
Web-based Application Programming Interface to
Solve Nonlinear Optimization Problems

João Matias, Aldina Correia, Pedro Mestre Member, IAENG, Carlos Fraga, Carlos Serôdio

Abstract—Nonlinear Optimization Problems are usual in
many engineering fields. Due to its characteristics the objective
function of some problems might not be differentiable or its
derivatives have complex expressions. There are even cases
where an analytical expression of the objective function might
not be possible to determine either due to its complexity or
its cost (monetary, computational, time, ...). In these cases
Nonlinear Optimization methods must be used. An API,
including several methods and algorithms to solve constrained
and unconstrained optimization problems was implemented.
This API can be accessed not only as traditionally, by installing
it on the developer and/or user computer, but it can also be
accessed remotely using Web Services. As long as there is a
network connection to the server where the API is installed,
applications always access to the latest API version. Also an
Web-based application, using the proposed API, was developed.
This application is to be used by users that do not want to
integrate methods in applications, and simply want to have a
tool to solve Nonlinear Optimization Problems.

Index Terms—Nonlinear Programming, Derivative-free, Web
Services, Java, API

I. INTRODUCTION

The main objectives of our work is to study, implement
and compare Optimization Algorithms for Nonlinear con-
strained and unconstrained optimization problems, without
the use of derivatives or approximations to them.

A Web Application was developed to solve non-linear
problems where the objective function might be non smooth,
non linear, non continuous, non convex and with many local
minima. Since derivative-based methods are not the most
suitable to deal with such kind of problems, so derivative-
free optimization methods must be used.

Such problems exist in many real-life situations such as:
in problems where the values of the objective function or its
constraints are the result of a slow and complex deterministic
simulation; when the objective function values are data
gathered from experiments; when problems have complex

Manuscript received March 05, 2010.
J. Matias is with CM-UTAD - Centre for the Mathematics, Uni-

versity of Trás-os-Montes and Alto Douro, Vila Real, Portugal, email:
j matias@utad.pt

A. Correia is with ESTGF-IPP, School of Technology and Management of
Felgueiras Polytechnic Institute of Porto, Portugal, aldinacorreia@eu.ipp.pt

P. Mestre is with CITAB - Centre for the Research and Technology of
Agro-Environment and Biological Sciences, University of Trás-os-Montes
and Alto Douro, Vila Real, Portugal, email: pmestre@utad.pt

C. Fraga is with UTAD - University of Trás-os-Montes and Alto Douro,
Vila Real, Portugal, email: al24252@utad.eu

C. Serôdio is with CITAB - Centre for the Research and Technology of
Agro-Environment and Biological Sciences, University of Trás-os-Montes
and Alto Douro, Vila Real, Portugal, email: cserodio@utad.pt

Figure 1. API Block Diagram

analytical expressions or do not have an analytical expression
at all; when the objective function has noise; etc.

The studied methods only need information about the
objective function. They advance towards to the optimal
based on the comparison of the objective function values
in several points. These methods can also be used when the
derivatives have discontinuities, when are difficult to deter-
mine or when its calculation demands a high computational
effort. Problems might have constraints which may also have
the mentioned above characteristics, therefore these methods
must also be applied to them.

An API (Application Programming Interface) containing
the implementation of some the methods and algorithms has
been implemented. It is to be used both by the developed
software application presented on this paper and by pro-
grammers who want to include the developed methods in
their projects. It is then possible to integrate the developed
methods in other applications such as engineering software
packages. This API can be used, as traditionally, installing
it locally, or it can be remotely accessed, without the need
for its installation, over the Internet using Web Services.

A major advantage of using Web Services is that they
allow client applications to be developed in any programming
language, despite the fact that Java Technology was used to
implement the API.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

II. API STRUCTURE

The developed API, and consequently all applications
based on it, allows the user to choose either to use a problem
stored in the database or to define a problem to be solved.
If the first option is chosen, then the user can choose among
one of the 25 unconstrained problems or one of the 18
constrained problems already available.

