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Abstract—Many highly reliable products have two or more 

performance characteristics (PCs). The PCs may be 
independent or dependent each other. If they are dependent, it 
is very important to find the joint distribution function of the 
PCs. In this paper, suppose that a product has two PCs and the 
PCs degradation can be governed by Gamma process. And the 
dependence of the PCs can be described by copula function. In 
order for estimating the product’s reliability as accurate as 
possible, the parameters of the two PCs and copula function can 
be estimated as a whole. The model in such a situation is very 
complicated and analytically intractable, hence very 
cumbersome from a computational viewpoint. So the Bayesian 
MCMC method is developed to this problem that allows the 
maximum likelihood estimator (MLE) of the parameters to be 
evaluated in an efficient manner. As a nice application of the 
proposed model, an illustrative example about fatigue cracks is 
presented. 
 

Index Terms—Bivariate degradation model; Gamma process; 
Bayesian MCMC; Copula function.  
 

I. INTRODUCTION 
In recent years, the situation and the increasing demand for 

high quality and reliability products have motivated the 
extensive growth of research activities in the degradation 
area. Many models for modeling and analyzing degradation 
paths are proposed including constant-stress degradation test 
and accelerated degradation test. But most of the previous 
research which focuses on degradation area considers only 
one PC. In practice, modern products usually have complex 
structure and more functions. This means that modern highly 
reliable product may have multiple degradation measures. 
For example, a rubidium discharge lamp is the key 
component of rubidium frequency standard which 
performance degradation can be described by the rubidium 
consumption or the decreasing of lamp’s intensity. Another 
example is a lighting system consists of many LED lamps for 
different purposes of lighting. The design and the 

characteristic of the LED system demands may generate 
more than one degradation mechanism that lead to failure [1]. 
Therefore, multivariate or at least bivariate degradation 
model is needed to estimate the reliability of modern products. 
This analysis is needed not only for design and technical 
purposes but also as important information for the 
management and decision makers. 
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There are only few works dealing with estimation system 
reliability of bivariate or multivariate degradation data for 
industrial purpose [2-4]. Moreover, some works about 
multiple failure modes including failure time data are 
discussed [5-7]. However, these works use either 
independence assumption of the PCs, multivariate normal 
distribution, or modeling with covariates and modification to 
single failure classifications. In fact, these assumptions may 
be insufficient because in reality common usage history and 
complexity of the modern product may require relaxation of 
these assumptions. 

Sari [8] answered the question that how to quantify the 
reliability of a product/system which has two or more 
degraded PCs with each PC leading to a failure mechanism of 
the system in his Ph.D thesis. He modeled the degradation 
data with generalized linear model (GLM) and described the 
dependence of these PCs by copula function.  

But in Sari’s work, he estimated the parameters of the PCs 
separately firstly, and then infer the copula parameter. If the 
PCs are dependent, maybe the parameters of different PC will 
influence each other. So we think we should deal with these 
parameters including copula parameter as a whole. 
Furthermore, Gamma process has many good properties so 
that it can be taken to describe the degradation of products 
extensively [9-11]. In this paper, we suppose that a product 
has two PCs and the PCs can be governed by Gamma process. 
And the dependence of the PCs can be described by copula 
function. We try to estimate the parameters of the two PCs 
and copula function as a whole. The model in such a situation 
is very complicated and analytically intractable, so we apply 
Bayesian MCMC method for our problem to evaluate the 
parameters efficiently. As a nice application of the proposed 
model, an illustrative example about fatigue cracks is 
presented. 

The rest of the paper is organized as follows. In Section II, 
the bivariate degradation model based on Gamma process is 
introduced. In Section III, inference method for the model 
parameters is presented. A numerical example about fatigue 
cracks is given in Section IV.  
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II. BIVIVIATE DEGRADATION MODEL BASED ON GAMMA 
PROCESS 

A. Gamma Process 
In order for the stochastic degradation process to be 

monotonic, we can best consider it as a Gamma process. A 
Gamma process is a stochastic process with independent, 
non-negative increments having a Gamma distribution with 
an identical scale parameter. The Gamma process with shape 
parameter  and scale parameter  is a continuous 
time stochastic process  with the following 
properties: 
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From c), we know that the degradation increment 
governed by Gamma process is a linear function of t . Where 
it is not linear, however, it is often found that a monotonic 
transformation of the time scale can make it linear. Whitmore 
and Schenkelberg [12] discussed this situation about Wiener 
diffusion process in their work. Denote the transformation by 

)(tττ = , 
where t  denotes the clock or calendar time and τ is the 
transformed time. We shall require the transformation to 
satisfy the initial condition ( ) 00 =τ . 

