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Abstract - An involute gear tooth under repeated pulse loading 

with varying magnitude as a result of a contact force is analysed. 
The Euler beam equation allows the deflection at the centre of 
mass of the gear tooth, modelled as a stubby cantilever, to be 
calculated. The relationship between the involute angle, axial 
coordinate and time determines the harmonic function in time to 
represent the deflection.  An equivalent system subjected to a 
harmonic force representing the component of the contact force 
causing the deflection is devised. This system comprises a mass 
matching that of the gear tooth, suspended from a weightless 
spring and three parallel dampers. The author, after establishing 
the validity of the model by correctly determining the 
characteristics of the spring force, hypothesises that one of the 
dampers acts in a viscous fashion, that the second reacts linearly 
with the position of the contact force along the gear tooth and that 
the third, as a harmonic function of time directly proportional to 
the applied force. Ten gear teeth with involute circle radius 
varying from 6 mm to 15 mm are modelled and the damping force 
calculated using the author’s hypothesis. The damping force is 
found to differ to a maximum 0.24 percent of that obtained using 
the calculated deflection, velocity, acceleration and the contact 
force.  
 

Index Terms— Bending moment, damping force constant, 
Euler beam equation, involute gear tooth.  
 

I. INTRODUCTION 

 
The characterisation of the damping forces in a vibrating 

structure has been actively pursued in structural dynamics [1-4, 
9]. The most common approach is to use “viscous damping'', 
where the instantaneous generalized velocities are 
hypothesized to be the only relevant variables that affect 
damping forces. Many workers [1, 2, 9, 14] have proposed 
ways of identifying, from experimental results, damping 
matrices in linear and multiple-degrees-of-freedom systems. 
Although these have led to a high degree of confidence in the 
performance of the matrix, they fail to address the fundamental 
question of whether the model is indeed correct. Certainly, 
viscous representation is not the sole model, since all 
representations with non-negative energy dissipation 
functional form potential candidates. 

In contrast to the forces governing inertia and stiffness, there 
are questions on the nature of the variables to be included in 
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expressions describing damping. It is generally recognised [1- 
4] that variables other than instantaneous generalized velocities 
make a significant contribution, further complicating the 
model. The existence of high damping forces in structural or 
mechanical elements leads to additional problems. Here, first 
order perturbation methods are no longer appropriate.  

The author utilises previous research in the structural 
analyses and studies of the characteristics of gear teeth with 
respect to spring and damping properties. These are then used 
to confirm the features of the spring force and establish 
potential variables that represent the damping force on an 
involute gear tooth when modelled as a cantilever.  

Despite the fact that gear teeth are short and stubby, they 
still possess elasticity; thus, the deflection of teeth is one of the 
causes of the transmission error (TE). Case hardened and 
ground gears are precisely formed, with profile errors of below 
4 µm and cumulative pitch errors within 20 µm [5]. Hence, the 
tooth deflection contributes significantly to the overall relative 
deviation from smooth running at the mesh point. Loaded non-
truly conjugate tooth profiles fail to uniformly transmit angular 
motion, thus adding to spacing or relative angular placement of 
driving teeth relative to driven ones. As a consequence, teeth 
do not engage smoothly and result in high dynamic loads. 
Then, periodic rather than transient effects determine the 
maximum load. From the mid-nineties onwards [6, 10- 12], a 
fruitless search has continued for a modification of profile to 
eliminate TE. This does not mean that certain modifications 
which encounter the displacement of gear tooth as a result of 
bending do not minimize transmission errors. These 
modifications depend on the magnitude of the contact force 
and any modification should be minimised. However, any 
profile adaptation which avoids edge contact at the beginning 
of mesh is highly desirable. 

During the engagement of teeth, energy is dissipated as the 
lubricant is expelled, adding to the sliding friction. The gear 
and the pinion, during the engagement, momentarily undergo a 
pure rolling action as the zone of contact coincides with the 
pitch point. In all other positions, however, the meshing action 
is a combination of rolling and sliding. Since rolling resistance 
is considerably smaller than the latter, its contribution to the 
total tooth friction is usually neglected. In contrast with the 
total rolling speed of the gears, the relative sliding velocity [7, 
11] varies with the meshing position as well as from one tooth 
to the other. Vaishya and Singh [13] studied non-linearity and 
parametric effects in gear dynamics and compared the results 
of both linear and non-linear time varying systems. They 
demonstrated that non-linearity in friction exerted its 
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maximum influence at primary resonance but even then did not 
significantly contribute to the TE.  

