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Abstract—This is the first series of research papers to define 

multidimensional matrix mathematics, which includes 

multidimensional matrix algebra and multidimensional matrix 

calculus.  These are new branches of math created by the author 

with numerous applications in engineering, math, natural 

science, social science, and other fields.  Cartesian and general 

tensors can be represented as multidimensional matrices or vice 

versa.  Some Cartesian and general tensor operations can be 

performed as multidimensional matrix operations or vice versa.  

However, many aspects of multidimensional matrix math and 

tensor analysis are not interchangeable.  Part 1 of 6 defines 

multidimensional matrix terminology, notation, representation, 

and simplification.   

 
Index Terms—multidimensional matrix math, 

multidimensional matrix algebra, multidimensional matrix 

calculus, matrix math, matrix algebra, matrix calculus, tensor 

analysis 

 

I. INTRODUCTION 

  This paper defines a new branch of mathematics called 

multidimensional matrix mathematics and its new subsets, 

multidimensional matrix algebra and multidimensional matrix 

calculus, all three of which were created by the author, Ashu 

M. G. Solo.  This is his first research paper on 

multidimensional matrix mathematics, multidimensional 

matrix algebra, and multidimensional matrix calculus.  More 

advanced research papers by Solo on multidimensional 

matrix math, multidimensional matrix algebra, and 

multidimensional matrix calculus will soon be published.  

This paper also shows some applications of multidimensional 

matrix math. 

 The classical matrix mathematics [1] that engineering, 

math, and science students are usually introduced to in college 

deals with matrices of one or two dimensions.  

Multidimensional matrix math extends classical matrix math 

to any number of dimensions.  Hence, classical matrix math is 

a subset of multidimensional matrix math.  The classical 

matrix math taught to many undergraduate college students 

consists of matrix algebra and matrix calculus whereas 

multidimensional matrix math consists of multidimensional 

matrix algebra and multidimensional matrix calculus.  To 

distinguish between the former subjects and latter subjects, 

matrix math, matrix algebra, and matrix calculus will 
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henceforth be referred to as classical matrix math, classical 

matrix algebra, and classical matrix calculus, respectively.  

The acronyms CMM, CMA, and CMC, respectively, can be 

used for these three subjects.  The acronyms for 

multidimensional matrix math, multidimensional matrix 

algebra, and multidimensional matrix calculus are MMM, 

MMA, and MMC, respectively.  However, for the sake of 

clarity, these acronyms are not used throughout the text of this 

research paper.  Classical matrix algebra is a subset of 

multidimensional matrix algebra.  Classical matrix calculus is 

a subset of multidimensional matrix calculus.  Therefore, 

classical matrix algebra and classical matrix calculus are 

sub-subsets of multidimensional matrix math.  The 

relationships between multidimensional matrix math, 

multidimensional matrix algebra, multidimensional matrix 

calculus, classical matrix math, classical matrix algebra, and 

classical matrix calculus are illustrated in Fig. 1. 

 

 
Fig. 1.  Relationships between MMM, MMA, MMC, CMM, 

CMA, and CMC. 

 

 Some aspects of multidimensional matrix math and tensor 

analysis [2] are interchangeable.  A vector or second order 

tensor can be represented as a classical matrix, and a classical 

matrix can be represented as a vector or second order tensor.  

Similarly, a Cartesian or general tensor of any order can be 

represented as a multidimensional matrix, and a 

multidimensional matrix with any number of dimensions can 

be represented as a Cartesian or general tensor.  Some vector 

or second order tensor operations can be performed as 

classical matrix math operations, and some classical matrix 

operations can be performed as vector or second order tensor 

operations.  Similarly, some Cartesian and general tensor 

operations can be performed as multidimensional matrix math 

operations, and some multidimensional matrix math 

operations can be performed as Cartesian or general tensor 

operations.  This is shown in this research paper. 