B. Copula Function 
In this paper, we use copula function to describe the 

dependence of the PCs. So here we introduce copula function 
firstly. Copula functions offer a far more flexible method for 
combining marginal distributions into multivariate 
distributions and offer an enormous improvement in 
capturing the real correlation pattern. More details can be 
found in Nelson [13]. 

Suppose that we have two marginal CDFs  and 
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There are some 1-parameter copulas that can be used. For 

example: Elliptical family (i.e. Gaussian, t) and Archimedean 

family (i.e. Frank, Gumbel, Clayton, et al). One of the 
popular Archimedean copulas is Frank copula. It is a 
symmetric copula (for bivariate data) given by 
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The relationship of between Kendall’s tau τ and the Frank 

copula parameter α is given by 
( )[ ]

4
11 1 τ

α
α −

=
− D

,                                                                     (2) 

where 

( ) dt
t
tD ∫ −

=
α

α
α

0
1 1)exp(

1 , 

is a Debye function of the first kind. 
 In this paper, the Frank copula is used to describe the 

dependence of the PCs. 

C. Model for Bivariate Degradation Data 
Suppose that a product has two PCs and the PCs can be 

governed by Gamma process. During the degradation test 
experiment,  items are tested and N M measurements for all 
the items are observed up to the termination time T , which 
results in degradation measurements ( ))2(
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th item at corresponding time , that means the 

measurement times of the two PCs and  items are the same 
(balanced data). In general, the bivariate degradation data for 
this model can be presented in the form,  
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Assume that in the case of different pre-determined 

measurement times of the PCs, the dependence can be 
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distribution of  and . 
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We can obtain the parameters from (5). The method of 
parameter estimation will be introduced in Section III. 

Let  and  be the threshold value of the two PCs. 
With the non-decreasing property of the degradation function, 
the product reliability can be written as 
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If the two PCs are independent, the product reliability can 
be expressed simply as 
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III. PARAMETER ESTIMATION METHOD 
In this section, we will introduce the parameter estimation 

method for (5). The model is very complicated from 
computational view, so it is difficult to infer the parameters 
by analytical approach. In our work, we will apply Bayesian 
MCMC method to estimate the parameters. 

In most practical applications where the Bayesian 
approach is used, it is difficult to compute analytically the 
posterior distribution. The MCMC method can be used to 
generate a sample from the posterior distribution large 
enough based on a Markov Chain so that any desired feature 
of the posterior distribution can be accurately summarized. 
Now, the two most popular MCMC algorithms are the Gibbs 
sampling and the Metropolis-Hastings algorithm. 

Gibbs sampling is an algorithm to generate a sequence of 
samples from the joint probability distribution of two or more 
random variables. It is a special case of single-component 
Metropolis-Hastings algorithm using as proposal density 

( ))(' | tq θθ  the full conditional posterior distribution 
( )yf jj ,| \θθ , where 

( )Tdjjj θθθθθ ,,,,, 111\ LL +−= . 

Such proposal distributions result in acceptance probability 
1=α .  

The algorithm can be summarized by the following steps 
[14]: 
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which are the parameters of  the model with P1 and P2 

sim

separately

mpling. And we can estimate the parameters efficiently. 

IV. ILLUSTRATIVE EXAMPLE 
this Section, we implement the propos

ction II. The numerical data is taken from Meeker and 
Escobar [15] in Table C.14 which is reported in Lu and 
Meeker (1993) and read from Figure 4.52 in Bogdanoff and 
Kozin (1985). In the original data, 21 samples are tested for 
fatigue crack development and the measurements are taken at 
the same measurement times. The time unit is in million 
cycles. To demonstrate the bivariate degradation model, we 
choose 20 samples and the data will be treated as if half of it 
will be supposed that there is a product with two possible 
fatigue crack positions and this assumption is valid for every 
item tested. The data will be used is the data measured only 
until 0.09 million cycles. The item is considered failed if one 
of the two cracks size exceeds 1.6 in. Table 1 lists the crack 
data. Fig. 1 and Fig. 2 show the cumulative degradation and 
the degradation increments of the fatigue cracks size 
respectively. 

