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Abstract - Subdivision algorithms for rendering of  
box spline surfaces have been independently 
developed by Boehm, Cohen, Lyche, Riesenfeld, 
Dahmen, Michelli and Prautzsch. The algorithm refine 
the control net of any box spline surface so that the 
refined control nets converge to the spline. The aim of 
this paper is to study multivariate B-splines and 
triangular spline surface. The study will consider the 
divided difference of a function  f  which can be 
expressed in terms of a multiple integral. From here, 
we give a geometric interpretation of  B-splines and  
the definition of triangular spline on uniform mesh. 
Subdivision algorithms for rendering of triangular 
spline surfaces are developed and the triangular spline 
surfaces are then generated.  
  
Key words: Subdivision algorithm, triangular spline, 
uniform mesh.  
 
 
 

1.  INTODUCTION 
 
 
Triangular polynomial patches were first considered 
by de Casteljau in Computer Aided Geometric Design 
(CAGD) (Farin, 1983), but these scarcely received 
any attention. The triangular patches were generated 
based on the Bezier polynomials defined over the 
arbitrary triangles. Sabin  used triangular patches in 
Bernstein form to construct B-splines over regular 
triangular by convolution (Sabin, 1977). Later, the B-
splines were found to be the triangular spline (de Boor 
and de Vore, 1983). Subdivision algorithms for 
rendering of triangular spline surfaces have been 
independently developed by Boehm, Cohen, Lyche, 
Riesenfeld, Dahmen, Micchelli and Prautzsch (Cohen, 
Lyche and Riesenfeld, 1984).  
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2 TRIANGULAR SPLINES ON A 3-
DIRECTION MESH 

 
 
Let  

              1 2 2, , ..., , 2,kV e e e IR k  
  

 

where 

 1 1 2 2 12 3(1, 0), (0, 1), , ..., , ,ke e e e e e e e   
       
, and suppose span 1 2 2,e e IR    

.  

 

Then, the triangular spline   21| , , ..., kM x e e e
   

, may 

be defined by 
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Thus,  the triangular spline   1 2| , , ..., kM x e e e
   

  is a 

piecewise polynomial of degree l – 2. 
Now, let us see a few examples: 
 
 
1.  For  l = 2 and let ( , )x x y


. 

By (1.2.1), triangular spline 1 2( | , )M x e e
  

 is a 
characteristic function which forms a square [0, 1]2, 
see Figure 2.1. 
                                            

 
 Figure 2. 1:  Support  1 2( | , )M x e e
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2. For l = 3 and  
 

let 1 2 3( , ), (1, 0), (0, 1), (1, 1)x x y e e e   
   

  

   11 2 3 3 1 2

0

| , , | ,M x e e e M x e e e d         
. 

By (1.2.1), we have 

 
3 1 2

3 1 2 1 2 1 21, ; , [0, 1]
(1. 2. 2) | ,

0 , otherwise.

x e e e
M x e e e

    


   
 





      
 

Thus 

  3 1 2
1 2 ,x e e e    

   
 

 

1 2,

(1. 2. 3) 0 1, 0 1,

1 , 1 .
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x y

x x y y

   
 
 

    
      
      






 

 
 

 
Figure 2.2:  Support  1 2 3M(x |e , e , e )

   
 

 
 
We can evaluate triangular spline 1 2 3M(x |e , e , e )

   
 

based on inequality (1.2.3) and values of x and y on 
each triangular patch in figure 2.2. 
By (1.2.2), we have 

 1 2 3M(x |e , e , e )
   

  =  0,  for 0 > x > 2  or  0  >  
y  >  2 

  

or 0 y x 1 and 1 x 2,

or 0 x y 1 and 1 y 2,

    
      

We shall consider for each region: 
 
Region 1, for 

                     0 x 1 and 0 y x.     
By (1.2.3), in order that for (x,  y)  in region 1, 
ee have 

 0 y   , 
thus 

 

y1 2 3

0
M(x |e , e , e ) 1 d y.       

Region 2, for  

                     1 x 2 and x 1 y 1.      
 
By (1.2.3), in order that for (x, y) in region 2,  
we have 

 x 1 y,     
thus, 

 

y1 2 3

x 1
M(x |e , e , e ) 1 d y x 1.


