce our model by
adding some constraints related to additional properties
of interval graphs.

For the solution graph H = (V,E ∪ F) to be an interval
graph, its complement H must be a comparability graph.
The ordering of the vertices must respect transitivity in
the complement graph and must not have direct cycles.
If the arcs [ij] and [jk] exist in the complement graph,
with an orientation i ≺ j and j ≺ k , then if the arc [ik]
exists, it must be oriented as in i ≺ k.

i j k

⇓ ⇓H

Figure 5: H must be transitively orientable

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

The transitivity of the relation between the variables y
comes from the comparability graph property and forces
an ordering of the vertices. If a direction is defined in
an arc of a graph, that will determine the flow of all
the other ones. The variables y define the complement
graph, because yij equals 1 when the arc [ij] /∈ F , hence
it exists in the complement graph H and the orientation
of the vertices is i ≺ j. The transitivity in H is expressed
by

yij = yjk = 1 ⇒ yik = 1

This can be assured by the following statement for every
i = j = k such as the arcs [ij], [ik], [jk] did not exist in
the initial graph:

yij + yjk − 1 ≤ yik ∀i, j, k ∈ V, [ij], [jk], [ik] /∈ E (10)

4.4.1 Chords in k-cycles

Another way to reinforce the model is to reduce the num-
ber of arcs that are added to the original graph. If the
graph G is completed to become an interval graph, it has
to be chordal, so in every k-cycle for k ≥ 4 sufficient
chords must be added. In a 4-cycle defined by the or-
dered vertices ijkl, we need to add at least one of the
arcs in the diagonal. In the complement graph there will
remain the other diagonal arc, or none, whose existence
is flagged by the variables y. The need to add one of the
arcs ik, ki, jl or lj can be expressed by the restriction:

yik + yki + yjl + ylj ≤ 1
∀[ik], [jl] /∈ E, [ij], [jk], [kl], [li] ∈ E

(11)

A 5-cycle needs at least two chords, but not any chord
will do, because the two chords must share a vertex, as
in figure 6 (a).

(a) (b)

i

j

k

l

m

i

j

k

l

m

Figure 6: 5-cycles with two chords: (a) is chordal, (b) is
not chordal

In a 5-cycle defined by the ordered vertices ijklm, the
restriction should be:

yil + yli + yik + yki + yjl + ylj + yjm + ymj + ymk + ykm ≤ 3

∀[ik], [il], [jl], [jm], [km] /∈ E, [ij], [jk], [kl], [lm], [mi] ∈ E

(12)
The number 3 comes from the fact that we need at least
2 chords from the possible 5 chords, so there must be at
most 3 chords left in the complement graph, causing the
defined variables y to sum at most 3.

4.5 Coloring the vertices

The value of the optimum of the MOSP is equal to the
size of the biggest clique in the solution graph H and,
because interval graphs are perfect graphs, it is equal to
the chromatic number of the graph, which is the number
of colors needed to assign to the vertices of the graph
such that there are no two adjacent vertices of the same
color.

In the representatives formulation for the vertex coloring
problem, the number of different colors is counted by the
number of representatives vertices, i.e. sii = 1. Hence

N∑
i=1

sii = K (13)

All N vertices must have representatives

N∑
i=1

[ij]/∈E

N∑
j=1

[ij]/∈E

sij = N (14)

but each vertex has only one representative:

N∑
i=1

[ij]/∈E

sij = 1 ∀j = 1, ..., N (15)

A vertex i represents a vertex j (sij = 1) only if i and j
share the same stack (yij = 1):

sij ≤ yij ∀i, j = 1, ..., N with [ij] /∈ E (16)

and only if i is a representative

sij ≤ sii ∀i, j = 1, ..., N with [ij] /∈ E (17)

A vertex in the anti-neighborhood of each clique can rep-
resent only one vertex of the clique. For a vertex i in
the anti-neighborhood of a 2-clique {jk} we have the in-
equality

sij + sik ≤ sii

∀i, j, k = 1, ..., N with j < k, [ij], [ik] /∈ E, [jk] ∈ E
(18)

and for a 3-clique {jkl}

sij + sik + sil ≤ sii

∀i, j, k, l = 1, ..., N with j < k < l,

[ij], [ik], [il] /∈ E, [jk], [kl], [lj] ∈ E

(19)

and for a 4-clique {jklm}

sij + sik + sil + sim ≤ sii

∀i, j, k, l, m = 1, ..., N with j < k, j < l, k < m,

[ij], [ik], [il], [im] /∈ E, [jk], [jl], [jm], [kl], [km], [lm] ∈ E

(20)

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

4.6 The formulation of the model

Given an instance of a MOSP problem, let the graph G =
(V ; E) be the associated graph and |V | = N . Considering
the variables and the inequalities explained previously,
our new mathematical formulation for the MOSP is:

Minimize K
Subject to: (1) to (20) and

xij ∈ {0, 1} ∀i, j = 1, ..., N with i �= j (21)
yij ∈ {0, 1} ∀i, j = 1, ..., N with i �= j, [ij] /∈ E (22)
sij ∈ {0, 1} ∀i, j = 1, ..., N with [ij] /∈ E (23)
K ∈ N (24)

5 Computational tests

The model was tested on some instances of the Constraint
Modeling Challenge 2005, available at:

http://www.cs.st-andrews.ac.uk/∼ipg/challenge/instances.html

Computational tests were performed with ILOG OPL
Development Studio 5.5 on an Intel�Core2 Duo
T7200@2.00GHz 0.99GB RAM. For each instance, the
best objective value found by the model, the best lower
bound, the gap, the number of nodes of the search tree
and the runtime are recorded in Table 2.