If the second option is selected, the user must then choose
between constrained and unconstrained problems, define the
objective function and the constraints (if any) and define
the initial point. Supplied data is then interpreted by an
expression parser and a new problem is generated.

In Fig. 1 are presented all the options available to the
user. After choosing the type of problem to be solved, the
problem is generated, and then the user can choose one of
the available methods.

A. Problems with Constraints
If a problem with constraints is chosen, i.e., a problem of

the form:
min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I

(1)

where:

• f : Rn → R is the objective function;
• ci(x) = 0, i ∈ E , with E = {1, 2, ..., t}, define the

problem equality constraints;
• ci(x) ≤ 0, i ∈ I, with I = {t+ 1, t+ 2, ...,m},

represent the inequality constraints;
• Ω = {x ∈ Rn : ci = 0, i ∈ E ∧ ci(x) ≤ 0, i ∈ I} is

the set of all feasible points, i.e., the feasible region.

the user can then choose between: Penalty and Barrier
Methods; Filters Method.

1) Penalty and Barrier Methods: Penalty and Barrier
Methods have been created to solve problem P defined in
(1), by solving a specially chosen sequence of problems
without constraints. The original problem is transformed into
a sequence of unconstrained problems (External Process)
which are solved using methods typically used to solve
unconstrained problems (Internal Process). Fig. 2 shows the
process diagram block.

In these methods a new objective function, Φ, is obtained,
which contains information about the initial objective func-
tion, f , and the problem constraints, thus the optimality and

Figure 2. Penalty and Barrier Methods Implementation Diagram Block

feasibility are treated together. A succession of unconstrained
problems that depend on a positive parameter, rk, which
solutions x∗(rk) converge to the initial problem solution x∗,
is built.

Penalty and Barrier Methods, as presented in Fig. 2, are
built by two processes:

• External Process - where a succession of unconstrained
problems is created;

• Internal Process - where the unconstrained problems are
solved.

The new sequence of problems to be solved at each
iteration k, that replaces problem P , B(rk) is defined by:

Φ(xk, rk) : min
xk∈Rn

f(xk) + rkp(x) (2)

where p is a function that penalises (penalty) or refuses
(barrier) points that violates the constraints.

Of the existing Penalty/Barrier functions we implemented
the following: External Barrier Function; Progressive Bar-
rier Function; Classical Penalty Function; Static/Dynamic
Penalty Function; `1 Penalty Function.

These methods are adequate for solving problems where
a feasible approximation to the solution is needed, however
the initial point must also be feasible.

Barrier method has as main objective to dissuade the
points x of any approximation to the feasible region border.
The External Barrier Function, widely used with Direct
Search Methods with feasible points, for example by Audet
et. al., [1], [2], [3], [4], [5], [6] is defined by:

Φ(x) =
{
f (x) se x ∈ Ω
+∞ se x /∈ Ω

(3)

This function works well with the Direct Search Methods
to deal with constraints, because these methods use the
objective function value only for comparison in the studied
points. So if point falls outside or it approaches the feasible
region border Φ = +∞, it is then rejected.

The need for a feasible initial point caused the develop-
ment of a new version of this method, [5], which can also be
chosen by the user in the application. In this second version
a relaxable constraints violation measurement function is
used b : X ⊂ Rn → R+, where a maximum is imposed
to the violation value, and points that have a value above
this limit are rejected. Authors call Progressive Barrier
to this approach, and MADS-PB (Mesh Adaptive Direct
Search - Progressive Barrier) to the method. One advantage
of this method is its ability of starting the process with
points that violates the relaxable constraints and accepts both
testing points and interactions with feasible violation to this
constraints.