Kahraman and Vijayakar [8] highlighted the problems 
encountered by finite element and semi-analytical deformation 
treatments when applied to contact zones in planetary gear 
systems. These are extremely small (typically two orders of 
magnitude below the working depths of the teeth), and traverse 
its surface. Their approach uses a finite element model only to 
compute stresses and relative deformation for points that are 
away from the contact zones and employs semi-analytical 
techniques to do the same in the contact zone. The ‘near field’ 
semi-analytical, and the ‘far field’, finite element solutions, are 
equated at a ‘matching surface’. Their model is significantly 
more difficult to program, but once implemented, provides 
comparable resolutions to that of a highly refined finite 
element mesh. Baud and Velex [5] used an extended finite 
element model. It accounts for flexural torsional axial 
couplings, mesh stiffness that varies non-linearly with time and 
departures from the ideal geometry of a tooth. They conclude 
that the stiffness of the bearing and bending of the shaft must 
be included in any analysis. Wink and Serpa [15] used three 
procedures to calculate errors in static transmission of loaded 
pairs of helical gear pair. They used an incremental procedure 
with its gradual or iterative application, solving for the 
distribution of the full load and calculating TE. They reduced 
the problem via a pseudo interference method and solved it by 
separate procedures; one by linear programming, the other by a 
direct matrix solver based on Cholesky factorisation. The later 
procedure was shown to be highly efficient in solving load 
distribution problems, encouraging its use in gear strength 
models that predict contact and bending. 
 

II. INVOLUTE GEAR TOOTH 

 
 The tooth profile is created using an involute of circle with 
radius r. In this application, the value of x is limited to  

rxr ≤≤− requiring ϕ to be in the range of 2.331 to π radians. 

The overall length of the tooth is 2r. To avoid the negative 
values of x, r is added to the value of x, hence moving the 
origin to the left by r. Similarly, the y value is adjusted by 
subtracting a constant from it to obtain the thickness of the 
tooth at the pitch to be equal to P2π , where P is the diametral 

pitch. The parametric equation for such curve is  
 

 
( ) 







 π−−ϕϕϕ

ϕϕϕ

P2
ycos -sinr=y

)sin +cos+r(1=x

pitch
 (1) 

 
Plotting y as a function of x, Fig. 1, shows the tooth profile. 

When the mating gears engage, the contact force perpendicular 
to the common tangent to the mating surfaces at the point of 
contact shown in Fig. 1, is responsible for the bending 
moment.  

 
 

 
 

Figure 1: Gear tooth profile 
 

A. Bending Moment 
 

The bending moment xM at x (Fig. 1) due to the y-

component ( ,cosFFy ϕ= )
 
of the contact force F   at fxx =  

may be written as  
 

( ) jFi xxM yfx ×−=
 

 
Substituting for x, fx and yF  in the equation for xM gives 

 
( ) sincosfsinfffx  cos   cos FrM ϕϕϕϕϕϕϕ= −−+  (2) 

 
During the engagement, the position of the contact force 

varies from r2xf = )3311.2( f =ϕ at the tip of the tooth to 

cf xx =  )06.3( f =ϕ , the beginning of the clearance fillet; 

the range of horizontal values being the working length of the 
tooth. The position  of  the  force, fx , to result a maximum  

moment at a given value of x varies for r 463.0x≤ and 
remains as the tip for larger values of x. The bending moment 
at the base, as the force travels along the tooth is shown in Fig. 
2; the maximum magnitude occuring at .r 894.1x=  

If the deflection of the tooth due to the contact force is ,δ  
then  

 

( )ϕϕ−ϕ−ϕϕ+ϕϕ=

=δ

sincossincos  cosFr

M
dx

d

Fr

EI

ffff

x2

2

 

(3) 

 
Where E is the Young’s modulus and I is the second moment 
of inertia.  
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Figure 2: The bending moment at the base of the tooth ( )0x =  as the force 
moves along the tooth. 
 

B. Deflection 
 
Integrating the both sides of the above equation and putting 

0
dx

d =δ
 at 0x =  results  
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Putting 0
dx

d =δ
for a given ϕ  gives the position of the force  

when the maximum deflection occurs. Using the values 
 

 
  
Figure 3: The position of the contact force for maximum deflection along x. 
 

of ϕ  and fϕ , the corresponding values of x and fx can be 

calculated. For ,r42.1x≥  the maximum deflection occurs 
when the force is at the tip of the tooth and for 42.1x< the 
position of the force is slightly away from the tip as shown in 
Fig. 3. Integrating again gives the deflection. 
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The deflection at the tip, as the contact force travels away 
from it, must be extrapolated since the bending moment at the 
tip is zero and Eq. 5 is not applicable. 

