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Abstract—In Nonlinear Optimization Penalty and Barrier
Methods are normally used to solve Constrained Problems.
There are several Penalty/Barrier Methods and they are used in
several areas from Engineering to Economy, through Biology,
Chemistry, Physics among others. In these areas it often
appears Optimization Problems in which the involved func-
tions (objective and constraints) are non-smooth and/or their
derivatives are not know. In this work some Penalty/Barrier
functions are tested and compared, using in the internal process,
Derivative-free, namely Direct Search, methods. This work is
a part of a bigger project involving the development of an
Application Programming Interface, that implements several
Optimization Methods, to be used in applications that need to
solve constrained and/or unconstrained Nonlinear Optimization
Problems. Besides the use of it in applied mathematics research
it is also to be used in engineering software packages.

Index Terms—Non-smooth Optimization, Nonlinear Pro-
gramming, Derivate-free, Direct Search, Penalty/Barrier Meth-
ods.

I. INTRODUCTION

Let us consider the Nonlinear Optimization Problem:

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

(1)

where:
• f : Rn → R is the objective function;
• ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define the

Problem equality constraints;
• ci(x) ≤ 0, i ∈ I, with I = {t+ 1, t+ 2, ...,m},

represent the inequality constraints;
• Ω = {x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} is

the set of all feasible points, i.e., the feasible region.
Consider the objective function and/or the constraints

functions which might not be smooth, non linear, non
continuous, non convex and with many local minimums and
it is not possible to use derivative-based methods.

The studied methods only need information about the
objective and constraints functions values, in some points,
and only use this information comparing these values to find
the next iteration.
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II. PENALTY AND BARRIER METHODS

Penalty and Barrier Methods, generally presented in Fig. 1,
are built by two processes:

• External Process (EP) - where a succession of Uncon-
strained Optimization Problems is created;

• Internal Process (IP) - where the Unconstrained Opti-
mization Problems are solved.

with the objective to solve the original Constrained Opti-
mization Problem P presented in (1).

Figure 1. Penalty and Barrier Methods - General Process

Using Penalty or Barrier functions a new objective func-
tion, Φk, is constructed, using information about the initial
objective function, f , and the constraints functions. Therefore
is created a succession of Unconstrained Optimization Prob-
lems that depend on a positive parameter, rk (Penalty/Barrier
parameter) which solutions x∗(rk) converge to the initial
problem solution x∗ (External Process).

These Unconstrained Optimization Problems are then
solved using Direct Search Methods (Internal Process),
where the problem to be solved at each iteration k, is:

Φ(xk, rk) : min
xk∈Rn

f(xk) + rkp(x) (2)

where p is a function that penalizes (penalty) or refuses
(barrier) points that violate the constraints.

In these methods optimality and feasibility are treated
together.

Penalty/Barrier functions implemented in this work are:
• Extreme Barrier Function (EB);
• Progressive Barrier Function (PB);
• Classical Penalty Function (CP);
• Static/Dynamic Penalty Function (SP);
• `1 Penalty Function (`1).

Barrier methods are more adequate for solving problems
where a feasible initial point is know and when a feasible
solution is needed. Penalty methods can be used with
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infeasible initial points, and the found solution can be
infeasible.

The Extreme Barrier Function with Pattern Search Meth-
ods, is widely used by Audet et. al., [1], [2], [3], [4], [5], [6]
and is defined by:

Φ(x) = bΩ (x) =
{
f (x) se x ∈ Ω
+∞ se x /∈ Ω

(3)

A new version of this method is presented by Audet et.
al. [5] that admits infeasible initial points if they verify that
the equality constraints, the Progressive Barrier.

In this method the feasible region is defined as

Ω = {x ∈ X : ci(x) ≤ 0, i = 1, 2, ...,m} ⊂ Rn,

with X the set of non-relaxable constraints (defined by the
equality constraints). The relaxable constraints ci(x) ≤ 0 are
treated using the relaxable constraints violation measurement
function bX : Rn → R+:

bX(x) =


m∑
i=1

(max (ci (x) , 0))2
se x ∈ X

+∞ se x /∈ X
(4)

and the new objective function is:

Φk(x) = f (x) + bX(x) (5)

This approach is called Progressive Barrier because it is
imposed a maximum value for bX(x) that is updated at each
iteration using the dominance concept of the Multi-objective
Optimization.