In the method the feasible region is defined as

Ω = {x ∈ X : ci(x) ≤ 0, i = 1, 2, ...,m} ⊂ Rn,

with X the set of non-relaxable constraints (defined by the
equality constraints). The relaxable constraints ci(x) ≤ 0 are
treated using the function bX : Rn → R:

ΦX(xk) = f (xk) + bX (4)

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

where

bX =


m∑
i=1

(max (ci (xk) , 0))2 if x ∈ X

+∞ if x /∈ X
(5)

Therefore, bX(xk) = 0 if and only if x verifies all
relaxable constraints of the problem, i.e., if xk ∈ Ω, and
0 < bX(xk) < +∞ if xk violates any of the relaxable
constraints. This approach is called progressive barrier since
it is attributed a maximum value for the violation at each
iteration hkmax , that is progressively updated (iteration by
iteration) using a relation of non dominance, used in the
Filters Method, between the tested points and with hkmax

→
0 when k → +∞.

Other methods of this type are the Penalty Methods.
Penalty functions penalise the constraints violation, allowing
that infeasible points may occur in the iterative process,
although penalised, instead of creating a barrier in the border
of the feasible region.

Classic Penalty Functions include the following type of
functions:

ΦX(xk) = f (xk) + rkp (xk) =

= f (xk) + rk

m∑
i=1

[max {0, ci (xk)}]q, (6)

with q ≥ 1, and: if q = 1, in (6), the function p(x) is called
linear penalty function; if q = 2, (6) is called a quadratic
penalty function, where rk → +∞.

Static Penalty Methods were proposed by Homaifar et
al.[7]. In these methods a family of violation levels for
each constraint type is used. Each violation level imposes
a different penalty. The disadvantage of this method is the
number of parameters to be selected, which rapidly increases
with the number of constraints and violation levels. A penalty
vector is selected for the whole process.

With the penalty vectors α ∈ Rt e β ∈ Rm−t it can be
built, for problem (1), a Penalty Problem for each iteration
k, with ρ ≥ 1:

min
x∈Rn

Φk(x, α, β) (7)

with

Φk(xk, α, β) = f(xk) +
t∑
i=1

αi |ci(xk)|ρ+

+
m∑

i=t+1

βi[max(0, ci(xk)]ρ.
(8)

This Penalty Method can be Exact or Inexact. If ρ = 1 in
(8), it is an Exact Penalty Method, if ρ > 1 it is an Inexact
Penalty Method, [8].

As an alternative to the search for the penalty parameters
by trial-and-error, there are the Dynamic Penalty Methods[9],
that gradually increment the penalties in (7) with Φk defined
in (8). They find the global minima x̃ of (7), for each penalty
combination and they stop when x̃ is a feasible solution to
P , (1).

Many variants of these methods exist. One of them, which
is widely known, is the Non-stationary Method that solves
a sequence of problems of the same type as (7) with Φk
defined at (8) and ρ > 1, updating the penalty parameters at
each iteration k.

`1 Penalty Method was initially proposed by
Pietrzykowski[10], and it has been studied and used
by many authors, for example Gould et. al. in [11] and
Byrd et. al. in [12], furthermore, it has been the base for
many penalty methods.

This is a local minimization Exact Penalty Method and it
solves at each iteration k the problem:

min
xk∈Rn

`
(k)
1 (xk, µ) (9)

with

`
(k)
1 (xk, µ) = f(xk) + µ

t∑
i=1

|ci(xk)|+

+ µ
m∑

i=t+1

max[ci(xk), 0],
(10)

and µ→ +∞.
2) Filter Method: To solve a constrained Nonlinear Op-

timization Problem (NLP), it must be taken in account that
the objective is to minimize the objective function and the
constraints violation, that must be zero or tend to zero. This
involves two concepts: optimality (which has the propose of
minimize the objective function f) and the feasibility (which
is intended to minimize the constraints violations ci).

In the Penalty/Barrier methods, the optimality and fea-
sibility are treated together, however in the Filters Method
the concept of bi-objective optimization dominance is used,
considering optimality and feasibility separately. In each
iteration two phases exist: the first is the feasibility phase
and the second is the optimality phase.

