
 

 

 

  
Abstract — Authors presented in last conferences, a new 

numerical method (the Finite Transfer Method) to solve a linear 

system of ordinary differential equations, how to apply general 

boundary conditions in equation form, and determine in the 

limit the exact analytical solution as well. The method was 

applied to the problem of spatially curved beams. Here, the 

computing of elastic support conditions in twisted beams is 

carried out. This is a complicated problem since usual and 

traditional models do not contemplate the whole system with all 

the unknowns and all the functions. Several problems arise with 

the treatment of boundary conditions. The systematic model 

presented hereby, is complete and without holes, but is still 

recent and challenging. It is necessary to solve those problems, 

to have all data in an arranged structure that will be given in 

this paper. Since analytical solution is the limit of the numerical 

procedure proposed, exact expressions and derivations of 

transfer and stiffness matrices come up. For the general case, a 

system of twenty four algebraic equations is reached. A clear 

analytical example is developed to show the practice. The 

procedure given is general and suitable for educational 

purposes.  

 
Index Terms— Differential system, Curved Beam, Finite 

Transfer Method (FTM), Transfer matrix, Stiffness matrix, 

boundary equations, Frenet-Serret formulas, Exact Solution. 

 

I. INTRODUCTION 

The problem to solving a system of linear ordinary 

differential equations (ODE) with boundary conditions can be 

approached by using analytic or numerical strategies. Being 

normally very difficult to obtain the exact analytical solution, 

approximate procedures have been resorted to [1]. In last 

decades, several numerical methods have arisen to solve these 

boundary value problems; see for example, the Shooting 

Method [2], Finite Differences [3], Finite Element Analysis 

[4] and the Boundary Element [5] methods. 

There exists much literature on modelling arbitrary curved 

beam elements [6], [7]. Traditionally, the laws governing the 

mechanical behavior of a curved warped beam (applying the 
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Euler-Bernuolli and Timoshenko theories) are defined by 

static equilibrium and kinematics [8], [9] or dynamic motion 

equations [10]. Some authors present this definition by means 

of compact energy equations [11], [12], [13]. These 

interpretations have permitted to reach accurate results, for 

some types of beams: for example, a circular arch element 

loaded in plane [14], [15], [16], [17], [18] and loaded 

perpendicular to its plane [19], parabolic and elliptical beams 

loaded in plane [20], [21], [22] or a helix uniformly loaded 

[23]. 

In this paper, the Finite Transfer Method (FTM) [24] is 

followed and applied to a system of differential equations, 

obtaining an incremental equation based on the transfer 

matrix. Fourth order Runge-Kutta approximation is adopted. 

Using the preceding finite expression, both extremes are 

related, reaching a system of algebraic equations with 

constant dimension p regardless of the number of intervals. 

The establishment of the problem is completed when the p 

elastic supports conditions-equations are incorporated. A 

final algebraic system of 2p order is reached and solved. Once 

values at the initial point are known, values at any point of the 

domain can be obtained. 

The authors apply the FTM on the arbitrary curved beam 

model, by means of a unique system of twelve ordinary 

differential equations with boundary conditions [25]. 

An example is given to show the procedure exposed. 

II. GENERAL BEAM EQUATION: THE DIFFERENTIAL SYSTEM 

A curved beam is generated by a plane cross section whose 

centroid sweeps through all the points of an axis curve. The 

vector radius r = r(s) expresses this curved line, where s (arc 

length of the centroid line) is the independent variable. 

The reference coordinate system used here to represent the 

intervening known and unknown functions of the problem is 

the Frenet frame Ptnb. Its unit vectors tangent t, normal n and 

binormal b are: t=Dr; n=D
2
r/|D

2
r|; b=t∧n; where D=d/ds is 

the derivative with respect to the parameter s. (Please refer to. 

[26] for another approach expressed in the global Cartesian 

coordinate system). 

