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Abstract—The problem of a thermoelastic interac-
tion without energy dissipation of homogeneous and
isotropic infinite medium with a spherical cavity is
considered. Exact expressions for temperature distri-
bution, stress and displacement components are ob-
tained in Laplace transform domain for three different
cases- (i) surface is stress free and subjected a ther-
mal shock acting only for a finite period of time L. (ii)
surface is stress free and subjected to a ramp-type in-
crease in heating and (iii) surface is assumed to main-
tain the constant reference temperature T0 and sub-
jected to a ramp-type increase in boundary load. A
numerical approach is implemented for the inversion
of Laplace transform in order to obtain the solution in
physical domain. Finally numerical computations of
the stress, temperature and displacement have been
made and presented graphically.

Keywords: Eigenvalue Approach,Generalized Ther-

moelasticity,Isotropic, Laplace transform and Vector-

matrix differential Equation.

1 Introduction

The classical uncoupled theory of thermoelasticity pre-
dicts two phenomena not consistent with physical obser-
vations. The equation of heat conduction of this theory
- (i) does not contain any elastic terms, but the fact,
the elastic change produce heat effects and (ii) heat con-
duction equation is of parabolic type predicting infinite
speeds of propagation for heat waves. This amounts to
say that classical thermoelasticity predicts a finite speed
for predominantly elastic disturbances but an infinite
speed for predominantly thermal disturbances which are
coupled together. To eliminate this paradox, in 1967,
Lord and Shulman [1] formulated generalized thermoel-
sticity with one relaxation time parameter for special
case of isotropic body, using non Fourier thermal wave
model which is also known as L-S model. This theory
was extended by Dhaliwal and Sherief[2] to include the
anisotropic case.In this theory a modification law of heat
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conduction on both the heat flux and its time derivative
replaces the conventional Fourier law. Uniqueness of the
solution for this theory was proved under different con-
ditions by Ignaczak [3], [4], Sherief and Dhaliwal [5], [2]
and Sherief [6].
After five years of L-S Model, Green and Lindsay(G-L
theory) [7] introduced another generalized thermoelastic-
ity theory (with relaxation time parameter) known as
temperature rate dependent thermoelasticity from an-
other physical point of view . This theory was initiated
by Muller [8], it was further extended by Green and Laws
[9].
Green and Nagdhi [10] formulated a model of thermoe-
lasticity based on without energy dissipation of thermal
energy. This G-N theory is known as Thermoelastic-
ity Without Energy Dissipation Theory(TEWOEDT). In
the development of this theory the thermal displacement
gradient is considered as a constitutive variable, where
as in the conventional thermoelasticity the temperature
gradient is taken as a constitutive variable. The lin-
earized version of uniqueness theorem has been given by
Green and Nagdhi[11] and Chandrasekharaiah [12] in-
dependently. Recently Chandrasekharaiah [13], Chan-
drasekharaiah and Srinath [14], [15], Mukhopadhyay [16],
[17],Honig and Dhaliwal [18], Sharma and Chauhan [19],
Lahiri and Das [20] worked on thermoelastic interaction
without energy dissipation.
Most of the problems of thermoelasticity have been solved
by using thermoelastic potential function by Nowacki [21]
and Sherief [22]. Bahar and Hetnarski [23], [24] discussed
the limitations of using potential function approach, in-
troduced the state-space approach to solve the prob-
lem of coupled thermoelasticity not containing any heat
source. Many problems solved by Das and Bhakta [25],
[26], Sherief and Anwar[27], [28]. Recently Sherief[29] ex-
tended the results in Sherief and Anwar [28]to problems
with heat sources.
In this paper we consider thermoelastic infinite isotropic
medium with a spherical cavity within the context of
the theory of thermoelasticity without energy dissipation.
Laplace transform have been used in the basic equations
of thermoelasticity and finally the resulting equations are
written in the form of a Vector-matrix differential equa-
tion which is then solved by eigenvalue approach for three
different cases (i) surface is stress free and subjected to
a thermal shock acting only for a finite period of time L,
(ii) surface is stress free and subjected to a ramp-type in-
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crease in heating and (iii) surface is assumed to maintain
the constant reference temperature T0 and subjected to a
ramp-type increase in boundary load. Finally numerical
computations of the stresses, temperature and displace-
ment have been made and presented graphically.