Classical Penalty methods define Φk as:

Φk(x) = f (x) + p (x)

= f (x) + rk
m∑
i=1

[max {0, ci (x)}]q , q ≥ 1 (6)

where r = {rk}+∞k=1 is a succession such that rk → +∞.
Static/Dynamic Penalty Function have their origin in the

work of Homaifar et al. [7]. The distinction between the
dynamic and static method is the way who the penalty
parameters are updated.

Consider the penalty vectors α ∈ Rt and β ∈ Rm−t, the
penalty problem for the original problem (1), with ρ ≥ 1 is:

min
x∈Rn

Φk(x, α, β) (7)

with

Φk(x, α, β) = f(x)+
t∑
i=1

αi |ci(x)|ρ+
m∑

i=t+1

βi[max(0, ci(x)]ρ.

(8)
Homaifar, [7] static method uses the penalty vectors

statically fixing the penalty vector and involves choosing at
the beginning of the process a large number of parameters.

Alternatively dynamic methods have been developed. For
example, the well known Non Stationary method solves the
problem (7) with Φk defined in (8) and ρ > 1, updating
the penalty parameters at each iteration k, under the follow
conditions, with C > 0 a constant:

αi(k + 1) = αi(k) + C. |ci(x)| , i = 1, ..., t (9)

βi(k+1) = βi(k)+C.[max(0, ci(x))], i = t+1, ...,m (10)

`1 Penalty method is presented initially by Pietrzykowski
[8], although it was presented in 1969 it has been studied
and used by many authors, for example, Gould et. al. in [9]
and Byrd et. al. in [10] and it is also the basis for many
otherPenalty Methods proposed in the literature.

The penalty problem for the original problem (1) is:

min
x∈Rn

`
(k)
1 (x, µ) (11)

with the `1 Penalty function:

`
(k)
1 (x, µ) = f(x) + µ

t∑
i=1

|ci(x)|+ µ
m∑

i=t+1

max[ci(x), 0],

(12)
and µ→ +∞.

III. DERIVATIVE-FREE METHODS

In the IP it is needed to solve a problem without con-
straints, i.e., a Unconstrained Optimization Problem:

minimizar
x∈Rn

f(x) (13)

where f : Rn → R is the objective function, in our case the
penalty function is Φk.

In this work we use in this process of optimization five
methods:
• Opportunistic Coordinate search method (CS);
• Hooke and Jeeves method (HJ);
• A version of Audet et. al. method (A);
• Nelder-Mead method (NM);
• A Convergent Simplex method (SC).
These methods are well known and can be found in

several books. The first three are Pattern Search Methods or
Directional Direct-Search Methods (described, for example,
in Chapter 7 - Directional Direct-Search Methods, by Conn
et. al. [11]). These methods determine possible points using
fixed search directions during the iterative process: starting
at an iteration xk, the next iteration will be found in a pattern
or grid of points, in the fixed directions, at a distance sk, said
step size.

The last two are Simplex Methods (described, for example,
in Chapter 8 - Simplicial Direct-Search Methods, by Conn
et. al. [11] ). These methods are characterized by to construct
an initial simplex and change the directions of search in
each iteration, using reflection, expansion and contraction
movements and shrunk steps.

IV. USED PARAMETERS AND HOW TO UPDATE

In both processes, internal and external, depending on the
methods to use, it is necessary to choose some parameters.
In this section we present the parameters used in the tests,
which results are presented in Section V.

A. Internal Process
Direct-Search Methods have some common parameters,

presented in Table I.

