
 

 

 

  

Abstract—This paper presents a quantitative analysis of the 

resolvable representation problem. I use a divide-and-conquer 

approach to allocate drawings to various categories based on 

readily-perceived characteristics of 3D objects, and generate a 

resolution sequence which takes account of these characteristics. 

The results suggest that most objects fall into categories for 

which optimal resolution solutions are readily identified and 

thus the resolvable representation problem can usually be 

avoided in practice.  

 
Index Terms—Beautification, Resolvable Representation, 

Resolution Sequences 

 

I. INTRODUCTION 

In this paper, I analyse the problem of resolvable 

representations of polyhedra, as first discussed by Sugihara 

[3]. This problem is of theoretical importance in constructive 

geometry and of practical importance in boundary 

representation CAD modelling. It is of relevance both in the 

field of automated interpretation of line drawings and the field 

of beautification of solid models (a subproblem of reverse 

engineering). 

The resolvable representation problem is that of creating a 

resolution sequence: given that we know the topology of a 

polyhedron, we wish to define its geometry by sequentially 

defining the coordinates of single topological items in such a 

way that, by the end of the sequence, the geometry of every 

topological item is defined, while ensuring that the overall 

geometry is consistent and free from contradictions. 

This paper does not consider other aspects of geometric 

beautification. For a good overview of the state of the art, see 

Zou and Lee [8], which also proposes a solution to one of the 

other important and difficult subproblems, that of numerical 

redundancy in constraints. 

Sugihara’s initial paper [3] on the resolvable representation 

problem considered only faces and vertices. He proved that 

all genus-zero polyhedra have resolvable representations, and 

outlined a general approach for finding them. Sugihara also 

showed by example that some non-genus-zero polyhedra have 

no resolvable representations if only faces and vertices are 

considered. 

Sugihara gives, as an example of a polyhedron with no 
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resolution sequence, the torus in Figure 1. Each face is a 

quadrilateral, and each vertex lies on four faces. Since vertex 

coordinates become fixed when three faces which touch the 

vertex are fixed, and face planes become fixed when three 

vertices which lie on the face are fixed, the last piece of 

topology in the resolution sequence can be neither a face nor a 

vertex. Ergo, no resolution sequence exists. 

 

 
Figure 1: Sugihara’s Torus [3] 

 

This paper addresses a point which Sugihara does not 

consider: in many cases, finding a valid resolution sequence is 

not the whole of the problem. There are other geometrical 

constraints on faces and vertices, and we generally wish to 

enforce an optimal subset of these. The problem then becomes 

that of finding a strategy which, firstly, enforces desirable 

geometric constraints, while, secondly, remains a valid 

resolution sequence. Section II discusses this in more detail. 

In the knowledge that some objects have no resolution 

sequence, I do not seek a general solution. Instead, I present a 

divide-and-conquer approach based mainly on identifying 

desirable geometric constraints (principally parallelism and 

perpendicularity) and choosing an appropriate construction 

strategy which allows selection of a valid resolution sequence 

which enforces these constraints. This divide-and-conquer 

approach is described in Section III. Historically, 

divide-and-conquer has been applied successfully in 

geometric beautification ([4] is one such approach), for the 

purpose of creating the “most beautiful” interpretation of the 

drawing, but generally only in the context of trihedral objects, 

for which there is no resolvable representation problem. 

The primary benefit of the divide-and-conquer approach is 

that the divisions correspond to the impression of the whole 

object formed in the mind of a viewer, who readily perceives 

objects as belonging to such types as normalons, 

quasi-normalons and pyramids. Basing the division on such 

categories leads to methods which are intuitively correct in 

that they create the object a viewer would imagine when 

seeing the drawing. 

A secondary benefit of this divide-and-conquer approach is 

that, for many of the resulting categories, the number of 

geometric degrees of freedom of the object can be determined 
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exactly. The geometric degrees of freedom problem is another 

open problem in line drawing interpretation and 

beautification of solid objects which has no known general 

solution. 

Degrees of freedom are important to the beautification 

process since most existing systems determine optimal 

geometry using some form of downhill optimisation. The 

number of degrees of freedom corresponds to the number of 

variables to be optimised. In general, the fewer degrees of 

freedom we have, the better, as fewer variables should lead 

not only to better results but also to faster running times. 

II. DISCUSSION 

 

There are a number of points to be considered concerning 

Sugihara’s initial paper on resolvable representations. 

Firstly, it only considered faces and vertices. Edges are also 

an important part of topology—indeed, some topological 

categories, such as quasi-normalon, are defined by their edge 

structure—and must be considered too. 

Secondly, Sugihara assumes that face equations are a single 

entity. In practice, it may be preferable fix face normals and 

face distances separately. One example of this might be when 

processing normalons: it is important to enforce 

perpendicularity on face normals very early in the 

proceedings in order to ensure that the resulting object is 

indeed a normalon, while retaining flexibility about face 

distances. 

Thirdly, most objects will have several acceptable 

resolution sequences, and selecting one using a graph-based 

algorithm which does not consider other cues provided by the 

topology may well be suboptimal. What is required is, in 

general, a strategy (e.g. normals first for trihedral objects, 

vertices first for triangulated models), not a specific 

construction sequence. 

Consider, for example, quasi-normalons. The ideal strategy 

would be to fix axis-aligned faces first, then vertices, then 

non-axis-aligned faces. However, we also need to make sure 

that we do not box ourselves into a corner unnecessarily: 

while a sequence exists, we must not fix anything which 

leaves us with no resolution sequence. Finding such an ideal 

strategy is a harder problem than the one Sugihara considers. 