 Many aspects of multidimensional matrix math and tensor 

analysis are not interchangeable.  Some vector or second 

order tensor operations cannot be performed as classical 

matrix math operations, and some classical matrix operations 
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cannot be performed as vector or second order tensor 

operations.  Similarly, some Cartesian and general tensor 

operations cannot be performed as multidimensional matrix 

math operations, and some multidimensional matrix math 

operations cannot be performed as Cartesian or general tensor 

operations.  This is shown in this research paper. 

 Like classical matrix math offers many benefits not present 

in tensor analysis for a first or second order tensor, 

multidimensional matrix math offers many benefits not 

present in tensor analysis for tensors of any order.  This is 

obvious from the description of multidimensional matrix 

math in this research paper.  Similarly, like tensor analysis for 

a first or second order tensor offers many benefits not present 

in classical matrix math, tensor analysis for tensors of any 

order offers many benefits not present in multidimensional 

matrix math.   

 The extension of classical matrix math to any number of 

dimensions has numerous applications in many branches of 

engineering, math, natural science, social science, and other 

fields.  A few applications are described below.  Indeed, Solo 

needed a multidimensional matrix math for representing the 

summation of quadratic terms using multidimensional 

matrices, as described in this series of research papers, to 

eliminate redundant terms and hence developed this new 

branch of mathematics.  Furthermore, Solo has developed 

other applications of multidimensional matrix math that could 

not be done without his multidimensional matrix math. 

 Part 1 of 6 defines multidimensional matrix terminology, 

notation, representation, and simplification.   

 

II. MULTIDIMENSIONAL MATRIX NOTATION 

With multidimensional matrices, instead of simply 

referring to rows and columns, one refers to dimension 1, 

dimension 2, dimension 3, and so on or the first dimension, 

second dimension, third dimension, and so on.  The odd 

dimensions of a multidimensional matrix correspond to rows 

and the even dimensions correspond to columns.   

 The number of elements in each of an unlimited number of 

dimensions can be represented using different variables for 

each dimension.  If a multidimensional matrix has s elements 

in its first dimension, t elements in its second dimension, u 

elements in its third dimension, and v elements in its fourth 

dimension, it is said to be an s * t * u * v matrix or an s by t by 

u by v matrix.  Throughout this research paper, the variable s 

refers to the number of elements in the first dimension, t refers 

to the number of elements in the second dimension, u refers to 

the number of elements in the third dimension, v refers to the 

number of elements in the fourth dimension, w refers to the 

number of elements in the fifth dimension, and x refers to the 

number of elements in the sixth dimension.  When there is an 

indefinite number of dimensions, the number of elements in 

the final dimension will be represented by the variable z. 

 Bold uppercase letters, such as A or UNIT, refer to entire 

multidimensional matrices.  The same letters in lowercase 

with subscripted indices, such as aijk . . . q or unitijk . . . q, refer to 

individual elements within the multidimensional matrices.  To 

remain consistent with most descriptions of classical matrix 

math, commas are not used to separate individual subscripted 

indices when a single letter is used for each individual 

subscripted index.  However, if two or more letters are used 

for each individual subscripted index, then commas are 

needed to separate individual subscripted indices to avoid 

confusing the second or third letter of an index as a separate 

index.  

 The subscripted indices of a lowercase letter refer to the 

position of an element within a multidimensional matrix.  

Each successive index refers to the position within each 

successive dimension.  Throughout this research paper, the 

index i refers to the position in the first dimension, j refers to 

the position in the second dimension, k refers to the position in 

the third dimension, l refers to the position in the fourth 

dimension, m refers to the position in the fifth dimension, and. 

n refers to the position in the sixth dimension.  When there is 

an indefinite number of dimensions, the position in the final 

dimension will be represented using the index q. 