The natural equations of the centroid line are expressed by 

the flexion curvature χ  and the torsion curvature τ. 
2 2( )s D Dχ = ⋅r r ; 

( ) ( )2 3 2 2( )s D D D D Dτ = ∧ ⋅ ⋅r r r r r ; 

The Frenet-Serret formulas are [27]. 
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Assuming the habitual principles and hypotheses 

(Euler-Bernoulli and Timoshenko classical beam theories) 

and considering the stresses associated with the normal 

cross-section (σ, τn, τb), the geometric characteristics of the 
section are: area A(s), shearing coefficients αn(s), αnb(s), 
αbn(s), αb(s), and moments of inertia It(s), In(s), Ib(s), Inb(s). 
Longitudinal E(s) and transversal G(s)  elasticity moduli give 
the elastic properties of the material. Applying equilibrium 

and kinematics laws to an infinitesimal element of the curve, 

the system of differential equations governing the structural 

behaviour a spatially curved beam can be obtained [25] (see 

Equation at the bottom below page). 

The first six rows of the system (Eq. 2) represent the 

equilibrium equations. The functions involved in the 

equilibrium equation are: 

Internal forces 
n bN V V= + +V t n b , given by: 

n b
A A A

dA dA dAσ τ τ= + +∫ ∫ ∫V t n b  

Internal moments 
n bT M M= + +M t n b , given by: 

( )b n
A A A

n b dA bdA ndAτ τ σ σ= − + −∫ ∫ ∫M t n b , and 

Load force 
t n bq q q= + +

V
q t n b  

Load moment 
t n bm m m= + +

M
q t n b  

The last six rows of the system (Eq. 2) represent the 

kinematics equations. 

Rotations 
t n bθ θ θ= + +θ t n b  

Displacements u v w= + +u t n b  

Load rotation 
t n bΘ Θ Θ= + +

θ
q t n b  

Load displacement 
t n b∆ ∆ ∆= + +

u
q t n b  

The differential system can also be expressed in the 

vector-matrix form as follows:  

( )
( ) ( ) ( )

d s
s s s

ds
 = + 

e
T e q  (3) 

Where { }) , , , , , , , , , , ,
T

n b n b t n b
s N V V T M M u v wθ θ θ=e(  

is the state vector )se(  of internal forces and deflections at a 

point s of the beam element, named effect at the section, 

{ }) , , , , , , , , , , ,
T

t n b t n b t n b t n bs q q q m m m Θ Θ Θ ∆ ∆ ∆= − − − − − −q(

is the applied load, and 
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is the Derivative Infinitesimal Transfer Matrix. 

III. EXACT ANALYTICAL SOLUTION 

The exact analytical solution is given by [28]: 

( ) ( )

( ) ( ) ( )

s s

s s
s ds s dss

s
s e s s e ds

   −   
 ∫ ∫= + 
  

∫I I

I

T T

I
e e q  (4) 

Or in compact form: 

( ) ( )( ) , ( ) ,s s s s s s = +  I I Ie T e q  (5) 

Where, ( )
( )

,

s

s
s ds

s s e
 
    =  

∫
I

I

T

T  is the Transfer matrix 

from a general point s to the initial I. 

( )
( ) ( )
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T T

q q  is the load 

transmitted from initial I to a general point s. 
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Equation 2. Differential System for Spatially Curved Beams. 
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IV. EXACT ANALYTICAL TRANSFER MATRIX 

Previous solution particularized for both extremes I and II 

of the curved beam, gives the next relation: 

( ) ( )

( ) ( ) ( )

s s

s s
s ds s dss

s
s e s s e ds

   −   
 ∫ ∫= + 
  

∫
II II

II
I I

I

T T

II Ie e q  (6) 

or in compact form: 

[ ]( ) ( )s s= +II Ie T e q   (7) 

where, 

[ ]

[ ] [ ] [ ]

[ ] [ ]

[ ]

    
        =
            
                
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I

II II
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II II II

I I I

II II II II
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V

V

M M

V M

θ θ θ

V M θ

u u u u

V M θ u

T 0 0 0

T T 0 0
T

T T T 0

T T T T

is the Exact Analytical 

Transfer Matrix, and { }T
T T T T=

I,II I,II I,II I,IIV M θ uq q , q , q , q  the 

load transfer vector transferred. 