The Filters Method was introduced by Fletcher and Leyffer
em [13] to globalize SQP (Sequential Quadratic Program-
ming) methods and with the motivation to avoid the difficulty
in the penalty parameters and/or the Lagrange multipliers es-
timation.This method considers the NLP (1) as a bi-objective
program, and it has as main goal the minimization of both
the objective function (optimality) and a continuous function
h that aggregates the problem m constraint functions values
(feasibility).

Priority must be given to h since it is not reasonable to
have as a problem solution a infeasible point, i.e., that does
not comply with the constraints.

Therefore, the function h must be such that:

h(x) ≥ 0 with h(x) = 0 if and only if x is feasible.

We can then define h as:

h(x) = ‖C+(x)‖ , (11)

where ‖.‖ is the norm of a vector and C+(x) is the vector
of the t + m values of the constraints in x, i.e, ci(x) for
i = 1, 2, ..., t+m:

C+ (x) =
{
ci (x) if ci (x) > 0

0 if ci (x) ≤ 0

Considering the norm 2, for example, it is obtained:

h (x) = ‖C+ (x)‖2 =

√√√√t+m∑
i=1

max (0, ci (x))2.

The Filters Method define a forbidden region, memorizing

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Figure 3. Block diagram of the implemented Filters Method

pairs (f(xk), h(xk)), with good performance in the previous
iterations, avoiding dominated points (as defined by the
current Pareto rule) by the points of this set, in the next
iterations.

a) Definition: A point x ∈ Rn dominates y ∈ Rn, and
is written as x ≺ y, if f(x) ≤ f(y) and h(x) ≤ h(y).

b) Definition: A filter, F , is a finite set of points where
no pair of points, x and y of the set F , as a relation x ≺ y,
i.e., the filter is made by points such none dominates the
other.

A point is accepted by the filter if and only if it is not
dominated by other point belonging to the filter and its
inclusion eliminates from it all the points that it dominates.
We can say that a filter is a dynamic set. A filter works then
as a criterion for the iteration acceptance.

In this method a succession of Filters is made F0 ⊂
F1... ⊂ Fk, constituted by (f(xk), h(xk)) ∈ R2 pairs.

Karas [14], to define a temporary pair for
the filter, uses the equality (f(xk), h(xk)) =
(f(xk)− αh(xk), (1− α)h(xk)). This modification avoids
the acceptance of pairs too close to previous iterations.

Auddet and Dennis, in [1], used for the first time the Filters
Method together with the Direct search Methods, namely
with Pattern Search Method, showing some convergence
results.

Fig 3 presents the diagram block of the Filter Methods
implemented in the API.

B. Unconstrained Problems
Both for the Penalty/Barrier and the Filters methods it

is needed, in the internal process, to solve unconstrained
problems like:

minimize
x∈Rn

f(x) (12)

where f : Rn → R is the objective function.
Our API and application offers to the user or programmer

the following five algorithms to solve such problems:

• A coordinated search algorithm;
• Hooke e Jeeves algorithm;
• A version of Audet et. al. algorithms;
• The Nelder-Mead algorithm;
• A Convergent Simplex algorithm.

The first three are Pattern Search Methods (described, for
example, by Conn et. al. in [15], Chapter 7 - Directional
Direct-Search Methods). These methods determine possible
optimal points using fixed directions during the iterative
process: starting from a iteration xk, the next iteration will

be found by searching in a pattern or a grid of points, in the
directions d, at a distance δk (called step length).

Last two methods are Simplex Methods (described, for
example, by Conn et. al. in [15], Chapter 8 - Simplicial
direct-search methods). These methods are characterized by
starting from an initial simplex and modifying the search
directions at the end of each iteration, using movements of
refection, expansion and contraction to the inside and the
outside, together with the shrunk step towards the best vertex.

III. OPTIONS, VARIABLES AND PARAMETERS

To solve a problem, regardless of the chosen options, there
are parameters that should be defined, while others are set
internally, without user intervention.

