
 

 

 

 

Abstract—This paper studies the optimal collision avoidance 

strategies in a close proximity coplanar cooperative encounter 

between two participants with unequal turn capabilities.  The 

synthesis of optimal control is presented in the form of 2D 

diagram with dispersal curves partitioning the plane of the 

initial relative positions into sub-regions of initial positions for 

different optimal strategies. To resolve the non-uniqueness of 

the optimal strategies associated with the dispersal curves, we 

introduce the maneuver time as an additional performance 

criterion. We show that while the optimal strategies that start at 

the dispersal point often have identical maneuver time for a 

classical problem of collision avoidance of identical participants, 

this is no longer the case when the participants have unequal 

turn capabilities. We show that a unique strategy with smaller 

maneuver time can be identified based on the non-dimensional 

parameter of the problem. Efficient numerical algorithms for 

calculation of the maneuver time for optimal strategies are also 

presented. The results in this paper are applicable in aviation, 

ship collision avoidance and robotics.  

 
Index Terms — Close proximity, Collision avoidance, 

Cooperative maneuvers, Dispersal curves, Mayer problem, 

Maneuver time, Optimal control,  Pontryagin maximum 

principle, Unequal turn rates. 

 

I. INTRODUCTION 

  Close proximity encounters (i.e., where the participants 

are sufficiently close in space and time to be of operational 

concern) can occur in many applications in aviation, 

navigation and robotics. For such situations, the maximization 

of terminal miss distance (which is a minimal distance 

between the participants during the maneuver) is an adequate 

and important objective [1]-[5]. The coplanar close proximity 

encounter between two aircraft (ships) was first studied by 

Merz [1], [2] (and a rigorous analysis is given in [3]) who 

presented the synthesis of the optimal control for identical 

aircraft (ships) in the form of 2D diagram. The Merz solution 

partitions the plane of the initial relative positions of the 

aircraft into two half-planes. In one half-plane, the relative 

distance is decreasing (converging). For the other half-plane, 

divergence (increase in relative distance) occurs.  The 
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convergence half-plane is further partitioned into the three 

sub-regions corresponding to the initial relative positions for 

different optimal strategies. Such diagram establishes the 

optimal collision avoidance strategy for both participants 

based on their initial relative position and orientation and 

presents an important tool for setting and validating the traffic 

rules. Recently, earlier analyses have been extended to the 

case of participants with unequal turn capabilities [4], [5]. It 

has been shown that the case of identical participants studied 

by Merz presents a degenerate case of this more general 

situation. 

This paper continues the study in [4], [5] and focuses on the 

dispersal curves for the case of participants with unequal turn 

rates. Dispersal curve (which is a planar case of dispersal or 

singular surface in differential games theory [6]) separates the 

regions of different optimal strategies. Such curve presents a 

locus of the initial positions for which optimal solution is not 

unique (i.e. there are two optimal strategies that result in the 

same terminal miss distance). Dispersal curve therefore 

involves conflicting decisions by the participants as to which 

of two equally optimal paths to take. In the case of coplanar 

close proximity encounter, there is also a triple point present, 

where the three optimal strategies result in the same terminal 

miss distance. This paper introduces an additional 

performance criterion that can be used to select a unique 

optimal strategy that originates at a dispersal point or the 

triple point. Such a criterion is the maneuver time. This 

criterion is not only important in a theoretical sense as a 

measure of efficiency but also in a practical sense as an input 

to the flight management system / autopilot system design. 

The analysis in this paper is based on the Pontryagin 

maximum principle for a Mayer problem. Main results of the 

paper can be summarized as follows. We show that while for 

the case of identical participants the maneuver time of two 

optimal strategies originated at the dispersal point is often 

identical, this is not the case for participants with unequal turn 

capabilities. We show that a unique strategy for non-identical 

participants can be selected if the maneuver time is 

considered as an additional performance criterion. A simple 

analytic characterisation of the unique strategy with smaller 

maneuver time is established. Efficient numerical algorithms 

for calculation of the maneuver time are also presented. Due 

to the page limit, only the RR-LL dispersal curve and the 

triple point are considered, but it is straightforward to extend 

the analysis to the other dispersal curves. 
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II. OPTIMIZATION PROBLEM 

As common for close proximity encounter models [1]-[5], 

the underlying assumption is that the linear speeds of the 

participants are constant. The maximization of the terminal 

miss distance is adopted as a performance criterion. 

