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Abstract—The steady, laminar incompressible
MHD stagnation-point flows and heat transfer with
variable conductivity of a Non-Newtonian Fluid over
a stretching sheets are analyzed for three cases of
heating conditions, namely, (i)the sheet with the con-
stant surface temperature; (ii) the sheet with the pre-
scribed surface temperature; (iii) surface temperature
with the prescribed surface heat flux. The governing
system of partial differential equations is first trans-
formed into a system of dimensionless ordinary dif-
ferential equations. The numerical solutions are pre-
sented to illustrate the influence of the various values
of the ratio of free stream velocity and stretching ve-
locity, the magnetic field parameter, Prandtl number,
the wall temperature exponent and the power-law in-
dex. These effects of the different parameters on the
velocity and temperature as well as the skin friction
and wall heat transfer are presented in tables and
graphically. The results are found to be in good agre-
ment with those of earlier investigations reported in
existing scientific literatures.

Keywords: Non-Newtonian power-law fluid, Stagna-

tion point, Stretching sheet, Surface heat flux

1 Introduction

Flow of an incompressible viscous fluid and heat trans-
fer phenomena over a stretching sheet have received great
attention during the last decades owing to the abundance
of practical applications in chemical and manufacturing
processes, such as polymer extrusion, drawing of copper
wires, continuous casting of metals, wire drawing and
glass blowing. Since the pioneering work of Sakiadis[1],
various aspects of the problem have been investigated
by many authors. Crane[2] studied a steady flow past
a stretching sheet and presented a closed form solution
to it. Following them, Gupta[3] examined the heat and
mass transfer using a similarity transformation for the
boundary layer flow over a stretching sheet subject to suc-
tion or blowing while Mahapatra and Gupta[4]studied the
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heat transfer in stagnation-point flow towards a stretch-
ing sheet. Very recently, Layek et al.[5]investigated the
stagnation-point flow of an incompressible viscous fluid
towards a porous stretching surface embedded in a porous
medium subject to suction/blowing with internal heat
generation or absorption. However, above researches
were restricted to flows of Newtonian fluids.

It’s worth mentions here that a number of industrially im-
portant fluids such as molten plastics, polymers, pulps,
foods and slurries exhibit Non-Newtonian fluid behav-
ior. Because of the growing use of the Non-Newtonian
fluid in various manufacturing and processing industries,
the study of non-Newtonian liquid films are important.
The theoretical analysis of an external boundary layer
flow of a non-Newtonian fluid was first performed by
Schowalter[6]. Zheng et al.[7] investigated the flow in
a power-law fluid over a flat plate moving at constant
speed in the direction and opposite to the direction of
the main stream. The heat transfer aspect of such prob-
lems had been considered recently by Chen[8]. Anders-
son et al.[9] had further investigated the magnetohydro-
dynamic flow over a stretching sheet of an electrically
conducting incompressible fluid obeying the power-law
model. Recently, Liao[10]–[11] obtained an accurate ana-
lytic solution of unsteady magnetohydrodynamic flows of
non-Newtonian fluids caused by an impulsively stretching
plate.

In this paper, we investigate the similarity solutions for
the steady laminar incompressible MHD stagnation-point
flows and heat transfer with variable conductivity of a
Non-Newtonian Fluid subject to a transverse uniform
magnetic field over a stretching sheets for three cases of
heating conditions, namely, (i)the sheet with the constant
surface temperature; (ii) the sheet with the prescribed
surface temperature and (iii) surface temperature with
the prescribed surface heat flux. The governing equa-
tions are transformed into nonlinear ordinary differential
equations using appropriate transformations, and then
solved by the numerical method. Numerical results for
the dimensionless velocity profiles, the temperature pro-
files, the local friction coefficient and the local Nusselt
number are presented for the various values of the ratio of
free stream velocity and stretching velocity, the magnetic
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field parameter, Prandtl number, the wall temperature
exponent and the power-law index.