This methods, in internal process, uses as set of search
directions the canonical basis in Rn and the search order is:
e1,−e1, e2,−e2, ....
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Table I
PARAMETERS USED IN INTERNAL PROCESS

Parameters Coordinate Search Hooke-Jeeves Audet Nelder-Mead Simplex Convergent
kmax 100 100 100 100 100
s 1 1 * 1 1
sm * * 1,5 * *
sp * * 1 * *
smin 10−3 10−3 10−3 * *
α * * * 1 1
β * * * 0,5 0,5
γ * * * 2 2
T1 10−5 10−5 10−5 10−5 10−5

T2 10−5 10−5 10−5 10−5 10−5

Tvar * * * 10−5 10−5

Tvoln * * * * 10−5

kmax → Maximum number of iterations; s→ Length of the initial step
sm → Length of the initial mesh search step (Audet); sp → Length of the initial poll step (Audet)

s→ Length of the initial step; smin → Minimum value for the step length
α→ Reflexion parameter (Nelder-Mead); β → Contraction parameter (Nelder-Mead)

γ → Expansion parameter (Nelder-Mead)
T1 = |xk − xk+1| → Tolerance for the distance between two consecutive iterations

or Tolerance for the distance between the last iteration and the latest iteration (Nelder-Mead)
T2 = |f (xk)− f (xk+1) | → Tolerance for the distance between two values of the objective function in successive iterations

Tvar → Tolerance to the variance of the objective function values in the vertices of the simplex (Simp. Conv.)
Tvoln → Tolerance to the normalized volume of the simplex

∗ → Parameter non used in the method

In Coordinate Search and Hooke and Jeeves methods
the step length was maintained, in the case of successful
iterations, and reduced by half in case of unsuccessful
iterations.

The input of Audet et. al. algorithm is the same as
the previous algorithms, except the step length, since this
algorithm have two step lengths, sp and sm.

Mesh search step length sm (in the search step) and poll
step length sp (in the poll step) lengths were maintained for
successful iterations and, in case of unsuccessful iterations,
sm is reduced by half and sp is actualized according the
following rule, proposed by Audet et. al. in [6]:{

sp =
√
sm if sm < 1

sp ≥ 1 if sm = 1
(14)

Note that if sm = 1 then sp = 1.5.
Audet et. al. algorithms uses random directions in the

search step. To calculate the matrix of directions is gener-
ated a B nonsingular lower triangular integer matrix and
its columns are permuted randomly. The columns of the
resulting matrix, Bk, form the basis that is considered in
the construction of the maximal basis D = [Bk −Bk] used
in the search step at iteration k.

In the algorithm implemented here the choice of search
directions is deterministic. The chosen search directions are
the columns of the matrix B which is nonsingular lower
triangular integer matrix, where the elements are zeros or
ones. and the rectagular matrix D = [B −B].

Thus, the version of Audet et. al. algorithms here imple-
mented differs from the coordinate search algorithm because
it includes, before the coordinate search, a polling step in
these directions.

Convergent Simplex algorithm implemented differs from
the Nelder-Mead method because the geometry of the sim-
plex is controlled through its diameter and normalized
volume and when the simplex does not check the considered
geometry conditions, a safeguard step is implemented.

The parameters of both methods are the same, but Con-
vergent Simplex method includes another stopping criterion
which is the tolerance to the normalized volume of the
simplex.

B. External Process

In the EP the Penalty/Barrier parameters must be chosen.
In this implementation the parameters to be chosen are
presented in Table II.

We used three stopping criteria in the EP, for all meth-
ods: T1 = |xk − xk+1| = 10−5 → tolerance for the
distance between two consecutive iterations; T2 = |Φ (xk)−
Φ (xk+1) | = 10−5 → tolerance for the distance between
two values of the Penalty/Barrier function in successive
iterations; kmax = 40 → Maximum number of iterations
and the factor γ = 2.

Test Problems were selected from Schittkowski[12] and
CUTE [13] collections. The fifteen Schittkowski problems
are: S224; S225; S226; S227; S228; S231; S233; S234; S249;
S264; S270; S323; S324; S325 and S326 and the of Cute
collection were chosen two test problems: C and C802. The
choice of these seventeen tests was not made in accordance
with any special requirement, they are only used to illustrate
the performance of the methods implemented.