Nomenclature

λ, μ= Lamè constants. u=Displacement components.
T= Absolute temperature. T0 = Reference temperature
chosen such that |T−T0

T0
| < 1. ρ = Mass density. cv =

Specific heat per unit mass at constant volume. Ce =
Specific heat at constant strain. t = Time variable. K
= Coefficient of thermal conductivity. γ = (3λ + 2μ)β∗.
β∗ = Coefficient of volume expansion. β= Coefficient of
stress temperature. k∗ = Material constants characteris-
tic of the theory. H(t) = Heaviside unit step function.

2 Basic Equations and Formulation of
the Problem

We now consider a homogeneous,isotropic and thermoe-
lastic infinite medium with a spherical cavity of radius
a in the absence of body force or heat source. Due to
spherical symmetry, the displacement components have
the form

ur = u(r, t), uθ = uφ = 0 (1)

The three principal stresses in the radial,cross radial and
transverse directions are σrr,σθθ and σφφ respectively.
The equation of motion in radial direction and the heat
conduction equation are as follows vide [30], [31] :

(λ + 2μ)
(

∂2u

∂r2
+

2
r

∂u

∂r
− 2u

r2

)
− γ

∂T

∂r
= ρ

∂2u

∂t2
(2)

k∗
(

∂2T

∂r2
+

2
r

∂T

∂r

)
= cv

∂2T
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+ γT0
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(
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+
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And the constitutive stress-components are given by

σrr = (λ + 2μ)
∂u

∂r
+ 2λ

u

r
− γT (4)

σθθ = σφφ = λ
∂u

∂r
+ 2(λ + μ)

u

r
− γT (5)

σrθ = σrφ = σθφ = 0 (6)

Introducing the non-dimensional notations such as

R =
r

a
, U =

(λ + 2μ)u
γT0a

, η =
v

a
t, Z =

T

T0
,

σRR =
1

γT0
σrr, σφφ =

1
γT0

σφφ, ρv2 = λ + 2μ (7)

Equations (2)-(5) becomes(
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And the non-dimensional stress-components are

σRR =
∂U

∂R
+ 2λ̄

U

R
− Z (10)

σφφ = λ̄
∂U

∂R
+ (λ̄ + 1)

U

R
− Z (11)

where

ε =
γ2T0

(λ + 2μ)cv
, C2

T =
k∗

cvv2
, λ̄ =

λ

λ + 2μ
(12)

3 Solution Procedure

Formulation of the Vector-matrix Differential
Equation

We now apply the Laplace transform defined by

[
Ū(R, p), Z̄(R, p)

]
=

∫ ∞

0

[U(R, t), Z(R, t)]exp(−pt)dt (13)

to the equation (8)-(11),we get
(

d2Ū

dR2
+

2
R

dŪ

dR
− 2Ū

R2

)
− dZ̄

dR
= p2Ū (14)

d2Z̄
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2
R

dZ̄

dR
=

p2

C2
T

Z̄ +
p2ε

C2
T

(
dŪ

dR
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(15)

σ̄RR =
dŪ

dR
+ 2λ̄

Ū

R
− Z̄ (16)

σ̄φφ = λ̄
dŪ

dR
+ (λ̄ + 1)

Ū

R
− Z̄ (17)

Since at time t=0, the body is at rest and in an unde-
formed and unstressed state i.e.initially the displacement
component along with their derivative with respect to t
are zero and maintained at the reference temperature T0,
so the following initial conditions hold.

u(r, 0) =
∂u(r, 0)

∂t
= 0 ; T (r, 0) = T0 ;

∂T (r, 0)
∂t

= 0 (18)

Using the equation (7),we get-

U(R, 0) =
∂U(R, 0)

∂η
= 0 ;

Z(R, 0) =
∂Z(R, 0)

∂η
= 0 ; Z(R, 0) = 1 (19)

Introducing the operator L ≡ d2

dR2 + 2
R

d
dR − 2

R2 and as
in Das and Bhakta [26] equations (14) and (15) can be
written as

LV = A V (20)
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Where

V =
[
U

dZ̄

dR

]T

(21)

And

A =
[

C11 C12

C21 C22

]
(22)

C=p2, C12 = 1, C21 =
p4ε

c2
T

, C22 =
p2(1 + ε)

c2
T

(23)

Solution of the Vector-matrix Differential Equa-
tion

For the solution of the Vector-matrix differential equa-
tion(20), we apply the method of eigenvalue approach as
in Das and Bhakta [26]
We substitute

V (R) = X(λ)ω(R, γ) (24)

Where λ is a scalar, X is a vector independent of R and
ω(R, γ) is a non-trivial solution of the scalar differential
equation:

Lω = 0 (25)

The solution of the above equation can be written as

ω =
1

R2
e−γR +

γ

R2
e−γR (26)

Using equations (24) and (25) in (20), we obtain

A X(λ) = λX(λ) : λ = γ2 (27)

The characteristic equation corresponding to the matrix
A can be written as

γ4 − γ2(C11 + C22) + (C11C22 − C12C21) = 0 (28)

The root(eigenvalues) of the characteristic equation (28)
are of the form γ = γ2

1 and γ = γ2
2 where

γ2
1 + γ2

2 = C11 + C22 and γ2
1γ2

2 = C11C22 − C12C21 (29)

The eigenvectors are X(γ2
j ) corresponding to the eigen-

values γ2
j can be calculated as where j = 1, 2.

Xj(γ
2
j ) =

[
X1(γ2

j )
X2(γ2

j )

]
=

[ −C12

C11 − γ2
j

]
j=1,2

(30)

The solution of equation (20) as in Das and Bhakta [26]
can be written as

V (R, p) = AX(γ2
1)(

1
R2

e−γ1R +
γ1

R2
e−γ1R)

+BX(γ2
2)(

1
R2

e−γ2R +
γ2

R2
e−γ2R) (31)

The components of the space vector V (R, p) in (20) can
be written as

U(R, p) = −AC12(
1

R2
e−γ1R +

γ1

R2
e−γ1R)

−BC12(
1

R2
e−γ2R +

γ2

R2
e−γ2R) (32)

dZ

dR
= A(C11 − γ2

1)(
1

R2
e−γ1R +

γ1

R2
e−γ1R)

+B(C11 − γ2
1)(

1
R2

e−γ2R +
γ2

R2
e−γ2R) (33)

Z = −A(C11 − γ2
1)

e−γ1R

R
− B(C11 − γ2

1)
e−γ2R

R
(34)

Where A and B are constants which are to be determined
from the boundary conditions.
Using (32) and (34) to the equations (16) and (17), we
now get

σRR = A[
C12

R
(2e−γ1R +

γ1

R
e−γ1R +2γ1e

−γ1R +
γ2
1

R
e−γ1R)

−2λC12

R3
(e−γ1R + γ1e
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1)
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R
]

+B[
C12

R
(2e−γ2R +

γ2

R
e−γ2R + 2γ2e

−γ2R +
γ2
2

R
e−γ2R)

−2λC12

R3
(e−γ2R + γ2e

−γ2R) + (C11 − γ2
1)

e−γ2R

R
]

σφφ = A[
λC12

R
(2e−γ1R +

γ1

R
e−γ1R +2γ1e

−γ1R +
γ2
1

R
e−γ1R)

− (λ + 1)C12

R3
(e−γ1R + γ1e

−γ1R) + (C11 − γ2
1)

e−γ1R

R

+B[
λC12

R
(2e−γ2R +

γ2

R
e−γ2R + 2γ2e

−γ2R +
γ2
2

R
e−γ2R)

− (λ + 1)C12

R3
(e−γ2R + γ2e

−γ2R) + (C11 − γ2
1)

e−γ2R

R
]

4 Boundary Conditions

The constants A and B are to be determined from three
different cases of boundary conditions.
Case - I
Considering the thermoelastic interactions when the sur-
face of the cavity is stress-free and kept at a temperature
F (t), then the boundary condition takes the form

(a)σrr(r, t) = 0, at r = a

(b)T (r, t) = F (t), at r = a (35)

where F (t) = T0hL(t) (36)
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where hL(t) = H(t) − H(t − L).Thus,F(t) is a thermal
shock acting only for a finite period of time equal to L.
Case - II
Now considering the surface of the cavity is assumed to
be stress-free and subjected to a ramp-type increase in
heating, then

(a)σrr(r, t) = 0, at r = a

(b)T (r, t) = T0h(t), at r = a (37)

where h(t) =

⎧⎨
⎩

0 ,t ≤ 0
t
t0

,0 < t ≤ η0

1 ,t ≥ η0

(38)

Where η0 ≥ 0 is a fixed moment of time to raise the
steady temperature T0.
Case - III
In this case the cavity surface is assumed to maintain
the constant reference temperature T0 and is subjected
to a ramp-type increase in boundary load, i.e.