 

III. MULTIDIMENSIONAL MATRICES 

 In multidimensional matrix math, a column vector matrix is 

redefined as a one-dimensional (1-D) matrix with a dimension 

s equal to the number of elements in the column vector.  In 

multidimensional matrix math, a row vector matrix is 

redefined as a two-dimensional (2-D) matrix with dimensions 

s * t where s=1 and t is equal to the number of elements in the 

row vector.  As shown below, this redefinition is necessary, so 

that the structure of a higher dimensional matrix is evident 

from the number of elements in each dimension. 

 A 1-D matrix is a specific case of a 2-D matrix in 

multidimensional matrix math.  Both a 1-D matrix and a 2-D 

matrix are specific cases of a generalized n-dimensional 

matrix in multidimensional matrix math.   

 A submatrix is defined as a lower dimensional matrix 

within a higher dimensional matrix.  A multidimensional 

matrix is composed of multiple submatrices with less 

dimensions, as shown in the following section.  Commas are 

used to separate submatrices in each row of a 

multidimensional matrix to show that they are not multiplied 

together. 

 The term square matrix only applies to 2-D matrices where 

the number of rows s is equal to the number of columns t.  

There are no square matrices with one dimension or more than 

two dimensions. 

 

IV. MULTIDIMENSIONAL MATRIX REPRESENTATION 

 Following is a 1-D matrix with 2 elements: 

A = 
1

2

a

a

 
 
 

 

In a 2-D matrix, there are rows and columns.  If a matrix has s 

rows and t columns, it is called an s * t matrix.   

 Following is a 2-D matrix with dimensions of 3 * 3: 

B = 

11 12 13

21 22 23

31 32 33

b b b

b b b

b b b

 
 
 
  

 

 Following is a 3-D matrix with dimensions of 2 * 4 * 2: 

C = 

111 121 131 141

211 221 231 241

112 122 132 142

212 222 232 242

c c c c

c c c c

c c c c

c c c c

  
  

  
 

 
 

 
   
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This 3-D matrix consists of 2 2-D submatrices.   

 Following is a 4-D matrix with dimensions of 3 * 2 * 3 * 2: 

D = 

1111 1211 1112 1212

2111 2211 2112 2212

3111 3211 3112 3212

1121 1221 1122 1222

2121 2221 2122 2222

3121 3221 3122 3222

1131 1231

2131 2231

3131 3231

,

,

d d d d

d d d d

d d d d

d d d d

d d d d

d d d d

d d

d d

d d

   
   
   
      

   
   
   
      

 
 

 

1132 1232

2132 2232

3132 3232

,

d d

d d

d d

 
 
 
 
 
 
 
 
 
 
  
  
   
     

 

This 4-D matrix consists of 6 2-D submatrices.  Commas are 

used to separate 2-D submatrices in each row to show that the 

2-D submatrices in each row of the 4-D matrix are not 

multiplied together. 

 Following is a 5-D matrix with dimensions of 2 * 2 * 2 * 3 * 

2: 

E =  

11131 1213111111 12111 11121 12121

21131 2213121111 22111 21121 22121

11231 1223111211 12211 11221 12221

21231 2223121211 22211 21221 22221

1

, ,

, ,

e ee e e e

e ee e e e

e ee e e e

e ee e e e

e

     
     

      
 

     
           

11132 121321112 12112 11122 12122

21132 2213221112 22112 21122 22122

11232 1223211212 12212 11222 12222

21232 2223221212 22212 21222 22222

, ,

, ,

e ee e e

e ee e e e

e ee e e e

e ee e e e





     
     

      
 

     
           





 
 
 
 
 
 
 
 
 
 



 

This 5-D matrix consists of 2 4-D submatrices or 12 2-D 

submatrices.  Commas are used to separate 2-D submatrices 

in each row to show that the 2-D submatrices in each row of 

the 4-D submatrices are not multiplied together.   

 Following is a 5-D matrix with dimensions of 2 * 1 * 2 * 1 * 

2: 

F = 

11111

21111

11211

21211

11112

21112

11212

21212

f

f

f

f

f

f

f

f

   
   
    
          
 
   
   

   
           

 

This 5-D matrix consists of 2 4-D submatrices or 4 1-D 

submatrices. 