V. NUMERICAL RESULTS

The Penalty/Barrier methods algorithms implemented here
return the following results:

• Number of EP iterations - k;
• Number of Penalty/Barrier function evaluations -
nEvals

• Last iteration - xk;
• Value of Penalty/Barrier function at the last iteration -

Φ(xk);
• Best feasible solutions found (if any) - xkf ;
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Table II
PARAMETERS USED IN EXTERNAL PROCESS

Penalty/Barrier Function Parameter Initial parameter Actualization
Extreme Barrier (2) * * *

Progressive Barrier (4) and (5) hmax hmax = +∞ if bX (xk) < hmaxthen hmax = bX (xk)
Classical Penalty (6) rk 1 γ.rk︸︷︷︸

rk+1

, γ > 1

Static Penalty (8) [α1, ..., αt, β1, ..., βm−t] [1, 1, ..., 1]︸ ︷︷ ︸
m components

[γ.α1, ..., γ.αt, γ.β1, ..., γ.βm−t]

Dynamic Penalty (8) with (9) and (10) [α1, ..., αt, β1, ..., βm−t] [1, 1, ..., 1]︸ ︷︷ ︸
m components

use (9) and (10)

`1Penalty Function (12) µ 1 γ.µ

∗ → Non used in the method

• Value of objective function at the best feasible solution
found - f(xkf );

• Iteration where the best feasible solution was found -
kf

• Best infeasible solutions found (if any) - xki;
• Value of objective function at the best infeasible solu-

tion found - f(xki);
• Penalty/Barrier function value at the best infeasible

solution - Φ(xki);
• Iteration were was found the best infeasible solution -
ki

• Constraint violation value at the best infeasible solution,
V = Φ(xki)− f(xki).

Of the obtained numerical results in this paper, we present
the results of problems S224, S225, C801 and C802. These
numerical results are presented in Tables III, IV, V and VI,
rounded to two decimal points.

Analyzing the obtained numerical results it can be con-
cluded that:

• Most methods allow to find the solution of the Schit-
tkowski problems, except when Simplex Convergent
method is used in the internal process.

• In problem S205, using dynamic penalty method none
of them can find the solution. All methods, except when
using the Simplex Convergent method in IP, approach
it but cannot find it.

• Table V and VI show that barrier methods do not work
well in either cases, they do not allow to find any
solution.

• In the problems C801 and C802 penalty methods
perform much better.

• None of the methods is able to find the solution of the
problem C802, the best value found is about 84.67 when
the target is −97.31.

• Simplex Convergent method, in these tests, does not
seem to be the most suitable for use in the IP.

VI. CONCLUSION AND FUTURE WORK

In this work some Penalty/Barrier functions were tested,
using in the IP, Direct Search methods. Based on the results
achieved in the performed tests, it can be concluded that
the Simplex Convergent method is not turned out to be the
most suitable for use in the Internal Process. C801 problem
results show that the use of barrier functions may cause
the impossibility of solving a problem, because it creates

a barrier that does not allow approach the optimal.
We cannot establish a standard to identify the most appro-

priate method to solve a Nonlinear Optimization Problem.
The ideal is to test all methods and to choose the best
solution.

This work is a part of a bigger project involving the
development of an Application Programming Interface (API).
Although it is being implemented in Java, this API, which
implements more Optimization Methods than the ones pre-
sented here, can be used by any other programming language
that supports Web Services. The developed API to be
used in applications that need to solve constrained and/or
unconstrained Nonlinear Optimization Problems. Besides the
use of it in applied mathematics research, as presented in this
paper, it is also to be used in engineering software packages.
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Table III
NUMERICAL RESULTS OBTAINED - S224 PROBLEM

Methods Output
Problem EP IP k nEvals xk Φ (xk) xkf f (xkf ) kf xki f (xki) Φ (xki) ki V

S224 EB CS 2 329 (5.90,2.10) −293.17 xk Φ (xk) k * * * * *
HJ 2 534 (4.40,3.60) -303.51 xk Φ (xk) k * * * * *