(a) σrr(r, t) = −σ0h(t), at r = a

(b) T (r, t) = 0, at r = a (39)

where σ0 is a constant load.
Using equation (7) and (13), we get transformed bound-
ary conditions as follows-
From equation (35): (Case - I)

σRR(R, p) = 0, at R = 1
Z(R, p) = F (p), at R = 1 (40)

where F (p) =
T0(1 − e−pL

)
p

(41)

From equation (37) : (Case - II)

σRR(R, p) = 0, at R = 1
Z(R, p) = T0h(p), at R = 1 (42)

where h(p) =
T0(1 − e−pη0)

η0p2
(43)

From equation (39) : (Case - III)

σRR(R, p) = −σ0h(p), at R = 1
Z(R, p) = 0, at R = 1 (44)

Using the equations (34), σRR and (40),(42),(44) we get
the arbitrary constants A and B as follows -

With the help of the boundary condition (40), the
constants A and B can be determined as -

A = − GK2

(K2K3 − K1K4)
and B = − GK1

(−K2K3 + K1K4)

By the boundary condition (42) -

A = − MK2

(K2K3 − K1K4)
and B = − MK1

(−K2K3 + K1K4)

By the boundary condition (44) -

A = − QK4

(−K2K3 + K1K4)
and B = − QK3

(K2K3 − K1K4)

Where,

G =
T0(1 − e−pL

)
p

, M =
T0(1 − e−pη0)

η0p2
, Q =

(1 − e−pη0)
η0p2

K1 = C12[(2e−γ1 + γ1e
−γ1 + 2γ1e

−γ1 + γ2
1e−γ1)

−2λ(e−γ1 + γ1e
−γ1)] + (C11 − γ2

1)e−γ1

K2 = C12[(2e−γ2 + γ2e
−γ2 + 2γ2e

−γ2 + γ2
2e−γ2)]

−2λ(e−γ2 + γ2e
−γ2) + (C11 − γ2

1)e−γ2

K3 = (C11 − γ2
1)e−γ1

K4 = (C11 − γ2
1)e−γ2 (45)

5 Numerical Solution

The Laplace inversion of the expressions for the dis-
placement, temperature and stresses in space-time
domain are very complex and we prefer to develop
an efficient computer programme for the inversion of
these integral transforms. For this inversion of Laplace
transform we follow the method of Bellman, Kalaba
and Lockett [32] and choose seven values of the time
t = ti : i = 1, 2, 3, 4, 5, 6, 7 as the time range at which
the displacement, temperature and stresses are to be
determined where ti are the roots of the Legendre
polynomial of degree seven.
With an aim to illustrate the problem, we will present
some numerical results. For this purpose, numerical
computation is carried out for the material Aluminum-
epoxy composite, which has the following data given as
[33], [34]
ε = 0.073
λ = 7.59 × 1011 DyneCm−2

μ = 1.89 × 1011 DyneCm−2

ρ = 2.19 GmCm−2

Ce = 0.23 Cal/0C
K = 0.6 × 10−2 Cal/CmS0C
CT = 0.5
p0 = 1
T0 = 2980C

Concluding Remarks
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Figure 1: CaseI:Distribution of displacement vs.time

In order to study the characteristic of displacement,
temperature and stresses, we have drawn several graphs
for different values of the space variable and at times
t1 = 0.025775, t2 = 0.138382, t3 = 0.352509, t4 =
0.693147, t5 = 1.21376, t6 = 2.04612, t7 = 3.67119.
Case - I
1. Fig.(1)exhibits the variation of displacement with
time for fixed values of R, we observe that-
(i) the absolute values of displacement, stresses and
temperature gradually
increase with greater wave length as t increases.
(ii) for fixed values of time t the absolute values of
displacement, stresses and temperature decrease as R
increase.
Case - II
2. Fig.(2) exhibits the variation of stress σRR with time
for fixed value of R=0.2, we observe that -
(i) the absolute values of displacement, stresses and
temperature decrease
with an increase in η0.
(ii) the absolute values of displacement, stresses and
temperature are
maximum at t=3.0.
(iii) from fig.(8), it is clear that radial stress is
compressive for t > 2.
Case - III
3. Fig.(3)exhibits the variation of stress σφφ with R for
fixed values of times, we observe that -
(i) the absolute values of displacement, stresses and
temperature
decreases with an increase in η0.
(ii) the absolute values of displacement, stresses and
temperature
decreases with radial co-ordinate and vanishes for all
times and η0.
(iii) the radial stress is compressive.
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Figure 2: CaseII:Distribution of stress vs. time
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Figure 3: CaseIII :Distribution of stress vs.R
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