A. Parameters chosen by the user
For the methods and algorithms to work, besides the

problem expression and the initial point, also aditional
parameters are needed. Some of them are specific to some
methods while others are generic. This last set of parameters,
which can be changed by the user, are presented in this
subsection.

Input data for the Penalty/Barrier Methods are:
1) Problem to be solved;
2) Initial Point;
3) The penalty/barrier function to be used (1 to 6) -

phi to use;
4) Initial parameters for the penalty/barrier function;
5) Maximum number of external process iterations-kmax;
6) Tolerance for the distance between two iterations - T1;
7) Tolerance between two values of the objective function

in two consecutive iterations - T2;
8) Minimum step length - T3;
9) Method to be used in the internal process - MET i;

10) Possible change to change the process parameters of
the chosen internal process - SouN i;

11) Maximum value of the constraints violation - hmax;
12) Updating factor for the penalty/barrier parameters - γ;

Values defined by default in the API are: : kmax = 40,
α = 1, T1 = 0.00001, T2 = 0.00001, T3 = 0.001 e γ = 2.

In the filters methods input data are, the points above, 1),
2), 5), 6), 7), 9), 10) and the
• The maximum initial value for the constraints violation

- hmax;
To use the unconstrained methods, previously described in

the internal process, it is also needed to define the following
parameters:
• Maximum number of internal iterations - kmax;
• Initial step length - α:
• Tolerance for the distance between two iterations;
• Tolerance between two values of the objective function

in two consecutive iterations;
• Minimum step length;
B. Returning results
The unconstrained methods implemented here, have the

following return values:
• Number of objective function evaluations;

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

• Last values calculated at the Stop Criteria;
• The found solution;
• Value of the objective function at the found solution;

The Filters Methods return the following parameters:

1) Number of internal process iterations; - k;
2) Number of objective function evaluations;
3) Last iteration;
4) Value of the objective function at the last iteration;
5) Best feasible solution (if any);
6) Value of the objective function at the best feasible

solution;
7) Iteration at which the best feasible solution was found;
8) Best infeasible solution (if any);
9) Value of the objective function at the best infeasible

solution;
10) Iteration at which the best infeasible solution was

found;
11) Value of the constraints violation at the best infeasible

solution;
12) Set of non dominated solutions.

Penalty/barrier methods algorithms return the same of the
above results, 3), 4), 5), 6), 7), 8), 9), 11) and

• Number of external process iterations;
• Number of Penalty/Barrier function evaluations;
• Value of Penalty/Barrier function at the last iteration;
• Penalty/Barrier function value at the best infeasible

solution;
• Iteration were was found the best infeasible solution;
• Constraint violation value at the best infeasible solution;

IV. API IMPLEMENTATION

To implement the API Java technology was chosen be-
cause it is a multi-platform technology which has official
support (by Sun Microsystems), for the most used Operating
Systems. In this type of applications, besides platform porta-
bility also performance is a parameter to take in account.

Java has been benchmarked against other programming
languages used in this kind of applications, such as C and
FORTRAN [16], and it was concluded that it has a good
relative performance. In finite element analysis[17] it even
has a performance comparable to C. So no performance
constraints are expected in our API.

As result this work a set of classes that can be used by
Java based applications were implemented. These classes
implement the various methods and algorithms discussed in
the previous sections.

The API can be accessed in two different ways, one using
the standard procedure of installing the .jar file containing
all the developed classes the developer computer, or remotely
accessing the API trough the Local Area Network (LAN) or
over the Internet. This last method allows developers and end
clients to access always to the latest API version.

A. Using the API
To include the API in Java applications developers only

need to include in the classpath the developed API class
or .jar file. A Class exists for each algorithm and method

above mentioned. Fig. 4 shows a sample of Java code where
the Audet algorithm is used to minimize an expression.

String expr = ‘‘(x0-2)ˆ2 + (x1+2)ˆ2’’;
String initPoint = ‘‘x0=0.0 x1=0.0’’;
AudetProgram audet =

new AudetProgram(expr,initPoit);
audet.run();
double[] result = audet.getLastResult();

Figure 4. Java code to access the locally installed API - in this example
the application executed the Audet algorithm.