Initial A 2 659 (5.70,2.31) −295.40 xk Φ (xk) k * * * * *
Point NM 2 497 (4.00,3.69) -303.99 xk Φ (xk) k * * * * *
x0 SC 4 3899 (5.78,0.12) −215.47 xk Φ (xk) k * * * * *

(0.1, 0.1) PB CS 2 329 (5.90,2.10) -293.17 xk Φ (xk) k * * * * *
HJ 2 534 (4.40,3.60) -303.51 xk Φ (xk) k * * * * *

f (x0) A 2 659 (5.70,2.31) -295.40 xk Φ (xk) k * * * * *
-8.77 NM 2 497 (4.00,3.99) -303.99 xk Φ (xk) k * * * * *

SC 4 3899 (5.78,0.12) -215.47 xk Φ (xk) k * * * * *
CP CS 26 53421 (3.98,4.02) -303.99 * * * xk f (xk) -303.99 25 2.38E-9

HJ 22 38086 (3.98,4.02) -303.99 * * * xk f (xk) -303.99 17 2.50E-3
Solution A 27 84980 (3.79,4.21) -303.87 * * * (3.79,4.21) -303.87 -303.87 23 2.53E-7
x∗ NM 26 25679 (4.00,3.99) -304.00 * * * (4.00,3.99) -304.00 -304.00 25 5.55E-6

(4, 4) SC 12 29541 (5.81,0.02) -212.16 (5.85,0.00) -212.36 4 (6.18,0.00) -220.33 -219.80 5 5.38E-1
SP CS 26 53421 (3.98,4.02) -303.99 * * * (3.98,4.02) -303.99 -303.99 25 2.38E-9

f (x∗) HJ 22 38086 (3.98,4.02) -303.99 (3.98,4.02) -303.99 21 (3.98,4.02) -304.00 -304.00 17 2.55E-3
-304 A 27 84980 (3.79,4.21) -303.87 * * * (3.79,4.21) -303.87 -303.87 23 1.53E-7

NM 26 25679 (4.00,3.99) -304.00 * * * (4.00,3.99) -304.00 -304.00 25 5.55E-6
SC 12 29541 (5.81,0.02) -212.16 (5.85,0.00) -212.36 4 (6.18,0.00) -220.33 -219.80 5 5.38E-1

DP CS 40 111191 (4.11,4.21) -309.05 * * * (4.11,4.21) -314.04 -309.05 40 4.98
HJ 40 120914 (4.10,4.21) -309.05 * * * (4.10,4.21) -314.04 -309.05 40 4.98
A 40 222422 (4.10,4.21 -309.05 * * * (4.10,4.21) -314.03 -309.05 40 4.98

NM 40 57227 (4.11,4.21) -309.05 * * * (4.11,4.21) -314.04 -309.05 40 4.99
SC 40 298853 (6.30,0.00) -219.56 (5.85,0.00) -212.36 4 (6.18,0.00) -220.33 -220.30 5 3.23E-2

`1 CS 7 2866 (3.99,4.00) -303.99 (3.99,4.00) -303.99 7 (4.00,4.00) -304.00 -303.99 6 8.91E-4
HJ 8 3168 (3.99,4.00) -303.99 xk f (xk) k (4.00,4.00) -304.03 -303.99 6 3.12E-2
A 7 5146 (3.99,4.00) -303.99 xk f (xk) k (3.99,4.00) -304.00 -303.99 6 1.42E-3

NM 8 3250 (3.99,4.00) -303.99 xk f (xk) k (4.00,4.00) -304.00 -303.99 6 3.03E-3
SC 17 59328 (5.76,0.08) -213.39 xk f (xk) k (6.01,0.00) -216.19 -215.69 7 0.50

Table IV
NUMERICAL RESULTS OBTAINED - S225 PROBLEM

Methods Output
Problem EP IP k nEvals xk Φ (xk) xkf f (xkf ) kf xki f (xki) Φ (xki) ki V