V. NUMERICAL SOLUTION. FINITE TRANSFER METHOD RK4 

The approximation of the differential system (Eq. 2) is 

given by: 

1 1 2 3 4( ) ( ) ( ) 2 2( )

6

i i is s sd s

dt s s

∆
∆ ∆

+ − + + +≅ = =e e e k k k ke ɶ ɶ ɶ  
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[ ]1 ( )i i is= +k T e qɶ  

[ ]2 1 2 1 1 2( ) 2i i is s∆+ + = + + k T e k qɶ  

[ ]3 1 2 2 1 2( ) 2i i is s∆+ += + +  k T e k qɶ  

[ ][ ]4 1 3 1( )i i is s∆+ += + +k T e k qɶ  

Assuming that approximated functions are: 

1 1( ) ( )i is s+ +≅e eɶ ; ( ) ( )i is s≅e eɶ  

Thus, the Finite Transfer Equation of four order is: 
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Finally the general numerical solution is written: 

[ ]
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with ( ) ( )s s≅I Ie eɶ . 

VI. NUMERICAL TRANSFER MATRIX 

Establishing n intervals, both end points I and II of the 

curved line can be related: 

[ ]
1 1 1

00 1

( ) ( ) ( ) ( ) ( )
j n j n k n

j k j

jj k j

s s s s s
= − = − = −

== = +

  
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     
∑∏ ∏II RK4 I RK4 RK4e T e T qɶ ɶ

 (8) 

In compact form, 

[ ]( ) ( )s s= +II RK4 I RK4e T e qɶ ɶ  

Where [ ]RK4T  is the RK-4
th
 order-Numerical Transfer Matrix 

and 
RK4q  the load transfer vector. 

The Numerical Solution converges to the Analytical as was 

demonstrated [28]: 

( ) ( )s s≅II IIe eɶ , [ ] [ ]≅
RK4

T T  and ≅RK4q q . 

VII. STIFFNESS MATRIX 

The former terms of the above equation (Eq. 6) o (Eq. 8) are 

subsequently arrayed [29], yielding: 
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The stiffness matrix is determined, with this simple operation: 
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Expressed in a compact form it can be written as follows: 

[ ]= +
K

f K δ q  (11) 

Being, 

f  and δ  vectors of reactions and displacements unknowns at 
both ends, 
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 the stiffness matrix and 

{ }T
T T T T=

I,II I,II I,II I,II

K K K K

K V M θ uq q , q , q , q  the equivalent load vector. 

Note, that in general, the isolated beam has not been yet 

supported, so there are twenty four unknowns, twelve of 

forces and moments and other twelve in rotations and 

displacements: 

 

[ ] [ ]
[ ] [ ]

−    
    
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K
qI K f

=
00 0 δ

 (12) 

 

It is very interesting to write the whole algebraic system 

with all the intervening unknowns in a single vector as this 

form, because it will be better to implement the elastic 

conditions, as it is shown later. 

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

VIII. ELASTIC SUPPORT EQUATIONS TO ASSEMBLE 

A. Initial support 

Equilibrium and compatibility relations applied in forces 

and displacements at the elastic initial support extreme of the 

beam, yields: 

[ ] ( ) [ ] ( )      − − + −      
I I I

I I I

u u u

V I I V V I I
I α V Q = I K α u Λ  (13) 

where, 
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u

V
α

 is the matrix of the displacements 

factors of restraints at the elastic support in the initial extreme, 

{ }, ,
T

t n bQ Q Q= I I I

I
Q  is the punctual forces loads applied and 

{ }, ,
T

t n bΛ Λ Λ= I I I

IΛ  is the imposed (if applied) punctual 

displacements at the initial point. 