Firstly, we consider modeling the data by a standard 
Gamma process (P1). The PDF of the degradation increment 

)(
,
k
jixΔ  is denoted as (4). But from Fig.2, we can see that the 

ation increment is not a constant each 0.01 million 
cycles, it continues to increase along with cycles, that is, the 
cumulative degradation is not a linear function of cycles. So, 
we also consider using Gamma process with a time scale 
transformation (P2) to model the data. We choose the 
transformation function as γτ tt =)( . 

Take Frank copula to de e 

degrad

acks and suppose that the copula parameter does not 
depend on cycles. The parameters can be estimated in terms 
of (5) by Bayesian MCMC method. Let 

),,,,( )2()1()1()1(
1 αuvuvP =θ , 

),,,,,,( )2()2()1()1()1()1( αγγ uvuv , 2P =θ

respectively. 
We use relatively non-informative priors for parameters 

θ 1P and 2Pθ and estimate them by WinBUGS. During the 
ulation test, we find that the parameters are very stable 

after 50,000 iterations. So we generated 50,000 realizations 
of them from posterior. The last 40,000 were used in the 
estimation of mean, standard deviation, MCMC error and 
quantiles of the parameters. Table 2 lists the computational 
results.  We also estimate the parameters without considering  
the dependence of the two fatigue cracks and list the results in 
Table 3. According to (2), we can compute the Kendall’s tau 
easily for Frank copula. They are 0.55996 and 0.41046 for P1 
and P2 respectively. 

From Table 2 and Table 3, we know that some differences 
exist about the parameters if we consider the two cracks 

. It implies that the parameters of different PC may Set 
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om Meeker and Escobar(1998) 

influence each other. So we think it is more rational to 
estimate them as a whole so that we can assess the product’s 
reliability as accurate as possible. 

We assess the reliability according to (6-8) considering the 
cracks to be dependent, independent and separate. Fig. 3 and 

Fig. 4 compare the product’s marginal reliability of Crack A 
and Crack B. And Fig. 5 shows the product’s reliability. We 
consider both independence and dependence for P1 and P2 in 
these figures.  

Table 1 Fatigue crack data (in) taken fr
Millions of Cycles Cracks Item 

0.00 0.01 0.02 0.03 0.06 0.07 0.08 0.09 0.04 0.05 
1 0.90 0.95 1.00 1.05 1.12 1.19 1.27 1.35 1.48 1.64 
2 0.90 0.94 0.98 1.03 1.08 1.14 1.21 1.28 1.37 1.47 
3 0.90 0.94 0.98 1.03 1.08 1.13 1.19 1.26 1.35 1.46 
4 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.25 1.34 1.43 
5 0.90 0.94 0.98 1.03 1.07 1.12 1.19 1.24 1.34 1.43 
6 0.90 0.94 0.98 1.03 1.07 1.12 1.18 1.23 1.33 1.41 
7 0.90 0.94 0.98 1.02 1.07 1.11 1.17 1.23 1.32 1.41 
8 0.90 0.93 0.97 1.00 1.06 1.11 1.17 1.23 1.30 1.39 
9 0.90 0.92 0.97 1.01 1.05 1.09 1.15 1.21 1.28 1.36 

Crack 
A 

10 0.90 0.92 0.96 1.00 1.04 1.08 1.13 1.19 1.26 1.34 
1 0.90 0.90 0.96 1.00 1.04 1.08 1.13 1.18 1.24 1.31 
2 0.90 0.93 0.97 1.00 1.03 1.07 1.10 1.16 1.22 1.29 
3 0.90 0.92 0.97 0.99 1.03 1.06 1.10 1.14 1.20 1.26 
4 0.90 0.93 0.96 1.00 1.03 1.07 1.12 1.16 1.20 1.26 
5 0.90 0.92 0.96 0.99 1.03 1.06 1.10 1.16 1.21 1.27 
6 0.90 0.92 0.95 0.97 1.00 1.03 1.07 1.11 1.16 1.22 
7 0.90 0.93 0.96 0.97 1.00 1.05 1.08 1.11 1.16 1.2 
8 0.90 0.92 0.94 0.97 1.01 1.04 1.07 1.09 1.14 1.19 
9 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 