S225 EB CS 2 442 (1.00,1.00) 2.00 xk Φ (xk) k * * * * *
HJ 2 896 (1.00,1.00) 2.01 xk Φ (xk) k * * * * *

Initial A 4 2437 (1.00,1.00) 2.00 xk Φ (xk) k * * * * *
Point NM 40 634227 (0.0,0.0) +∞ (1.00,1.00) 2.00 1 * * * * *
x0 SC 40 285459 (5.99,35.99) +∞ (1.77,2.44) 9.10 2 * * * * *

(3, 1.8) PB CS 2 442 (1.00,1.00) 2.00 xk Φ (xk) 2 * * * * *
HJ 2 896 (1.00,1.00) 2.01 xk Φ (xk) 1 * * * * *

f (x0) A 4 2437 (1.00,1.00) 2.00 xk Φ (xk) 1 * * * * *
12.24 NM 40 634227 (0.0,0.0) +∞ (1.00,1.00) 2.00 1 * * * * *

SC 40 285459 (5.99,35.99) +∞ (1.77,2.44) 9.10 2 * * * * *
CP CS 21 28337 (0.99,0.99) 2.00 * * * xk 1.99 Φ (xk) 21 7.63E-6

Solution HJ 40 71570 (0.99,0.99) 2.00 * * * xk 1.99 Φ (xk) 12 0.01
x∗ A 20 46810 (0.99,0.99) 1.99 * * * (1.0,0.99) 1.99 1.99 19 3.68E-11

(1, 1) NM 20 17622 (1.00,0.99) 2.00 * * * xk 2.00 Φ (xk) 20 1.16E-5
SC 40 390159 (6.42,39.73) 1619.65 (1.81,2.55) 9.79 1 (3.05,9.30) 95.80 95.80 8 1.68E-3

f (x∗) SP CS 21 28337 (0.99,0.99) 2.00 * * * xk 1.99 Φ (xk) 21 7.63E-6
2 HJ 40 71570 (0.99,0.99) 2.00 * * * xk 1.99 Φ (xk) 12 8.55E-3

A 20 46810 (0.99,0.99) 1.99 * * * (1.0,0.99) 1.99 1.99 19 3.68E-11
NM 20 17622 (1.00,0.99) 2.00 * * * xk 2.00 Φ (xk) 20 1.16E-5
SC 40 390159 (6.42,39.73) 1619.65 (1.81,2.55) 9.79 1 (3.05,9.30) 95.80 95.80 8 1.68E-3

DP CS 40 90022 (0.95,0.94) 1.83 * * * (0.95,0.94) 1.78 1.82 32 3.66E-2
HJ 40 72607 (0.95,0.94) 1.83 * * * (0.95,0.94) 1.78 1.82 30 3.7E-2
A 40 243753 (0.95,0.94) 1.83 * * * (0.95,0.94) 1.78 1.82 33 3.69E-2

NM 40 63555 (0.95,0.94) 1.83 * * * (0.95,0.94) 1.78 1.82 33 3.6E-2
SC 40 360739 (6.26,39.65) 1630.08 (1.81,2.55) 9.79 1 (5.98,35.79) 1316.91 1316.92 36 3.25E-3

`1 CS 4 1019 (1.00,1.00) 2.00 (1.00,1.00) 2.00 3 (1.00,1.00) 2.00 2.00 4 6.10E-6
HJ 40 54421 (1.0,1.00) 2.00 * * * (1.0,1.00) 2.00 2.00 2 1.35E-5
A 5 2845 (1.00,1.00) 2.00 (1.00,1.00) 2.00 4 (1.00,1.00) 2.00 2.00 5 2.89E-9

NM 4 1234 (1.00,1.00) 2.00 xk 1.99 4 (0.99,0.99) 1.99 2.00 3 3.12E-5
SC 40 382586 (6.23,39.81) 5.32E11 (1.81,2.56) 9.79 1 (1.81,3.55) 15.89 16.43 2 0.54
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Table V
NUMERICAL RESULTS OBTAINED - C801 PROBLEM