If the support has a rigidity that restrains the longitudinal 

displacement 
NuK I  it can be determined its factor by the next 

expression: 

u Nu
N u

Nu N

K

K K
α =

−
I

I I

I

I

I
 (14) 

Rest of α factors can be obtained in the same manner. 
For the rotation the elastic support relation at the initial 

point, it can be written as: 
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being, 
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 is the matrix of the rotation factors 

of restraints at the elastic support in the initial extreme, 

{ }, ,
T

t n bΠ Π Π= I I I

I
ΠΠΠΠ  is the punctual moment actions 

exerted and { }, ,
T

t n bΟ Ο Ο= I I I

IΟ  is the imposed (if applied) 

punctual displacements at the initial point. 

B. Final support 

In a similar way, extreme elastic conditions can be derivate 

for the final end of the spatially curved beam. First, on forces 

and displacements: 
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where, 

0 0

0 0

0 0

n

b

u

N

v

V

w

V

α
α

α

 
 

  =   
 
 

II

II

II II

II II

II

II

u

V
α

 is the matrix of the displacements 

factors of restraints at the elastic support in the final extreme, 

{ }, ,
T

t n bQ Q Q= II II II

II
Q  is the punctual forces loads applied 

and { }, ,
T

t n bΛ Λ Λ= II II II

IIΛ  is the imposed (if applied) 

punctual displacements at the final point. 

Secondly, with respect the rotations, it is obtained: 
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where, 
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 is the matrix of the rotation 

factors of restraints at the elastic support in the final extreme, 

{ }, ,
T

t n bΠ Π Π= II II II

II
ΠΠΠΠ  is the punctual forces loads applied 

and { }, ,
T

t n bΟ Ο Ο= II II II

IIΟ  is the imposed (if applied) 

punctual rotations at the final point. 

If we joint previous equations (Eq. 13), (Eq. 15), (Eq. 16) 

and (Eq. 17) in a single matrix equation, we reach the 

following expression of elastic stiffness conditions: 

[ ] [ ][ ]( ) [ ]( )− − = −I α f Q α δ Λ  (18) 

Where, 
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is the restraints support 

matrix, { }, , ,
T

T T T T=
I I II II

Q Q QΠ ΠΠ ΠΠ ΠΠ Π  is the complete vector of 

forces and moments { }, , ,
T

T T T T=
I I II II

Λ Λ Ο Λ Ο  and is the 

punctual loads of rotations and displacements in both ends. 

Former equation Eq.18, can be written as: 
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As we comment in section VII where the stiffness matrix 

was develop and demonstrated in a particular approach, it is 

important to write the whole algebraic system with all the 

intervening unknowns in a single vector, because it will be 

solved at a single step without adding other sophisticated and 

artificial procedure. This method, as it can be rapidly gotten, 

is general, easier and flexible to implement the elastic 

conditions and present several advantages from other used. 

IX. FULL SYSTEM OF EQUATIONS OF THE MODEL 

Stiffness equation (Eq. 11) contains twelve algebraic 

equations, which relates reactions and displacements in both 

ends of the beam. The other twelve equations necessaries to 

solve the problem are given by the elastic condition of the 

support in Eq. 18. As we mentioned formerly, now we can 

directly sum the expressions derived (Eq. 12) and (Eq. 19) to 

obtain the most general system, complete with twenty four 

equations, which are written down here: 

[ ] [ ]
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KqI K f
=
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 (20) 

The algebraic system can be solved directly by obtaining 

the inverse of the this matrix, given the vector of reactions and 

displacements straightforward by: 

[ ] [ ]
[ ] [ ][ ] [ ] [ ] [ ][ ] [ ]

1−
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=

I α Q α ΛI α αδ
 (21) 

In spite of the singularity of stiffness matrix, thus with no 

inverse, if the structure is stable, always a solution is provided 

because of the compatibility determinate system. 
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X. EXAMPLE 

A. Bending in a beam. General solution. 

For simplicity, the example to be considered here is the  

particular of a bar under bending effect, but it is suitable to 

show the procedure to solve the whole problem exposed 

formerly. 