The tooth is subject to the contact force during each cycle 
for a time period of NT , where ωπ= 2T  is the period, N 

the number of the teeth and ω   the angular velocity  of the 
gear. The contact force travels from r2x =  to 0.2577r –
working length of the tooth- during the time period of 0 to 

N2 ωπ=τ .  To simplify the dependence between the position 

of the force and time t, a linear relationship between x and  t, 
as given in Eq. 6 below, is assumed. 
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The deflection at cxx =  as a function of time1, together with 
its cosine approximation is given in Fig. 4. 

The divergence between the two values can be accounted 
for, by the linear approximation of the horizontal distance 
covered in a given time.  Calculus derived deflections 
demonstrate its asymptotic approach to zero as the force moves 
to the base of the tooth (x = 0) which is not the case for the 
trigonometric approximation. 
 

III.  MODELLING 

  
The deflection at the mass centre, as the contact force moves 

along the tooth, is calculated in terms of the involute angle 
using Eq. 5. The relationships between the involute angle, axial 
coordinate, x and time t, then allows the deflection to be 
expressed as a harmonic function of time. An, equivalent 
system Fig. 5, subjected to a harmonic force, is devised to 
model the forces acting on the system. It comprises a mass 
matching that of the gear tooth, suspended from a weightless 
spring and three parallel dampers. The author hypothesises that 
one of the dampers acts in a viscous fashion, that the second 
reacts linearly with the position of the contact force along the 
gear tooth and that the third, as a harmonic function of time, 
directly proportional to the applied force. Ten involute gear 
teeth with involute circle radius varying from 6 mm to 15 mm 
are modelled and the damping force calculated using these 
parallel dampers is found to differ to a maximum 0.24 percent 
of that obtained using the calculated deflection, velocity, 
acceleration and the contact force. The spring force constant is 
found when the system is at rest.  
 

 
 

Figure 4: Deflection at cxx = as a function of time, t. 

 

                                                 
1 The deflection at cxx =  rather than at the tip is shown since the 

deflection at cxx =  is found directly from Eq. 5 as a function of ϕ  and 

using Eq.s 1 and 6 expressed as a function of time whereas the latter is found 
through extrapolation. 

 
 

Figure 5: The equivalent system 
 
To simulate the dependence of the deflection on the bending 

moment, the vertical component of the contact force is 

multiplied with a scaling function, ,t
1

1f
τ

−= in the 

equivalent system. This allows the force to be maximum when 
the deflection is greatest and be zero at the end of engagement, 

τ=t . 
 
The equation of motion is  

 

 eFkcm =δ+δ+δ &&&

 (7a) 

 
where δ  is the displacement. 
 

Now if we define δ  as δ′=δ F , then δ′=δ && F and δ′=δ &&&& F . 
 
Substituting in Eq. 7a and dividing each term by the magnitude 
of the contact force F, gives 
 

 F

F
kcm e=δ′+δ′+δ′ &&&

 
(7b) 

 
The ratio of the equivalent and the contact forces, 

FFf ee = , can be written as a periodic function of time. 

 

 )dbtcos(fe +=  (8) 
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and ,cϕ ct and ,r2ϕ r2t are the involute angles and time at 
the clearance and the tip of the tooth respectively. 

The departure of the actual and trigonometric 
approximations of the ratios FFf ee =  and FFy  is 

accounted for, by the non-linear relationship between x and 
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time t, although the trigonometci approximation closely 
approaches the actual one. 
 

A. Spring Force Constant 
 

The spring force constant is found when the tooth is at rest. 
It varies along the tooth as an inverse power function, being 
infinitely large at the base of the tooth. It increases linearly as 
the overall height of the tooth increases with increasing base 
circle radius and as a power function with an index 0.25 with 
the second moment of inertia (Fig. 6), confirming the validity 
of the model. 

 
B.   Damping Force Constant 
 
 The variables in the equivalent system are taken as the ratio 
of the equivalent and the contact forces and ratio of the 
position of the contact force on the gear tooth to the involute 
circle radius. The second ratio is needed to take into account 
that displacement results from the bending moment of the 
tooth.  
 The damping force is assumed to be directly proportional to 
the instantaneous velocity and calculated using the force 
equilibrium in the equivalent system.  Multi variable 
regression analysis is performed on all ten systems 
representing the gear teeth with base circle radius ranging from  
6 mm to 15 mm (overall length 12 mm to 30 mm) to determine 
the dependency of the damping force constant on these 
variables. The constants of the regression equation obtained 
are given below in Table 1. The adjusted R2 in each case is 
0.99999. The first constant in the analysis is given as the 
intercept and represents the viscous damping. The second and 
third constants are associated with the other two dampers in the 
parallel dashpot. 