 The nondimensional equations of motion of two 

participants with equal linear speeds but unequal turn 

capabilities in the moving polar coordinate system are [1]-[5] 

1

1 2

cos cos( )

[sin sin( )] / ( , ),r f u       (1)  

where ( , , )T r ; , ,r specify the non-dimensional 

instantaneous relative distance between the participants and 

the instantaneous angles defining the relative direction of 

their motion (see Fig. 1),  
min
1: / ,r r R  

min
1R  is the lower 

bound on the turn radius of the first participant; 1 2, are 

the non-dimensional angular speeds of the participants scaled 

so that they are contained in the interval [-1, 1], with positive 

values corresponding to the right turns (from the point of view 

of the participant), and negative values corresponding to the 

left turn, 
max

1 1 1/ ,  
max

2 2 2/ ,  where 1 2, are 

the angular speeds, 
max max
1 2,  are the physical bounds on 

the angular speeds of the participants; is the 

nondimensional parameter of the problem, 

max max
2 1/ 0.  The derivatives with respect to the 

non-dimensional time 
max
1( : )t t t are denoted with dots. 

The domains for the variables , are defined as 

, 0 2 .                   

The system of ordinary differential equations (1) can be 

viewed as a control system with the state vector 

( , , )T r and control function 1 2( , ),Tu   

2: [0, ] ; , [ 1,1] [ 1,1].u T U U R U  

The non-dimensional maneuver time T  (also known as the 

terminal time) is defined as the time to closest approach 

between the participants.  It is defined by the conditions 

( ) 0,r T ( ) 0 for [0, ].r t t T       (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective is to maximize the terminal miss distance 

( , ) Tt T
u r r  over all admissible controls. Thus, the 

performance index is a function of the terminal time only. As 

the terminal time T  is unknown, the problem can be 

considered as a Mayer problem with free terminal point. 

It is easy to see that the first equation of (1) together with 

the first of conditions (2) yield two possible terminal 

conditions: 

1. 0
T

;                                                                  (3)                                                                                                                                           

2. .2/,2/
TTTT

                                  (4)                                                                                                         

III. NECESSARY CONDITIONS FOR OPTIMALITY 

     The Hamiltonian function in the polar coordinate system is 

given by: 

1 2

1

( , , ) ( , )

[ cos cos( )] ( )

{ [sin sin( )] / },

T

r

H u f u

r

         (5) 

where the adjoint variables ( , , )T
r  satisfy the 

equations H , that is 

2[sin sin( )] /

(sin sin( )) [cos cos( )] /

sin( ) cos( ) /

r

r

r

r

r

  (6)                               

with boundary conditions ( ) ( ( ), ) [1, 0, 0]TT T u .     

Using the Pontryagin Maximum Principle [7], it can be 

shown ([3], [4]) that the terminal conditions (3) and (4) yield 

two types of possible optimal strategies: 1) terminal condition 

(3) corresponds to  1
21

 (the participants are 

turning with maximum possible angular speed in opposite 

directional sense). We will call such strategies right-left (RL) 

and left-right (LR) strategies, where the first letter indicates 

the strategy of the first participant (located in the origin of 

Fig.1); 2) terminal condition (4) results in 1
21

 (both 

participants are turning with the maximum possible angular 

speed in the same directional sense). Such strategies will be 

called right-right (RR) and left-left (LL) strategies. 

Using the transformation of variables 22 yxr , 

,sin xr yr cos , (1) can be re-written in the Cartesian 

coordinates and presented  in terms of backward (retrograde) 

derivatives as   

1 1 1 2sin , 1 cos , ,x y y x    (7)                                                   

where circles denote the derivative with respect to  

( T t ). 