Let’s consider a straight beam with uniform force load and 

elastic support as show in next figure: 

 

I

I

II
II

 
Figure 1. Bending with elastic support conditions. 

The differential system in this case will be a particular case 

of the general equation (Eq.2) given: 

 

0

0

0

0

z
z

y

z y

y y

y

y

y z

dV
q

dx

dM
V m

dx

M d

EI dx

dw

dx

θ
Θ

θ ∆

+ =

− + + =

− + − =

+ − =

 

 

Integrating with only force load applied, it is obtained: 
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In matricial form we get, 
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which is the expression in transference as mentioned in  Eq. 

6 if analytically or Eq. 8 if numerically. 

Reordering reactions and displacements to each member as 

was shown in Eq. 9, yields: 
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After inverting the former matrix and multiplying, we put 

all the unknowns in a single vector as said in Eq. 12: 
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It is easy then, to write the general elastic supports 

conditions: 
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The two above algebraic systems can be directly summed 

and yields the system eight by eight, to be solved: 
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The solution is written directly as: 
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Note that all possible elastic supports can be considered in 
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this manner. Also, if complete restraints are imposed, as for 

example, fixed-fixed, is as simple as substituting the actual 

values of the factors α’s, and get the next expression: 

3 2 3 2

0

2 2
0

3 2 3 2

0

2 2

0

12 6 12 6
1000

6 4 6 2
0100

12 6 12 6
0010

6 2 6 4
0001

0000 1 0 0 0

0000 0 1 0 0

0000 0 0 1 0

y y y y

z y y y y

y

zL y y y y

yL

y y y y

y

L

yL

EI EI EI EI

L L L L
V EI EI EI EI

M L L L L

V EI EI EI EI

M L L L L

EI EI EI EIw

L L L L

w

θ

θ

−

− 
− − − − 

 
− − − 

  = 
− − − 

 
− 

  −  
−

1

2

2

2

12

2

12

0

0

0

00000 0 0 0 1

qL

qL

qL

qL

−
   −   
   
   
   
   
   −
   
   
   −
   
   
   
   
   
   
   −   

 

It results that, the inverse matrix is the same, so reactions 

and displacements unknowns are directly obtained: 
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     
     
     
     
     
     
     −     

 

Other type of combinations of different support can easily 

be implemented and the system solved in the same way. 

XI. CONCLUSIONS 

It is presented the general system of differential equations 

that governs the behaviour of a spatially curved beam (Eq.2). 

This system can be solved either by an analytical or numerical 

method. Authors presented in last conferences, a new 

numerical method, the Finite Transfer Method (FTM) to solve 

a linear system of ordinary differential equations, how to 

apply general boundary conditions in equation form, and 

determine in the limit the exact analytical solution as well. 

The Finite Transfer Method exposed seems to be the most 

suitable to reach the desire result. The Transfer Matrix (exact 

or numerical) is directly reached. Rearranging it in a new 

expression, Stiffness Matrix expression is derived 

consequently. Since analytical solution is the limit of the 

numerical procedure proposed, exact expressions and 

derivations of transfer and stiffness matrices come up. 

It is important to note that the algebraic system is extended 

to twenty four equations to let space for next equations of 

support. That permits the generality of the statement of the 

problem. This treatment of the problem is new and intriguing. 

Establishing the elastic conditions has been a complicated 

classical problem since usual and traditional models do not 

contemplate the whole system with all the unknowns and all 

the functions. 

 

An analytical example of a particular case of a straight 

beam is developed to show the practice. The procedure given 

is general and suitable for educational purposes. 
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