Next, for each of the ten systems, the damping force 
constant at each time interval is divided by the fourth root of 
the second moment of inertia. The multiple regression analysis 
is repeated for each of the ten equivelant systems and the  
 

 
 

Figure 6: Spring force constant as a function of second moment of inertia. 

Table 1: THE MULTI VARIABLE REGRESSION ANALYSIS CONSTANTS FOR THE PARALLEL 
DAMPERS. 

 

   r viscous position of fe magnitude of fe 

0.006 7978 259137 1216012 

0.007 9308 302326 1418680 

0.008 10637 345515 1621349 

0.009 11967 388705 1824018 

0.010 13297 431894 2026686 

0.011 14626 475084 2229355 

0.012 15956 518273 2432024 

0.013 17286 561463 2634692 

0.014 18616 604652 2837361 

0.015 19945 647841 3040030 
 
Table 2: THE MULTI VARIABLE REGRESSION CONSTANTS FOR THE RATIO OF THE 
DAMPING FORCE CONSTANT AND THE FOURTH ROOT OF THE SECOND MOMENT OF 
INERTIA. 

 

R viscous position of fe magnitude of fe 

6 -15  9.23E+05 3.00E+07 1.41E+08 
 

identical constants obtained are given in Table 2. The adjusted 
R2 is again 0.99999. 

The multi regression equation for all cases is 
 

 
ef25.0

f08E41.1x07E00.305E23.9
I

c +++++=
 

(9) 

 
Where =c  damping force constant 

 =I  second moment of inertia 
 =fx  the ratio of the position of the force to 

          the base circle radius 
 

 
 
Figure 7: Equivalent, spring and damping forces as a function of time. 
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The damping force then is written as  
 

 ( ) v I f08E41.1x07E00.305E23.9f 25.0
efd +++++=  (10) 

 
Where FFf dd = is the ratio of the damping force to the 

contact force and v is the velocity. 
 The relevant magnitudes of the spring, damping and 
equivalent forces are shown in Fig. 7 above. It can be clearly 
seen that the damping force is much smaller than that of spring 
force. 

 
IV.  CONCLUSIONS 

 
There is a particular allure and challenge in determining the 

variables governing damping forces. Many researchers define 
kernel functions to fit experimental measurements to their 
model of damping to obtain damping matrices. These functions 
ensure non-negative energy dissipation functions.  However, 
they fail to identify the fundamental variables that govern 
damping. 

Here, the Euler beam equation is used to predict the bending 
moment and deflection of the gear tooth, which is modelled as 
a two dimensional stubby cantilever. It shows that during the 
engagement of the tooth, the maximum bending moment fails 
to occur when the contact force is at the tip without the 
addendum or tip modification. Additionally, the model 
demonstrates that the maximum deflection depends on the 
position of the contact force and corresponds to the contact 
force being at the tip when measured at two thirds of its height 
from the base.  

An analysis of ten gear teeth with involute of circle radius 
varying from 6 mm to 15 mm attests that the deflection of the 
mass centre is close to being a harmonic function of time. The 
author derives an equivalent system that comprises of a mass 
matching that of the gear tooth and suspended from a 
weightless spring and three parallel dampers. This is shown to 
be subject to a harmonic force derived from the vertical 
component of the contact force and can adequately be 
expressed as a function of time. 

Multiple variable regression analysis of this system, 
performed on the ratio of the damping force coefficient and the 
fourth root of the second moment of inertia, produces a unique 
set of constants. The first constant termed as the intercept 
corresponds to the viscous damping. The second and third 
relate to the position of the contact force on the tooth and the 
magnitude of the equivalent force correspond to the remaining 
two dampers. The close fit ( by <0.24% ) to the resultant 
damping force from that obtained using the calculated 
deflection, velocity, acceleration and the equivalent force 
affirm the legitimacy of the variables chosen.  

The spring force constant has been shown to vary along the 
tooth as an inverse power function, being infinite at its base. 
It’s linear relationship on the overall height of the tooth, 
together with its dependence the second moment of inertia as a 
power function with an index 0.25 is demonstrated, confirming 
the validity of the model. Finally, the damping force has been 

shown to be much smaller in relation to the spring force and 
may be neglected in the initial analysis. 
 The findings are applicable to studies of gear sets such as 
planetary ones. The mesh stiffness can be written as a non-
linear function of time considering the contact ratio and the 
stiffness of each tooth at the point of engagement together with 
bearing stiffness. Similarly energy dissipated due to damping 
may be included in the study using the unique set of constants 
obtained from the multiple regression analysis.  
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