         

Region 3, for  

                   1 x 2 and 1 y x.     
By (1.2.3), in order that for (x, y) in region 3, 
we have 

  x 1 1,     
thus, 
 

 

11 2 3

x 1
M(x |e , e , e ) 1 d 2 x .


        

 
By symmetry, 
region 4, for   

                  0 x 1 and x y 1,       
thus, 

  
1 2 3M(x |e , e , e ) x,

     
region 5, for  

                   0 x 1 and 1 y x 1,       
thus, 

   
1 2 3M(x |e , e , e ) x y 1,  

     
region 6, for  

                   1 x 2 and x y 2,      
thus, 

   
1 2 3M(x |e , e , e ) 2 y. 

     
 

The triangular spline 1 2 3M(x |e , e , e )
   

 is also roof 
function, a piecewise polynomial of degree 1 on 
triangular patch which is generated by three vector 

1 2 3 1 2e , e and e e e 
    

.  Support 1 2 3M(x |e , e , e )
   

 
is a hexagon with vertices  (0, 0), (1, 0), (2, 1), (2, 2), 
(1, 2), (0, 1).     Therefore 
 
(1.2.4)    

1 2 3
2

1 , (i, j) (1, 1)
M((i, j)|e , e , e )

0 , (i, j) \ (1, 1).


       

 

Now, given control points 3 2
(i, j)a IR , (i, j)   , i 

= 0, 1, …, m and j = 0, 1, …, n, the triangular spline is 

a surface {S} in 3IR  can be parameterized as 
 
(1.2.5)   

1 2 k
(i, j)

(i, j)

S(x, y) a M(x i, y j|e , e , ...,e )   . 
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By using (1.2.4), a control polyhedron {P} for {S} can 
be parameterized as 
 
(1.2.6)   

1 2 3
(i, j)

(i, j)

P(x, y) a M(x i, y j|e , e , e )     
 

This is because for 
2

1 2 1, ( , ), 0, 1, ..., m,       
 

  and 

2 0,1,..., n, P(x, y)   is a piecewise linear 

polynomial, i.e. 
 
(1.2.7)   

1 2 3
1 2 (i, j) 1 2

(i, j)

P( , ) a M( i, j |e ,e ,e )         
. 

                                 =  1 2( , ).a    

Thus 2 3P : IR IR  interpolates vectors a(i, j) on the 

lattice points 2(i, j) .    Hence, the surface {P} is a 
union of triangular faces with vertices a(i, j),  a(i+1, j), 
a(i+1, j+1) and triangular faces with vertices a(i, j), a(i, j+1), 
a(i+1,j+1) . Moreover, in order to obtain a smooth surface 
we shall use subdivision algorithm. 
 

3    SUBDIVISION ALGORITHM FOR A 
TRIANGULAR SPLINE SURFACE 

 

Let 3 2
(i, j)a IR , (i, j) ,    i  = 0, 1, …, m, j = 0, 1, 

…, n and Mr,s,t(x,y) be the triangular spline on a three 

direction mesh in 2IR .  A surface 3{S} IR   which is 
parameterized by 
(1.3.1)   

2
(i, j) r,s,t

(i, j)

S(x, y) a M (x i, y j), (x, y) IR ,   
 
is called a triangular spline surface.  By using (1.2.8), 
a control polyhedron {P} for the surface {S} can be 
parameterized as 
(1.3.2)   

2
(i, j) 1,1,1

(i, j)

P(x, y) a M (x i, y j), (x, y) IR   
 
This is because for  

2
1 2 1, ( , ), 0, 1, ..., m,       

 
  and 

2 0, 1, ..., n, P(x, y)   is a piecewise linear 

polynomial, i.e. 
(1.3.3)   

1 21 2 (i, j) 1,1,1 1 2 ( , )
(i, j)

P( , ) a M ( i, j) a .          