Solving (7) subject to the boundary conditions 

0
,Tx x   

0
,Ty y  and one of the two terminal 

conditions (3), (4) yields the following two cases: 

 

Case I.  0
T

, 1
21

. This case corresponds to 

the RL and LR strategies. The solution of (7) is given by 

Figure 1: Schematics of the coplanar 

encounter in the moving coordinate system 
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1 1

1 1

1 1

1

(1 ) for 1,

2 (1 ) for 1,

sin( ) [1 cos[(1 ) ] /

(1 )cos / ],

cos( ) (1 )sin /

sin[(1 ) ] / ,

T T

T T

x r

y r

      (8)               

where subscript “T” refers to the terminal instant. For T , 

(8) describes the locus of the initial conditions  

),(
0000 tt

yyxx and takes the form 

For :1
1

              

2
0 0 0

2 2
0 0 0

{ 1 cos / (1 )cos[ / (1 )] / }

{ (1 )sin[ / (1 )] / sin / } ,T

x

y r
          (9) 

For :1
1

                 

0 0

2
0 0 0

2 2
0

{ (1 )cos[( 2 ) / (1 )] / 1

cos / } { (1 )sin[( 2 ) / (1 )] /

sin / } .T

x

y

r

    (10) 

                          

Case II.  ;2or22
TTTT

 1
21

. This 

case corresponds to the RR and LL strategies. The solution of 

(7) takes the form 

1

1

1 1 1

1 1 1

1 1 1

(1 ) ,

cos( ) sin

{sin( ) sin[ (1 ) ]} / ,

sin( ) cos( ) /

(1 cos ) cos[ (1 ) ] / .

T

T T

T T

T T T

T

y r

x r

    (11)                               

For T  we have ,)1(
10 T

T and the two 

branches of the initial conditions for the state variables 

),( yx are given by: 

For 2/
TT

:

2 2
0 1 0 0 1 0

2
0 1

1 0 1

[ (1 cos / )] ( sin / )

2 2cos[ (1 ) ] /

2 (1 1/ )sin[( (1 ) ) / 2],

T

T

x y

r T

r T

               (12)    

For 2/
TT

: 

2 2
0 1 0 0 1 0

2
0 1

1 0 1

[ (1 cos / )] ( sin / )

2 2cos[ (1 ) ] /

2 (1 1/ )sin[( (1 ) ) / 2].

T

T

x y

r T

r T

              (13) 

IV. DISPERSAL CURVES AND SYNTHESIS OF OPTIMAL 

CONTROL 

In order to select the optimal trajectories from the sets of 

extremals (8), (11), one should: (a) select the trajectories such 

that the distance between the participants decreases on the 

time interval ],0[ Tt ; (b) amongst such trajectories, select 

those that maximize the performance criterion (the terminal 

miss distance). These steps are discussed in details in [4]. The 

synthesis of optimal control was also constructed there. 

Firstly, we summarize several results from [4] that are useful 

for the analysis in this paper.    

Property 1 For 
0

0 , possible optimal strategies are 

right-right (RR), left-left (LL) and right-left (RL) strategies.  

For 2
0

, possible optimal strategies are 

right-right(RR), left-left  (LL) and left-right (LR) strategies;  

Property 2 For given 0,Tr (
0

0 ) and , the locus 

of the initial relative positions for optimal trajectories 

consists of the arcs of the loci of the initial positions for the 

RR strategy (13) ( 1
1

), the LL strategy (12) ( 1
1

) and 

the RL strategy (9). A point of simultaneous intersection of 

these loci is called a triple point. For 
tp

T Tr r (where 
tp
Tr is 

the terminal miss distance at the triple point), the locus of the 

initial relative positions for optimal strategies consists of the 

arcs of the loci for the RR and the LL strategies (13) and (12) 

only. The points of intersection of these loci are called 

dispersal points;   

Property 3 A straight line passing through the origin 

with )2/tan(tan
0

 represents the locus 
0

0
t
r . It 

divides the plane of the initial relative positions ( , )x y  into 

the two half-planes of instantaneously diverging and 

converging distance between the participants at the 

beginning of the maneuver;  

Property 4 The half-plane of converging relative distance 

can be further partitioned into 3 sub-regions of initial relative 

positions for three optimal strategies, with dispersal curves 

separating the sub-regions of different optimal strategies;   

 Property 5 Straight lines passing through the origin with 

0 1 1tan tan{[ (1 ) ] / 2}, 1,
t T

T        (14) 

represent the loci 0
t T
r  for the RR and the LL strategies. 

We call these lines the RR and LL loci of terminal relative 

positions. For given 0  and , the trajectories that start on 

the loci of the initial conditions for the RR or LL strategies 

(12), (13) end on  lines (14).  