Input parameters (problem expression and initial point),
in this example, are sent to the algorithm using the
class constructor. To solve the problem method run()
is called and results can be obtained by invoking the
getLastResult() method. This last methods returns a
double array which has the problem dimension.

At any moment setInitialPoint() and
setExpression() methods can be invoked to change
the initial point or the problem expression, respectively.
Besides these methods, the implemented API also includes
methods to set and obtain the parameters and results above
mentioned in section III.

B. Remote Access using Web Services
Access to the API as presented in the previous section can

only be made if the API is installed on the computer where
methods are needed. Besides that, it can only be accessed
using Java, since this is the programming technology used
in its implementation.

To enable remote access to the implemented methods they
were made available using Web Services. By using this
technology it is possible to access to them, not only using
Java, but also other programming languages used in scientific
applications [18] such as FORTRAN, C, C++ and the .NET
Framework (C# for example).

Although RMI (Remote Method Invocations) has better
performance in Java applications than Web Services[19],
they are used in because of its wide compatibility. Also, the
time spent in communications is much smaller than the time
needed to run the optimization methods.

Using the tools provided by the programming technology,
user must import the WSDL (Web Service Definition
Language) file from the URL (Unified Resource Locator)
http://server.address:port/NLOSolver?wsdl,
using the correct server IP address and port number. After
generating all the locally needed files, the API can then be
used. Sample code showing how to access the remote API
using Java is presented in Fig. 5 and Fig. 6 shows sample
C# code to access the remote API.

Methods available in the remote API include: connect,
to create a new session (needed to deal with multiple
access); runMethod, to run a specific method or
algorithm, for example: runAudet, runNelder;
getMethodLastResult to fetch the result of a
method last run, for example getAudetLastResult;
disconnect to end the session and free all the resources
allocated on the server side.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

NLOSolverService service =
new NLOSolverService();

NLOSolver nlos =
service.getNLPSolverPort();

String sessionID = nlos.connect();
String expr = "(x0-2)ˆ2 + (x1+2)ˆ2";

String initPoint = "x0=1 x1=0";
nlos.runAudet(sessionID, expr, initPoint);
List<Double> result =

nlos.getAudetLastResult(sessionID);

Figure 5. Java code to access to the remote API using Web Services - in
this example the application executed the Audet algorithm.

C. Web Application
For solving problems a Web-based application, based on

the API, was developed. This application, accessible using a
web browser, allows users to solve constrained and uncon-
strained problems, either by choosing one of the problems
previously stored in database or by specifying the problem
expression and constraints (in constrained problems).

This application was developed using Java Server Pages
(JSP) and it interacts directly with the API. The purpose
of this application is to allow users, that do not want to
integrated the methods on their applications and simply want
to solve a problem. Fig 7 shows the user interface with some
of the options available when the user chooses to solve a
constrained problem.

V. CONCLUSION AND FUTURE WORK

A Java-based API containing methods for solving con-
strained and unconstrained Nonlinear Optimization Problems
has been implemented and successfully tested using local
and remote applications. Direct access to the API can be
done using Java. Remote access to it can be done using
any programming language,as long as it has support do Web
Services. Example applications using Java and C# remotely
accessing the API has been presented. Also an Web-based
application based on the developed API has been presented.

As future work we intend to add the Augmented La-
grangian Method to the available method to solve constrained
problems. Further future developments include the storage of
the interaction log and various results obtained from method
execution in database for future comparison on the methods
performance solving various problems, which will be very
useful for example for lectures.

REFERENCES

[1] C. Audet and J. E. D. Jr., “Analysis of generalized pattern searches,”
SIAM Journal on Optimization, vol. 13, no. 3, pp. 889–903, (2002).