In small instances we found the optimal solution in just
a few seconds, in larger instances we found the optimal
solution in a few seconds as well, but it takes too long to
prove that it is optimal, especially in instances with many
symmetries. In really large instances the model could
not be started because there was not enough memory to
handle so many variables and inequalities.

References

[1] P. Baptiste, “Simple MIP formulations to minimize
the maximum number of open stacks,” in Constraint
Modelling Challenge. Edinburgh, Scotland: IJCAI
2005, Jul 31 2005, pp. 9–13.

[2] J. C. Becceneri, H. H. Yanasse, and N. Y. Soma,
“A method for solving the minimization of the max-
imum number of open stacks problem within a cut-
ting process,” Computers & Operations Research,
vol. 31, no. 14, pp. 2315–2332, 2004.

[3] T. Biedl, CS 762: Graph-theoretic algorithms – Lec-
ture notes of a graduate course, University of Water-
loo, Sep 2005.

[4] M. Campêlo, V. A. Campos, and R. C. Corrêa, “On
the asymmetric representatives formulation for the
vertex coloring problem,” Discrete Applied Mathe-
matics, vol. 156, no. 7, pp. 1097 – 1111, 2008.

Table 2: Computational results of the IP model for the
minimization of open orders

Instance
No.

clients
(Nodes)

Best
Objective

value

Best
LB Gap Runtime

(s)
Nodes in

search tree

Harvey wbo_10_10_1 10 3 3 0% 11,06 0
Harvey wbo_10_20_1 10 5 5 0% 5,50 209
Harvey wbop_10_20_10 10 5 5 0% 3,26 44
Simonis Problem 10_20_150 10 9 9 0% 0,75 0
Wilson nwrsSmaller4_1 10 3 3 0% 0,75 0
Wilson nwrsSmaller4_2 10 4 4 0% 0,54 0
Harvey wbo_15_15_1 15 3 3 0% 17,07 10
Harvey wbo_15_30_1 15 4 4 0% 3,65 0
Harvey wbop_15_30_15 15 11 11 0% 997,04 21433
Harvey wbp_15_15_35 15 14 14 0% 1,53 0
Simonis Problem 15_15_100 15 11 11 0% 177,17 5056
Wilson nwrsSmaller4_3 15 7 7 0% 1,25 0
Miller 20 13 13 0% 1915,00 18732
Shaw Instance_1 20 14 14 0% 45323,62 167846
Shaw Instance_15 20 14 13 7% 57173,01 319000
Shaw Instance_2 20 12 12 0% 10066,76 19741
Simonis Problem 20_10_1 20 9 7 22% 7993,87 8.097
Simonis Problem 20_20_100 20 19 19 0% 3,50 0
Wilson nrwsLarger4_2 20 12 12 0% 14,29 5
Wilson SP_1 25 9 8 11% 378,10 2934
Harvey wbo_30_10_1 30 10 7 30% 32536,84 631
Harvey wbo_30_30_1 30 4 3 25% 1907,06 0
Harvey wbop_30_10_1 30 18 10 44% 900,79 0
Simonis Problem 30_30_1 30 21 13 38% 2990,03 54

[5] J. Dı́az, J. Petit, and M. Serna, “A survey of graph
layout problems,” ACM Computing Surveys, vol. 34,
no. 3, pp. 313–356, Sep 2002.

[6] M. C. Golumbic, Algorithmic graph theory and per-
fect graphs. New York: Academic Press, 1980.

[7] A. Linhares and H. H. Yanasse, “Connections be-
tween cutting-pattern sequencing, VLSI design, and
flexible machines,” Computers & Operations Re-
search, vol. 29, no. 12, pp. 1759–1772, 2002.

[8] S. Olariu, “An optimal greedy heuristic to color
interval graphs,” Information Processing Letters,
vol. 37, no. 1, pp. 21 – 25, 1991.

[9] H. H. Yanasse, “Minimization of open orders - poly-
nomial algorithms for some special cases,” Pesquisa
Operacional, vol. 16, no. 1, pp. 1–26, June 1996.

[10] ——, “On a pattern sequencing problem to mini-
mize the maximum number of open stacks,” Euro-
pean Journal of Operational Research, vol. 100, pp.
454–463, 1997.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