     The synthesis of optimal control for participants with 

unequal turn capabilities can be presented as a 2D diagram 

(similar to that first presented by Merz for identical 

participants) that partitions the plane of the initial relative  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

Figure 2: Synthesis of optimal control diagram,  

0 5 / 6; 1.  
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positions into the sub-regions of different optimal strategies 

(Fig.2 ). 

     While Fig. 2 shows the synthesis of optimal control 

diagram for the case of identical participants, the structure of 

synthesis for non-identical participants is similar. The regions 

of initial relative positions for the RR, LL and RL optimal 

strategies (called RR, LL and RL loci respectively) are 

separated by the dispersal curves. For 00 , there are 3 

dispersal curves: the RR-LL dispersal curve, the RL-LL and 

the RL-RR dispersal curves. A triple point (i.e. the point on 

the plane of initial relative positions such that  the RR, LL and 

RL strategies started at this point result in the same terminal 

miss distance) is also illustrated in Fig. 2.  

     In what follows, we only consider the case  00   for 

the sake of brevity. To find the triple point, one needs to find 

the point of intersection of the loci of the initial relative 

position for the LL strategy (12), the RR strategy (13) and the 

locus of the initial relative positions of the RL strategy (9). 

Thus, one needs to satisfy the conditions 

/2 /2

/2 /2

/2

/2

( ) ( ) ,

( ) ( ) ,

( ) ( , ),

( ) ( , ),

T T T T

T T T T

T T

T T

tp tpLL RR
LL RR

tp tpLL RR
LL RR

tp tp tpLL RL
LL T T

tp tpLL TP RL
LL T T

x T x T

y T y T

x T x r

y T y r

       (15) 

where 
tp
LLT   and 

tp
RRT  are the maneuver times for the LL and 

the RR strategies at the triple point respectively, 
tp
Tr  and 

tp
T  

are the terminal miss distance and the terminal relative 

bearing at the triple point respectively. Conditions (15) can be 

reduced to the system of three trigonometric equations 

0 0

0

0 0

0 0

0

0 sin(( ) / 2) 2cos /

sin(( ) / 2) cos 2

cos [cos( ) cos( )] / ,

0 cos(( ) / 2) 2sin /

cos(( ) / 2) sin

tp tp tp
LL LLT

tp tp tp tp
RR RR LLT

tp tp tp
RR LL RR

tp tp tp
LL LLT

tp tp tp tp
RR RR LLT

r T T

r T T T

T T T

r T T

r T T T

0 0

2
0

2
0 0

0

0

sin [sin( ) sin( )] / ,

( ) { sin(( ) / 2) cos 2

cos( ) / ( 1)cos( / (1 )) / }

{ cos(( ) / 2) sin 2

sin( ) / ( 1)sin[

tp tp tp
RR LL RR

tp tp tp tp tp
LL LL LLT T

tp
LL

tp tp tp tp
LL LL LLT

tp
LL

T T T

r r T T T

T

r T T T

T 2
0 / (1 )] / } ,

(16) 

with the unknowns  ( , , )
tp tp tp
LL RR TT T r . The initial guesses for 

the unknowns are obtained from the corresponding values for 

identical participants (  = 1) [4] 

,1 ,1 0

,1
0

2sin( / 2)
arccos ,

[ 2sin( / 2)]

tp tp
LL RR tp

T

T T
r

     (17) 

2
,1 0

0 0

(1 cos( / 2))

sin( / 2) cos( / 2) 1

tp
Tr .                 (18) 

Equations (16) are solved incrementally, starting with =1, 

until the value of interest is reached, updating the initial guess 

at each step. Using the calculated values ( , , )
tp tp tp
LL RR TT T r , the 

coordinates of the triple point can then be computed from one 

of the equations (15). 

     We now consider the RR-LL dispersal curve for given 

values of 0  and . This dispersal curve is of a special 

importance for a close proximity encounter as it corresponds 

to smaller relative distances between the participants (Fig. 2). 