Methods Output
Problem EP IP k nEvals xk Φ (xk) xkf f (xkf ) kf xki f (xki) Φ (xki) ki V

C801 EB CS 40 328861 (0.1,-0.1) +∞ * * * * * * * *
HJ 40 655221 (−226.08,

−226.28)
+∞ * * * * * * * *

Initial A 40 656861 (0.1,-0.1) +∞ * * * * * * * *
Point NM 40 660141 (0.0,-0.0) +∞ * * * * * * * *
x0 SC 40 332141 (0.1,-0.1) +∞ * * * * * * * *

(0.1,−0.1) PB CS 40 328861 (0.1,-0.1) +∞ * * * * * * * *
HJ 40 655221 (−226.08,

−226.28)
+∞ * * * * * * * *

f (x0) A 40 656861 (0.1,-0.1) +∞ * * * * * * * *
160.87 NM 40 660141 (0.0,-0.0) +∞ * * * * * * * *

SC 40 332141 (0.1,-0.1) +∞ * * * * * * * *
CP CS 18 17727 (4.96,1.25) 7.56 * * * (4.96,1.25) 7.56 7.56 18 5.04E-6

Solution HJ 18 22723 (4.95,1.25) 7.56 xk Φ (xk) 17 (4.95,1.25) 7.56 7.56 14 8.22E-5
x∗ A 18 27966 (4.96,1.25) 7.56 * * * (4.96,1.25) 7.56 7.56 18 4.01E-6

(?, ?) NM 18 13151 (4.97,1.25) 7.56 * * * (4.97,1.25) 7.56 7.56 18 1.01E-5
SC 27 140796 (3.49,1.40) 20.41 (4.96,0.30) 13.70 2 (3.49,1.40) 20.41 20.41 27 7.67E-8

f (x∗) SP CS 18 17727 (4.96,1.25) 7.56 * * * xk 7.56 Φ (xk) 18 5.04E-6
7.563 HJ 18 22723 (4.95,1.25) 7.56 xk Φ (xk) 17 (4.95,1.25) 7.56 7.56 14 8.22E-5

A 18 27966 (4.96,1.25) 7.56 * * * xk 7.56 Φ (xk) 18 4.01E-6
NM 18 13151 (4.97,1.25) 7.56 * * * xk 7.56 Φ (xk) 18 1.01E-5
SC 27 140796 (3.49,1.40) 20.41 (4.96,0.30) 13.70 2 xk 20.41 Φ (xk) 27 7.67E-8

DP CS 40 71828 (4.97,1.27) 7.51 * * * xk 7.47 Φ (xk) 40 4.48E-2
HJ 40 75414 (4.97,1.27) 7.51 * * * xk 7.47 Φ (xk) 40 4.47E-2
A 40 121442 (4.97,1.27) 7.51 * * * xk 7.47 Φ (xk) 40 4.48E-2

NM 40 56437 (4.97,1.27) 7.51 * * * xk 7.47 Φ (xk) 40 4.48E-2
SC 40 289256 (1.07,20.68) 12355.60 (4.93,1.08) 8.55 3 (5.08,1.31) 7.27 7.35 4 7.14E-2

`1 CS 3 595 (4.96,1.25) 7.56 xk Φ (xk) 3 (4.96,1.25) 7.56 7.56 2 8.62E-6
HJ 7 2166 (4.96,1.25) 7.56 xk Φ (xk) 6 (4.96,1.25) 7.56 7.56 2 4.06E-5
A 3 1534 (4.96,1.25) 7.56 xk Φ (xk) 3 (4.96,1.25) 7.56 7.56 2 8.12E-7

NM 3 510 (4.97,1.25) 7.56 xk Φ (xk) 3 (4.97,1.25) 7.56 7.56 2 1.57E-6
SC 14 36246 (5.01,1.22) 7.71 xk Φ (xk) 11 * * * * *

Table VI
NUMERICAL RESULTS OBTAINED - C802 PROBLEM

Methods Output
Problem EP IP k nEvals xk Φ (xk) xkf f (xkf ) kf xki f (xki) Φ (xki) ki V