 

Thus,  2 3P : IR IR   interpolates vectors a(i, j) on 

the lattice points 2(i, j)   .  Hence, the surface {P} 
is a union of  triangular faces with vertices a(i, j), a(i+1,j), 
a(i+1, j+1) and triangular faces with vertices a(i, j), a(i, j+1), 

a(i+1, j+1).  Since triangular  spline is a generalization of 
uniform B-spline, the subdivision algorithm for 
uniform B-spline curve can be easily extended to 
triangular spline surface.  The idea is to apply the 
subdivision algorithm for uniform B-spline curve 
along each of the three directions 

1 2 3 1 2e (1, 0), e (0, 1), e e e (1, 1)    
    

. 
 
Then, for a surface {P} as parameterized by (1.3.2) we 
can obtain a smooth surface {P1} which is 
parameterized by  
(1.3.4)  

1 (1) 2
(i, j) 1,1,1

(i, j)

P (x, y) a M (x i, y j): (x, y) IR ,     

where  (1)
(i, j)a  are obtained by using the subdivision 

algorithm.  This algorithm can be written in the 
following steps. 
 

(I)  1,1,1
(2i ,2 j ) (i, j) (i , j )

1
b a a

2      

                      
( , ) (0, 0), (1, 0), (0, 1), (1, 1)    

(II) For  l = 2, 3, …, r, 

 
 1,1,1 1,1,1 1,1,1

(i, j) (i, j) (i 1, j)

1
b b b .

2
 

  

 
 For m = 2, 3, …, s, 

 
 r,m,1 r,m 1,1 r,m 1,1

(i, j) (i, j) (i, j 1)

1
b b b .

2
 

 
 

 For n = 2, 3, …, t, 

 
 r,s,n r,s,n 1 r,s,n 1

(i, j) (i, j) (i 1, j 1)

1
b b b .

2
 

  
 

 Set  (1) r,s,t
(i, j) (i, j)a b . 

 
We then have a new control polyhedron P1 consisting 

of triangular faces with vertices (1) (1) (1)
(i, j) (i 1, j) (i 1, j 1)a , a , a     

and triangular faces with vertices 
(1) (1) (1)
(i, j) (i, j 1) (i 1, j 1)a , a , a   .  We may call this control 

polyhedron P1 as triangular spline of one iteration. 
We then repeat step I and II to obtain triangular spline 
of two iterations P11, triangular spline of three 
iterations P111 and so forth. 
 

Figure 3.1 shows the points 1,1,1
(2i ,2 j )b for ( , )     = 

(0, 0), (1, 0), (0, 1), (1, 1), i = 0, 1, …, m and j = 0, 1, 
…, n, which are obtained by using (I).  These points 
are denoted by the small circles.  We  observe that for 

( , ) (0, 0)    the points 1,1,1
(2i ,2 j )b    are the 

midpoints for each side of the triangles which form 
the surface {P}. 
 
Figure 3.2 shows that a control polyhedron P1 
consisting of triangular faces with vertices 
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(1) (1) (1)
(i, j) (i 1, j) (i 1, j 1)a , a , a    and triangular faces with 

vertices (1) (1) (1)
(i, j) (i, j 1) (i 1, j 1)a , a , a   , which are obtained 

using (I) and (II). 
 

 
Figure  3.1:  The points 1,1,1

(2i ,2 j )b   , i = 0, 1, 2, 3, 4,  j 

= 0, 1, 2, 3, 4 and  ( , )   = (0, 0),  (1, 0), (0, 1), (1, 1), 
which are obtained by using step I. 
 

 
 
Figure 3.2: Triangular spline surface, which is 
obtained by using 1 iteration of subdivision algorithm 
for triangular spline, i.e. steps (I) and (II). 
 

 
 
Figure 3.3: Triangular spline surface, which is 
obtained by using 2 iterations of subdivision algorithm 
for triangular spline, i.e. steps (I) and (II). 

 
Figure 3.4: Triangular spline surface, which is 
obtained by using 2 iterations of subdivision algorithm 
for triangular spline. 
 
 

4   CONCLUSION 
 
 
In this paper, we have considered geometric 
interpretation of B-splines and the definition of 
triangular spline on the uniform mesh. Apart from 
that, we have  developed subdivision algorithm for 
rendering of triangular spline surfaces. The triangular 
spline surfaces, which are obtained by using 1 and 2 
iterations of subdivision algorithm are then generated.  
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