To find the RR-LL dispersal point, one needs to find a point of 

intersection of the loci of initial relative position for the LL 

strategy (12) and of the loci of initial relative positions for the 

RR strategy (13). Thus, for a given Tr , one needs to find the 

maneuver times LLT  and RRT  for the LL and RR strategies 

so that 
/2 /2

( ) ( ) ,
T T T T

LL RR
LL RRx T x T    

/2
( )

T T

LL
LLy T

/2
( )

T T

RR
RRy T . These conditions 

can be written as the system of two trigonometric equations 

with the unknown maneuver times ( , )LL RRT T  

0 0

0

0 0

0 1 0

0

0 0

0 sin(( ) / 2) 2cos /

sin(( ) / 2) cos 2

cos [cos( ) cos( )] / ,

0 cos(( ) / 2 ) 2sin /

cos(( ) / 2) sin sin

[sin( ) sin(

T LL LL

T RR RR LL

RR LL RR

T LL LL

T RR RR LL RR

LL RR

r T T

r T T T

T T T

r T T

r T T T T

T T )] / 2.

 (19) 

The initial guesses for LLT  and RRT  can be obtained from 

the solution for identical participants (17). To construct a 

dispersal curve, one needs to solve (19) incrementally for the 

value of Tr   between 0 and
tp
Tr . Once the maneuver times are 

found from (19), the RR-LL dispersal curve can be 

constructed using equations for either of the RR or LL loci of 

the initial relative positions. 

To find the RL-LL dispersal point, one needs to find a point 

of intersection of the loci of initial relative positions for the 

LL strategy (12) and the loci of initial relative positions for 

the RL strategy (9), that is 
/2

( ) ( , ),
T T

LL RL
LL T Tx T x r  

/2
( )

T T

LL
LLy T   ( , )RL

T Ty r . These conditions can be 

reduced to a single trigonometric equation in LLT  

2
0

2
0 0

0

2
0 0

{ sin[( ) / 2] 2 cos

1 (1 )
cos( ) cos[ / (1 )]}

{ cos[( ) / 2] sin

1 (1 )
sin( ) sin[ / (1 )]} .

T T LL LL LL

LL

T LL LL LL

LL

r r T T T

T

r T T T

T

  (20) 

The RL-RR dispersal point can be calculated in a similar 

manner by finding a point of intersection of the loci of initial 

relative  positions for the RL (9) and the RR (13) strategies, 

which can be reduced to solving a single trigonometric 

equation with the unknown RRT  

2 0
0

2
0 0

( ) 1
{ sin cos( )

2

2 (1 )
cos cos[ / (1 )] cos }

RR RR
T T RR

RR

T T
r r T

T

 

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

0
0

2
0 0

( ) 1
{ cos sin( )

2

2 (1 )
sin sin[ / (1 )] sin } .

RR RR
T RR

RR

T T
r T

T

 (21) 

Equations (20) and (21) are solved iteratively, starting with 

the value of the terminal miss distance at the triple point 
tp

T Tr r  and using  
tp

LL LLT T  (or 
tp

RR RRT T ) for a 

given 0  and  as an initial guess. The value Tr is then 

increased incrementally, while updating the initial guess for 

LLT  (or RRT ) at each step.  

V. MANEUVER TIMES FOR STRATEGIES THAT START AT THE   

DISPERSAL OR TRIPLE POINT                                                                                                                                                

Dispersal curves can be viewed as the loci of the initial 

relative positions that deliver a non-unique optimal solution. 

This poses a problem in practical applications. By 

recognizing that, in the interest of efficiency of conflict 

resolution, a shorter maneuver time may be preferable, we 

now compare the competing strategies in order to identify the 

strategy that takes shorter time to implement. The maneuver 

times , ,LL RRT T as applicable for the strategies that originate 

at the RR-LL, RL-LL or RL-RR dispersal points, can be 

computed from (19), (20) and (21) respectively. The 

maneuver time for the strategies that originate at the triple 

point can be computed from (16). The maneuver time for RL 

strategy RLT  is given by simple formula 0 / (1 )RLT  

(see first equation of (8)). 

A. Identical Participants 

Firstly, we consider the case of identical participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

Proposition 1 For identical participants ( 1 ), the RR and 

LL strategies, that start at the RR-LL dispersal point with a 

given terminal miss distance Tr ,  have identical maneuver 

times given by 

0 0arccos{2sin( / 2) / [ 2sin( / 2)]}.LL RR TT T r  (22) 

At the triple point, the maneuver times for RR and LL 

strategies are identical, while the maneuver time for RL 

strategy always exceeds that for RR and LL strategies for 

00 . 