C802 EB CS 40 328861 (0.1,-0.1) +∞ * * * * * * * *
HJ 40 655221 (−226.08,

−226.28)
+∞ * * * * * * * *

Initial A 40 656861 (0.1,-0.1) +∞ * * * * * * * *
Point NM 40 660141 (0.0,-0.0) +∞ * * * * * * * *
x0 SC 40 332141 (0.1,-0.1) +∞ * * * * * * * *

(0.1,−0.1) PB CS 40 328861 (0.1,-0.1) +∞ * * * * * * * *
HJ 40 655221 (−226.08,

−226.28)
+∞ * * * * * * * *

f (x0) A 40 656861 (0.1,-0.1) +∞ * * * * * * * *
295.1 NM 40 660141 (0.0,-0.0) +∞ * * * * * * * *

SC 40 332141 (0.1,-0.1) +∞ * * * * * * * *
CP CS 23 44926 (2.65,1.41) 84.67 (2.65,1.41) 84.67 22 (2.65,1.41) 84.67 84.67 21 2.34E-5

Solution HJ 19 25232 (2.66,1.39) 84.70 xk Φ (xk) 18 (2.66,1.39) 84.69 84.69 13 1.50E-3
x∗ A 23 65765 (2.62,1.47) 84.70 (2.62,1.47) 84.70 22 xk 84.70 Φ (xk) 23 5.62E-6

(?, ?) NM 23 23078 (2.67,1.43) 84.67 (2.64,1.43) 84.67 22 (2.64,1.43) 84.67 84.67 20 1.48E-5
SC 40 501398 (0.01,33.69) 6.98E17 (2.83,0.40) 105.49 3 (3.02,0.15) 105.32 105.97 2 6.40E-1

f (x∗) SP CS 23 44926 (2.65,1.41) 84.67 (2.65,1.41) 84.67 22 (2.65,1.41) 84.67 84.67 21 2.34E-5
-97.30952 HJ 19 25232 (2.66,1.39) 84.70 xk Φ (xk) 18 (2.66,1.39) 84.69 84.69 13 1.50E-3

A 23 65765 (2.62,1.47) 84.70 (2.62,1.47) 84.70 22 xk 84.70 84.70 23 5.62E-6
NM 23 23078 (2.64,1.43) 84.67 (2.64,1.43) 84.67 22 (2.64,1.43) 84.67 84.67 20 1.48E-5
SC 40 501398 (0.01,33.69) 6.98E17 (2.83,0.40) 105.49 3 (3.02,0.15) 105.32 105.97 2 6.40E-1

DP CS 40 131389 (2.66,1.44) 83.95 * * * xk 83.24 Φ (xk) 40 7.12E-1
HJ 40 77411 (2.66,1.44) 83.95 * * * xk 83.23 Φ (xk) 40 7.18E-1
A 40 211606 (2.66,1.45) 83.95 * * * xk 83.23 Φ (xk) 40 7.14E-1

NM 40 60382 (2.66,1.44) 83.95 * * * xk 83.24 Φ (xk) 40 7.137E-1
SC 40 445358 (3.49E-5,

33.82)
3.11E10 (2.89,0.52) 98.68 3 (3.07,0.15) 105.32 106.39 2 1.06

`1 CS 6 2389 (2.78,1.23) 85.30 xk Φ(xk) 6 (2.74,1.23) 85.30 85.30 5 1.98E-5
HJ 9 4149 (2.73,1.24) 85.24 xk Φ(xk) 8 (2.73,1.24) 85.23 85.24 5 1.18E-2
A 6 4099 (2.68,1.34) 84.80 (2.68,1.34) 84.80 5 xk 84.80 Φ(xk) 6 1.85E-5

NM 6 1739 (2.64,1.43) 84.67 (2.64,1.43) 84.67 5 xk 84.67 Φ(xk) 6 1.20E-8
SC 40 448724 (0.47,26.50) 3.90E14 (2.39,1.81) 87.39 13 (2.39,1.81) 87.38 93.90 14 6.52
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