2 Flow analysis

Consider the steady MHD flow of a non-Newtonian
power-law fluid near the stagnation point of a flat sheet
coinciding with the plane y = 0, the flow being confined
to y > 0. x and y are the Cartesian coordinates with the
origin at the stagnation point along and normal to the
plate, respectively. Two equal and opposite forces are
applied along the x-axis so that the local tangential ve-
locity is uw = bx, where b is a positive constant. It is also
assumed that the ambient fluid is moved with a velocity
ue = cx, where c > 0 is a constant. In this coordinate
system, the steady appropriate boundary-layer for two-
dimensional MHD flow of a power-law fluid is described
by the following equations

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ue

∂ue

∂x
+

1
ρ

(
∂τxy

∂y

)
+

σB2
0

ρ
(ue − u), (2)

u(x, 0) = bx, v(x, 0) = 0, at y = 0, (3)

u(x,∞) = ue = cx, as y → ∞. (4)

Where u and v are the velocity components along the x-
axes and y-axes, respectively. ρ is the density of the fluid,
and τxy is the shear stress. σ is the electric conductivity,
B0 is the uniform magnetic field along the y-axis. The
non-Newtonian fluid model used in this study is the power
law model with the parameters defined by

τxy = k|∂u

∂y
|n−1 ∂u

∂y
. (5)

Where k is called consistency coefficient and υ =
k
ρ |

∂u
∂y |

n−1is the kinematic viscosity. n is the power-law
index. Near the sheet, we assume that the flow field is
given by the stream function and similarity variable t as:

Ψ = x
2n

n+1 f(t), t = x
1−n
1+n y, u =

∂Ψ
∂y

, v = −∂Ψ
∂x

. (6)

Further, introducing the following dimensionless quanti-
ties and transformations

η = tb
2−n
n+1 (nν0)

−1
n+1 , g(η) =

n+1
√

b1−2n

n+1
√

nν0
f(t). (7)

Eq.(2) reduces to

|g′′|n−1g′′′ +
2n

n + 1
gg′′− (g′)2−M2

(
g′ − c

b

)
+

(c

b

)2

= 0.

(8)
The boundary conditions (3–4) may be expressed in di-
mensionless form as

g (0) = 0, g′ (0) = 1, g′ (+∞) =
c

b
. (9)

Where M2 = σB2
0

bρ is the Hartman number, d = c
b is

velocity ratio parameter.

3 Heat transfer analysis

The energy equation for the above two-dimensional
flow may be written

ρcp(u
∂T

∂x
+ v

∂T

∂y
) =

∂

∂y
(λ(x)

∂T

∂y
). (10)

Where cp is the specific heat capacity and λ(x) is the ther-
mal conductivity which is assumed to be variable here.

3.1 Constant surface temperature

In this circumstance, the boundary conditions are

T (x, 0) = Tw, T (x,∞) = T∞, (11)

where Tw is the wall temperature, T∞ is the temperature
of the fluid far from the sheet.

Introducing the following dimensionless quantities

θ1 =
T − T∞

Tw − T∞
. (12)

On using (6-7) and (12), the governing problem (10) is
transformed to

λ(x)θ′′1x
2−2n
1+n b

3−3n
n+1 n

−2
n+1 ν

−2
n+1
0 +

2n

n + 1
gθ′1 = 0. (13)

If λ(x) = k0x
2n−2
1+n , Eq.(13) can be transformed to the

ordinary differential equation, where k0 is constant. For
conciseness, define the variable

λ(x) = λ0x
2n−2
1+n b

3n−3
n+1 n

2
n+1 ν

1−n
n+1
0 ρcp,

Eq.(13) reduces to

θ′′1 + Pr
2n

n + 1
gθ′1 = 0, (14)

with boundary conditions

θ1(0) = 1, θ1(+∞) = 0, (15)

where Pr = ν0/λ0.

3.2 Prescribed surface temperature

Here, the boundary conditions are

T (x, 0) = Tw = T∞ + G(x), T (x,∞) = T∞. (16)

Where Tw is the wall temperature which is assumed to
be variable .

Introducing the following dimensionless quantities

θ2 =
T − T∞

Tw − T∞
. (17)
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On using (6-7) and (17), Eq.(10) can be written

λ(x)G(x)θ′′2x
2−2n
1+n b

4−2n
n+1 n

−2
n+1 ν

−2
n+1
0

−bρcp

(
xg′θ2G

′(x) − 2n
n+1gθ′2G(x)

)
= 0.