 

 

Following is a 6-D matrix with dimensions of 2 * 2 * 3 * 2 * 2 * 2: 

G = 

111111 121111 111211 121211

211111 221111 211211 221211

112111 122111 112211 122211

212111 222111 212211 222211

113111 123111 113211 123211

213111 223111 213211 22321

,

,

,

g g g g

g g g g

g g g g

g g g g

g g g g

g g g g

   
   
   

   
   
   

 
 
 

111112 121112 111212 121212

211112 221112 211212 221212

112112 122112 112212 122212

212112 222112 212212 222212

113112 123112

1 213112 223112

,

, ,

g g g g

g g g g

g g g g

g g g g

g g

g g

     
     

    
 

   
 

   
     
 

    
    
    

113212 123212

213212 223212

111121 121121 111221 121221

211121 221121 211221 221221

112121 122121 112221 122221

212121 222121 212221 222221

113121

,

,

,

g g

g g

g g g g

g g g g

g g g g

g g g g

g

 
 
 
 
 
 
 

  
  
  

   
   
   

   
   
   

111122 121122 111222 121222

211122 221122 211222 221222

112122 122122 112222 12222

212122 222122

123121 113221 123221

213121 223121 213221 223221

,

, ,

,

g g g g

g g g g

g g g g

g g

g g g

g g g g

     
     

    
 

 
 

 
   
 

    
    
    

2

212222 222222

113122 123122 113222 123222

213122 223122 213222 223222

,

g g

g g g g

g g g g

 
 
 
 
 
 
 
 
 
 
 

  
  
  
   
   
   
                 

 

This 6-D matrix consists of 4 4-D submatrices or 24 2-D submatrices. 

 

IV. REPRESENTATION OF TENSORS AS MULTIDIMENSIONAL 

MATRICES 

 In tensor analysis, a tensor of order 0 is a scalar, a first order 

tensor can be represented as a vector or 1-D matrix, and a 

second order tensor is represented as a 2-D matrix.   

 In multidimensional matrix math, a tensor of any order 

(rank) can be represented with a multidimensional matrix in 

which the order of the tensor is equal to the number of 

dimensions of the multidimensional matrix.  That is, a first 

order tensor can be represented by a 1-D matrix, a second 

order tensor can be represented by a 2-D matrix, a third order 

tensor can be represented by a 3-D matrix, a fourth order 

tensor can be represented by a 4-D matrix, and so on.  The 

multidimensional matrices are drawn as shown in section 4.   

 The components of the tensor are the elements of the 

multidimensional matrix.   
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V. MULTIDIMENSIONAL MATRIX SIMPLIFICATION 

 The two rules of multidimensional matrix simplification 

with accompanying examples follow: 

1. When the two lowest consecutive dimensions in a 

multidimensional matrix each have one element, these two 

consecutive lowest dimensions can be eliminated to create a 

simplified multidimensional matrix. 

The following 4-D matrix with dimensions of 1 * 1 * 2 * 2 

can be converted to an equivalent 2-D matrix with dimensions 

of 2 * 2: 

   

   

1 , 2

3 , 4

 
 
  

 = 
1 2

3 4

 
 
 

 

The converse of this rule is two lowest consecutive 

dimensions with one element in each can be added to a 

multidimensional matrix to create an equivalent 

multidimensional matrix. 

2. When the highest dimension of a multidimensional matrix 

has one element, this highest dimension can be eliminated to 

create a simplified multidimensional matrix. 

A 4-D matrix with dimensions of 2 * 2 * 1 * 1 can be 

converted to a 3-D matrix that looks identical with dimensions 

of 2 * 2 * 1.  This 3-D matrix can be converted to an 

equivalent 2-D matrix with dimensions of 2 * 2: 

5 6

7 8

  
  

  
 = 

5 6

7 8

 
 
 

 

The converse of this rule is that a highest dimension with 

one element can be added to a multidimensional matrix to 

create an equivalent multidimensional matrix. 