Proof For the case of identical participants, the RR-LL 

dispersal curve is a straight line normal to the line 
0

0
t
r  

(which is called a zero range rate line in [3]). The RR and LL 

loci of terminal positions in this case coincide with the locus 

0
0.

t
r  For a given Tr , the RR and LL trajectories are the 

arcs of the circles that are symmetric relative to the RR-LL 

dispersal curve with centers on the zero range rate line (see [3] 

for details) and with a radius 0( ) 2sin( / 2).T TR r r  

Simple geometric considerations give 

0 0

cos( ) cos( ) [ ( ) ] / ( )

2sin( / 2) / [ 2sin( / 2)],

LL RR T T T

T

T T R r r R r

r
       (23) 

which proves (22) . 

     It follows from (17), (18) and the first equation of (8) that 

the maneuver time for RL strategy is larger than the maneuver 

time for RR (or LL) strategy if 

0 0 0

0

[1 cos( / 2)] / [(sin( / 2) cos( / 2) 1]

2 tan( / 2) 0
     (24) 

It is straightforward to show that inequality (24) is valid for 

00   

     The above results are illustrated in Fig.3, where the 

dispersal curves and the optimal trajectories for collision 

avoidance of identical participants are shown for 0 2 / 3 . 

Note that in case of identical participants the locus 

0
0

t
r coincides with the loci of terminal relative positions 

for both RR and LL strategies, and we can see in Fig. 3 that 

the optimal RR and LL trajectories end on this locus. For the 

strategies that start at the triple point, the circle of terminal 

relative position for RL strategy is shown with a dotted line.  

 

B. Participants with Unequal Turn Capabilities 

For the case of participants with unequal turn capabilities, 

the symmetry inherent in the case of identical participants is 

lost and the maneuver times for strategies originated at the 

dispersal point are never the same. 

The maneuver times for RR and LL strategies starting at the 

RR-LL dispersal point are plotted in Fig.4 as functions of  

for 0 2 / 3, 1Tr . We can see that the LL strategy takes 

longer to complete than the RR strategy for 1 , while the 

opposite is true for 1 . The maneuver times coincide 

for 1 . Extensive numerical calculations show that such a 

relationship between the maneuver times for the RR and LL  

 

 

 

 

Figure 3: Dispersal curves and optimal trajectories, 

0 2 / 3;  1;  1 and 2 are RR and LL optimal 

trajectories that start on the RR-LL dispersal point 

with 0.3,Tr  0.55LL RRT T ; 3, 4 and 5 are RR, 

LL and RL trajectories respectively that start at the 

triple point with 0.683,
tp
Tr  

0.771, 1.047LL RR RLT T T . 
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strategies, that start at the RR-LL dispersal point, is typical 

when 00 .  

     Figures 5 and 6 show the RR-LL dispersal curves and the 

trajectories that start on these curves for 1  and 1  

respectively. Note that for non-identical participants the locus 

0
0

t
r does not coincide with the loci of the terminal 

positions for the RR and LL strategies. Note also different 

behaviour of the loci of terminal positions and the trajectories 

for 1  and 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. CONCLUSIONS 

 This paper shows that the issue of non-uniqueness of the 

optimal strategy starting at the dispersal point can be resolved 

for the case of participants with non-equal turn capabilities if 

the maneuver time is considered as an additional performance 

criterion. We prove that for identical participants the 

maneuver times for the strategies starting at the RR-LL 

dispersal point (including the triple point) are equal, while the 

RL strategy started at the triple point always takes longer to 

complete than the RR or LL strategies. For participants with 

unequal turn capabilities, the LL strategy takes longer to 

complete than the RR strategy for 1 , while the opposite is 

true for 1 . 
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Figure 4: Non-dimensional maneuver times for LL 

(solid line) and RR (dashed-dotted line) strategies, that 

start at the RR-LL dispersal point, as functions of ; 

0 2 / 3, 1Tr .  

Figure 5: Dispersal curves and optimal trajectories 

for 0 5 / 6; 4 ; 1 and 2 – RR and LL 

optimal trajectories that start on the RR-LL 

dispersal point with 0.6,Tr  

0.4302, 0.3742LL RRT T . 

Figure 6: Dispersal curves and optimal trajectories 

for 0 5 / 6; 0.5 , 1 and 2 – RR and LL optimal 

trajectories that start on the RR-LL dispersal point with 

0.6,Tr  0.8166, 0.8599LL RRT T . 
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