(18)

This equation cannot be transformed to the or-
dinary differential equation for arbitrary η unless
λ(x)G(x)x

2−2n
1+n /xG′(x) = const, xG′(x)/G(x) =

const, λ(x)G(x)x
2−2n
1+n /G(x) = const. Hence the vari-

able G(x) = Cxs and λ(x) = k0x
2n−2
1+n , where the wall

temperature exponent s are constants.

For conciseness, define the variables

λ(x) = λ0x
2n−2
1+n b

n−2
n+1 n

2
n+1 ν

1−n
1+n

0 ρcp,

Eq.(18) reduces to

θ′′2 +
2n

n + 1
Prgθ′2 − sPrθ2g

′ = 0 (19)

with boundary conditions

θ2(0) = 1, θ2(+∞) = 0. (20)

3.3 Prescribed heat flow

In the PHF case, the boundary conditions are

qw = −λ(x)
∂T

∂y
= Dxm, T (x,∞) = T∞. (21)

Where D and the surface heat flux exponent m are con-
stants, qw is the wall heat flux.

For the prescribed surface heat flux case, the dimension-
less temperature is defined as

T − T∞ = D
Pr

ρcp
n+1
√

nν0

n+1
√

xm+1+mn−nθ3(η). (22)

On using (6-7) and (22), Eq.(10) can be written

λ(x)θ′′3x
2−2n
1+n b

4−2n
n+1 n

−2
n+1 ν

−2
n+1
0

−bρcp

(
m−n+1+mn

1+n xg′θ3 − 2n
n+1gθ′3

)
= 0

(23)

if λ(x) = k0x
2n−2
1+n , Eq.(23) can be transformed to the

ordinary differential equation, where k0 is constant. For
conciseness, define the variables

λ(x) = λ0x
2n−2
1+n b

n−2
n+1 n

2
n+1 ν

1−n
1+n

0 ρcp.

Eq.(30) and the boundary conditions of (21) are trans-
formed to

θ′′3 +
2n

n + 1
Prgθ′3 −

m − n + 1 + mn

1 + n
Prθ3g

′ = 0, (24)

θ′3(0) = 1, θ3(+∞) = 0. (25)

Table 1: Comparison of f ′′(0) for several values of d with
n = 1 and M = 0.0

d Layek et al.[5] Gupta[4] Present study

0.1 -0.9601 -0.9694 -0.96944
0.2 -0.9181 -0.91812
0.5 -0.6499 -0.6673 -0.66727
0.8 -0.29939
2.0 1.9991 2.0175 2.01747
3.0 4.5011 4.7293 4.72923
5.0 11.75177

Table 2: Values of f ′′(0) for several values of d, n and M
n M d = 0.1 d = 0.8 d = 1.5 d = 3.0

0.5 0.0 -0.72022 -0.15456 1.04129 6.22805
0.5 0.5 -0.83211 -0.16668 1.06949 6.42112
0.5 1.0 -1.13807 -0.20151 1.14846 7.00117
0.5 2.0 -2.09708 -0.31897 1.19967 9.10889
0.8 0.0 -0.88311 -0.24210 0.83329 5.21930
0.8 0.5 -0.98919 -0.25663 0.86846 5.34991
0.8 1.0 -1.26500 -0.29815 0.96791 5.72804
1.5 0.0 -1.11815 -0.43016 0.68395 3.87743
1.5 0.5 -1.19727 -0.44701 0.71989 3.94097
1.5 1.0 -1.39935 -0.49276 0.82776 4.12362

4 Results and discussion

The systems of ordinary differential equations
(8),(14),(19) and (24) with the aforementioned boundary
conditions equations are solved numerically using means
of the fourth–order Runge–Kutta method and shooting
techniques until the free stream conditions are identically
satisfied. In order to verify the accuracy of our present
method, we have compared our results with those of
Layek et al.[5] and Gupta[4]. The comparisons in all the
above cases are found to be in good agreement, as shown
in Table 1.