NLPOolverClient nlps =
new NLOSolverClient();

String sessionID = nlos.connect();
String expr = "(x0-2)ˆ2 + (x1+2)ˆ2";
String initPoint = "x0=1 x1=0";
nlos.runAudet(sessionID, expr, initPoint);
double[] result =

nlos.getAudetLastResult(sessionID);

Figure 6. C# code to access the remote API using Web Services - in this
example the application executed the Audet algorithm.

Figure 7. Web-based Application

[2] C. Audet, “Convergence results for pattern search algorithms are tight,”
Optimization and Engineering, vol. 2, no. 5, pp. 101–122, (2004).

[3] C. Audet, V. Béchard, and S. L. Digabel, “Nonsmooth optimization
through mesh adaptive direct search and variable neighborhood
search,” J. Global Opt., no. 41, pp. 299–318, (2008).

[4] C. Audet and J. E. D. Jr., “Mesh adaptive direct search algorithms for
constrained optimization,” SIAM Journal on Optimization, no. 17, pp.
188–217, (2006).

[5] ——, “A mads algorithm with a progressive barrier for derivative-
free nonlinear programming,” Les Cahiers du GERAD, École
Polytechnique de Montréal, Tech. Rep. G-2007-37, (2007).

[6] C. Audet, J. E. D. Jr., and S. L. Digabel, “Globalization strategies
for mesh adaptative direct search,” Les Cahiers du GERAD, École
Polytechnique de Montréal, Tech. Rep. G-2008-74, (2008).

[7] A. Homaifar, S. H. V. Lai, and X. Qi, “Constrained optimization via
generic algorithms,” Simulation, vol. 62, no. 4, pp. 242–254, (1994).

[8] D. P. Bertsekas, Nonlinear Programming. Belmont, Massachusetts:
Athena Scientific, (1999).

[9] F. Y. Wang and D. Liu, Advances in Computational Intelligence:
Theory And Applications (Series in Intelligent Control and Intelligent
Automation). River Edge, NJ, USA: World Scientific Publishing Co.,
Inc., (2006).

[10] T. Pietrzykowski, “An exact potential method for constrained maxima,”
SIAM Journal on Numerical Analysis, vol. 6(2), pp. 299–304, (1969).

[11] N. I. M. Gould, D. Orban, and P. L. Toint, “An interior-point l1-penalty
method for nonlinear optimization,” Rutherford Appleton Laboratory
Chilton, Tech. Rep., (2003).

[12] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Steering exact penalty
methods for nonlinear programming,” Optimization Methods &
Software, vol. 23, no. 2, pp. 197–213, (2008).

[13] R. Fletcher, S. Leyffer, and P. L. Toint, “On the global convergence
of an slp-filter algorithm,” Dundee University, Dept. of Mathematics,
Tech. Rep. NA/183, (1998).

[14] E. W. Karas, A. A. Ribeiro, C. Sagastizábal, and M. Solodov, “A
bundle-filter method for nonsmooth convex constrained optimization,”
Mathematical Programming, vol. 1, no. 116, pp. 297–320, (2006).

[15] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization. Philadelphia, USA: MPS-SIAM Series
on Optimization, SIAM, (2009).

[16] J. M. Bull, L. A. Smith, C. Ball, L. Pottage, and R. Freeman,
“Benchmarking Java against C and Fortran for scientific applications,”
Concurrency and Computation: Practice and Experience, vol. 15, no.
3-5, pp. 417–430, March-April 2003.

[17] G. P. Nikishkov, Y. G. Nikishkov, and V. V. Savchenko, “Comparison
of C and Java performance in finite element computations,” Computers
& Structures, vol. 81, no. 24-25, pp. 2401–2408, September 2003.

[18] R. A. van Engelen, “Pushing the SOAP Envelope WithWeb Services
for Scientific Computing,” in Proceedings of the International
Conference on Web Services (ICWS), 2003, pp. 346–352.

[19] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko,
“Comparison of performance of Web services, WS-Security, RMI, and
RMI-SSL,” Journal of Systems and Software, vol. 79, no. 5, pp. 689–
700, May 2006, quality Software.

Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