Crack 
B 

10 0.90 0.92 0.94 0.97 0.99 1.02 1.05 1.08 1.12 1.16 
 

 
 (a) Crack A                                                                                                       (b) Crack B 

Fig.1 the cumulative degradation of fatigue cracks size 
 
 

 
  (a) Crack A                                                                                                      (b) Crack B 

Fig.2  the degradation increments of fatigue cracks size 
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Table 2 Parameters estimation results considering the dependence 
Results Process Parameters 

mean std MC-error 2.5% Median 97.5% 
v(1) 695.9 102.5 5.603 515.0 688.3 909.1 
u(1) 113.9 17.84 0.9582 82.33 112.6 151.2 
v(2) 702.1 100.6 5.292 524.1 698.7 911.1 
u(2) 184.0 27.98 1.452 133.8 183.1 242.4 

P1 

α 6.948 1.052 0.02876 5.05 6.906 9.153 
v(1) 2797 480.3 28.87 1938 2753 3751 
u(1) 217.8 31.02 1.585 159.1 216.3 280.2 
γ(1) 1.313 0.04206 1.883e-3 1.232 1.313 1.396 
v(2) 1809 343.2 20.27 1119 1804 2513 
u(2) 267.1 41.36 2.075 189.9 265.6 353.0 
γ(2) 1.240 0.04427 2.000e-3 1.152 1.240 1.326 

P2 

α 4.307 0.8826 0.02148 2.594 4.293 6.107 
 

Table 3 Parameters estimation results without considering the dependence 
Results Process Cracks Parameters 

mean std MC-error 2.5% Median 97.5% 
v 729.1 108.1 2.773 533.1 724.5 955.7 Crack A 
u 122.8 18.86 0.4834 88.39 122.0 162.4 
v 711.7 105.3 2.608 522.2 706.9 934.5 

P1 
Crack B 

u 192.3 29.49 0.7285 139.0 190.9 254.3 
v 2895 455.6 14.80 2023 2888 3820 
u 226.6 31.06 0.9659 166.5 226.2 290.2 Crack A 
γ 1.317 0.03949 8.634e-4 1.242 1.316 1.396 
v 2002 336.6 11.11 1386 1983 2712 
u 288.0 40.96 1.296 211.2 286.8 371.0 

P2 

Crack B 
γ 1.260 0.04096 8.466e-4 1.182 1.259 1.342 
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Fig. 3  product’s marginal reliability of Crack A 
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Fig. 4  product’s marginal reliability of Crack B 

 
In the following, we will draw a comparison between 

P1and P2 by Akaike information criterion (AIC). The AIC is 
defined by  

( ) mlikelihoodlogAIC 2max2 +−×−= ,  
where  is the number of unknown model parameters. The 
AIC is frequently used in engineering and statistics literature 

m
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Fig. 5  product’s reliability 

 
to give a guideline for a model selection. When there are 
several potential models available, the one with the smallest 
AIC among them can be selected as a good fitting model. 
Table 4 lists the AIC of P1 and P2 for the two cracks. From 
Table 4, we can see that P2 has smaller AIC for both of the 
two cracks. So we think that P2 can fit the data better and it is 
more rational to estimate the product’s reliability by P2. 
 

Table 4 the AIC of P1 and P2 for the two cracks 
Process Cracks AIC 

Crack A 190.45 P1 
Crack B 213.24 
Crack A 177.36 P2 
Crack B 210.73 

 
 In this section, we present an example to validate the 
bivariate degradation model based on Gamma process. From 
the example, we can see that Bayesian MCMC method is an 
effective method to estimate the parameters of such 
complicated model. Comparing the reliability in Fig. 3-5, we 
believe that the results estimated from Gamma process with a 
time scale transformation are more rational. So Gamma 
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process with a time scale transformation is the better choice 
for this example. Moreover, the product is considered failed 
if one of the two cracks size exceeds the threshold value. That 
means the two cracks can be regarded as a series system, so 
the reliability of the product should be decided by the crack A. 
Fig. 3-5 shows that the consequences of reliability estimation 
are consonant with this conclusion. 
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