Figs.1-2 reveal the influence of the parameter d, n on the
horizontal velocity profiles g′(η) for flows of the Non-
Newtonian fluids. Fig.1 shows the velocity profiles g′(η)
for different values of the power-law index n with d = 1.5
and M = 0.5. It is observed that the velocity pro-
files g′(η) change dramatically as n is varied. Fig.2
gives the effects of d on the velocity profiles g′(η) with
M = 1.0, n = 0.5. It is noted that the variation of
g′(η) depends on the ratio d = c/b of the velocity of
the stretching surface to that of the frictionless potential
flow in the neighborhood of the stagnation point and in-
creases with increasing of parameter d = c/b. It is also
observed that the flow has a boundary layer structure
when c/b > 1 while an inverted boundary layer is formed
for c/b < 1. Further the thickness of the boundary layer
decreases with increasing of c/b.

Figs.3-6 have been made in order to see the effects of
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Pr, n and s,m on the dimensionless temperature dis-
tributions θ1(η), θ2(η) and θ3(η). In the CST case we
plot the dimensionless temperature profile θ1(η) with
M = 0.0, n = 0.5, d = 1.5, as shown in Fig.3 for the
various values of Pr. It can be clearly seen that the
variation of θ1(η) decreases as Pr increases. As antic-
ipated, the thermal boundary layer thickness decreases
with increasing Prandtl number. In the PST case we plot
the dimensionless temperature profile θ2(η), as shown in
Figs.4-5. It is noted that the variations of θ2(η) are de-
creasing as s and n, respectively, increases. Fig.6 shows
the fluid wall temperature θ3(η)increases with increasing
Prandtl number.

Finally, we compute the dimensionless shear stress at the
wall and the wall heat flux. The computed variation of
f ′′(0) with n,M and d has been summarized in Tables
2. It shows that the dimensionless shear stress f ′′(0)
increases as d increases with all other parameter fixed.
On the other hand, the variation of |f ′′(0)| increases with
increasing the magnetic field parameter. Also, the wall
temperature |θ′2(0)| in PST case is increased as a result
of the applied magnetic field as shown in Table.3. The
effect of the power-law index is found to decrease both the
dimensionless shear stress f ′′(0) and the wall temperature
θ2(0) in CST case.

5 Conclusions

In this paper, we investigate the similarity solutions for
the steady laminar incompressible MHD stagnation-point
flows and heat transfer with variable conductivity of a
Non–Newtonian Fluid subject to a transverse uniform
magnetic field over a stretching sheets for three cases of
heating conditions, namely, (i)the sheet with the constant
surface temperature; (ii) the sheet with the prescribed
surface temperature; (iii) surface temperature with the
prescribed surface heat flux. The following observations
have been made from the present analysis.

(1) The flows of Non-Newtonian fluids have a boundary
layer structure when c/b > 1 while an inverted boundary
layer is formed for c/b < 1. As expected, boundary layer
thickness decreases by increasing c/b.
(2) The horizontal velocity profile g′(η) increases with in-
creasing of parameter d = c/b, n,M .
(3) The temperature profiles θ1(η) for the CST case and
θ2(η) for the PST case decrease as Pr increases. However,
the temperature profiles θ3(η) for the PHF case increases
with increasing Prandtl number.
(4) The variation of θ2(η) is decreasing for Pr, s and n.
(5) The magnitude of the wall shear stress f ′′(0) increases
as d increases. The variations of |f ′′(0)| and |θ′2(0)| in
CST case increase with increasing the magnetic field pa-
rameter. The effect of the power-law index is found to
decrease both the dimensionless shear stress f ′′(0) and
the wall temperature θ′2(0) for PST case. Also, the fluid

Table 3: Values of θ′2(0) for several values of Pr, n and
M with d = 1.5, s = 0.5

n M Pr = 0.1 Pr = 0.7 Pr = 3.5 d = 6.7
0.5 0.0 -0.34209 -0.86511 -1.86734 -2.55372
0.5 0.5 -0.34274 -0.86567 -1.87056 -2.56021
0.5 1.0 -0.34579 -0.87337 -1.88359 -2.56892
1.5 0.0 -0.41073 -1.04001 -2.22557 -3.03578
1.5 0.5 -0.41097 -1.04107 -2.23129 -3.03985
1.5 1.0 -0.41157 -1.04473 -2.23821 -3.04842

wall temperature θ′3(0) increases with increasing Prandtl
number in PHF case.
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Fig.1 Effect of power-law index for variation of g′(η) with d = 1.5
and M = 0.5.
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Fig.2 Velocity profiles g′(η) of flow for different values of d with
M = 1.0 and n = 0.5.
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