The reason a single lowest dimension with one element 

can’t be eliminated in a multidimensional matrix is because it 

would change the layout of elements in the multidimensional 

matrix to do this.  A lowest dimension with one element is 

significant because this indicates that there is a row vector in a 

multidimensional matrix.  On the other hand, a highest 

dimension with one element in a multidimensional matrix is 

not significant and it would not change the layout of elements 

in the multidimensional matrix if one or more consecutive 

highest dimensions with one element are eliminated. 

 

VI. DATA REPRESENTATION WITH MULTIDIMENSIONAL 

MATRICES 

 In addition to higher order tensors being represented as 

multidimensional matrices, multidimensional matrices have 

numerous other applications.  Two brief sample applications 

are described in this section.   

 Just like classical 2-D matrices can be used to indicate the 

x-coordinate and y-coordinate of points in 2-D space on a 

computer screen, multidimensional matrices can be used to 

indicate the positions of points in multidimensional space.   

 In the following 3-D matrix, wherever there is an element 

having a value of 1, it indicates that there is a point on a 3-D 

graph at the x-coordinate equal to the position of this element 

in the first dimension, at the y-coordinate equal to the position 

of this element in the second dimension, and at the 

z-coordinate equal to the position of this element in the third 

dimension.  Different element values could be used to 

correspond to different colors. 

1

1

1 1

1

1

1 1

1 1

1

1 1 1

1 1

1

1

1 1

1

  
  
  
  
  
  
  

  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  

  

 

 This 3-D matrix indicates that there are points at the 

following integer coordinates on the 3-D graph: 

(1, 4, 1), (2, 2, 1), (3, 1, 1), (3, 5, 1), (4, 2, 1), (5, 4, 1), (1, 1, 

2), (1, 2, 2), (3, 2, 2), (3, 5, 2), (4, 4, 2), (5, 1, 2), (5, 3, 2), (5, 

5, 2), (1, 1, 3), (1, 4, 3), (2, 5, 3), (3, 3, 3), (4, 2, 3), (4, 4, 3), 

and (5, 2, 3) 

 Multidimensional matrices can be used to store similar data 

for different organizations more effectively than classical 2-D 

matrices.  Consider the follow data for students’ standardized 

exam grades in different engineering departments at different 

universities: 

 

University of Waterloo 

 

Department of Electrical Engineering 

Student  Math Grade Physics Grade Software Eng Grade 

Joe     86      90      79 

Nancy    91      82      94 

Tim     95      90      99 

 

Department of Mechanical Engineering 

Student  Math Grade Physics Grade Software Eng Grade 

Mary    69      52      87 

Paul     93      95      97 

Tracy    81    79      82 

 

Georgia Institute of Technology 

 

Department of Electrical Engineering 

Student  Math Grade Physics Grade Software Eng Grade 

Ron     94      44      87 

Jane     91    82      85 

Tom    58      51      48 

 

Department of Mechanical Engineering 

Student  Math Grade Physics Grade Software Eng Grade 

Jenny    91      79      84 

Bob     83      69      97 

Ann     75    82      81 

 

 This data can be stored for analysis, manipulation, and 

computation in a multidimensional matrix as follows: 
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86 90 79 94 44 87

91 82 94 , 91 82 85

95 90 99 58 51 48

69 52 87 91 79 84

93 95 97 , 83 69 97

81 79 82 75 82 81

    
    
    
       
 
    
    
    
        

 

 

VII. CONCLUSION 

 Part 1 of 6 defined multidimensional matrix terminology, 

notation, representation, and simplification.   

 Part 2 of 6 defines multidimensional matrix equality as well 

as the multidimensional matrix algebra operations for 

addition, subtraction, multiplication by a scalar, and 

multiplication of two multidimensional matrices.  Also, part 2 

of 6 describes an alternative representation of the summation 

of quadratic terms using multidimensional matrix 

multiplication.  
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