III. DIVIDE-AND-CONQUER 

This section lists, in approximate descending order of 

frequency, groups of objects which have something readily 

perceivable in common. For “divide and conquer” to be 

worthwhile, we must identify divisions which are (a) easily 

identified, (b) easily conquered and (c) big enough to be 

worth conquering. 

In all cases but the simplest, the divisions require additional 

knowledge beyond that of the object topology. This paper 

notes when additional knowledge is required, but does not 

consider its source (some knowledge can be deduced 

automatically, while other knowledge may need to be entered 

manually). 

Note that Sections IIIA (triangulated mesh models) and 

IIIB (trihedral objects) summarise work which can be found 

in most standard references. They are included for 

completeness. The original content of this paper starts with 

Section IIIC. 

In order to obtain an initial estimate of how common 

various categories of object are, I compiled a collection of 

approximately 1000 drawings of manifold polyhedra. Of 

these, 380 were neither fully trihedral nor triangulated mesh 

models. 

 

A. Triangulated Mesh Models 

A triangulated mesh is a polyhedron all of the faces of 

which are triangular. Triangulated meshes are comparatively 

uncommon in engineering objects, but extremely common in 

computer graphics applications since they are particularly 

easy to render, and also quite common in reverse engineering, 

where clouds of scanned points are usually converted into 

triangular nets. 

Identifying triangulated mesh models is straightforward 

and can in principle be done in O(F) time: an object is a 

triangulated mesh model if each face meets exactly three 

vertices. No additional knowledge is required beyond the 

object topology. 

There is a simple strategy for creating geometry for 

triangulated mesh models: (a) fix all vertex coordinates; and 

(b) calculate face equations by fitting a plane through the 

three vertices which lie on it. 

All vertices in a triangulated mesh model can be moved 

independently, so have three degrees of freedom, so the total 

number of degrees of freedom of the object is 3V. Of these, 6 

leave the object’s internal relationships unchanged: 3 

translations, 2 rotations and 1 expansion/contraction. For 

example, the simplest triangulated mesh model, the 

tetrahedron, has 12 degrees of freedom, 6 of which can be 

used to distort the object. 

 

B. Trihedral Objects 

A trihedral object is a polyhedron all of the vertices of 

which are trihedral. Trihedral objects are comparatively 

common in engineering objects (for example, all extrusions of 

polygonal profiles are trihedral), and some sketching 

interfaces make the (useful but unjustifiable) assumption that 

all engineering objects are trihedral. 

Identifying trihedral objects is straightforward and can in 

principle be done in O(V) time: an object is trihedral if exactly 

three faces meet each vertex. No additional knowledge is 

required beyond the object topology. 

There is a simple strategy for creating geometry for 

trihedral objects: (a) fix all face normals; (b) fix all face 

distances; and (c) calculate vertex coordinates by determining 

the point of intersection of the three faces on which the vertex 

lies. 

Note, however, that although this strategy is valid, it is 

often not best. Many trihedral objects are also normalons 

(Section IIIC) or quasi-normalons (Section IIID), and the 

strategies proposed below lead to better (more “beautiful”) 

geometry. 

Since each trihedral object is the “dual” of a triangulated 

mesh model, the total number of degrees of freedom of the 

object is 3F (where F is the number of faces). Again, 6 do not 
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change the object: 3 translations, 2 rotations and 1 

expansion/contraction. For example, the simplest trihedral 

object, the tetrahedron, is its own dual, and has 12 degrees of 

freedom, 6 of which can be used to distort the object, 

regardless of whether it is processed as a triangulated mesh or 

as a trihedral object.  

Where the object can be processed as a normalon or 

quasi-normalon, the number of degrees of freedom will 

generally be lower. 

 

C. %on-trihedral %ormalons 

Normalons are defined as those polyhedra in which all 

edges are aligned with one of three mutually-perpendicular 

axes. Many, but far from all, normalons are trihedral. The 

objects in Figure 2 are non-trihedral normalons. 

   

Figure 2: %ormalons 
 

Although the obvious normalon strategy (fix face normals 

first, then face distances) breaks Sugihara’s rules as originally 

formulated (i.e. each face is considered to be a distinct 

topological item) by fixing a non-trihedral vertex after the 

faces it meets, there is in reality no problem provided that 

coplanar faces are grouped together as a single topological 

item in the sequence. For example, although the central vertex 

in the left-hand drawing meets six faces, its geometry is 

defined by the intersection of three groups of coplanar faces. 

27 objects from our test set are in this category. 

Identifying such objects is straightforward and can be done 

in O(E) time: check that each edge is aligned with one of the 

main object axes. This requires the additional knowledge of 

which edges are axis-aligned. Axis alignment of edges from 

object topology and inexact geometry is one of the simpler 

things to determine automatically. It is generally reliable but 

can occasionally fail [5]. 

The construction strategy is: (a) calculate vectors for the 

three object-relative major axes, and apply them to all face 

normals; (b) fix the distance for each independent face (faces 

are independent unless they are demonstrably coplanar—for 

example, parallel faces which include the same vertex—in 

which case one face distance is fixed and applied to both 

faces); (c) calculate the coordinates of vertices by intersecting 

the face planes of the faces they meet. 

The number of degrees of freedom is 3 for the orthogonal 

axis system plus one (the face distance) for each independent 

face. Again, 6 do not change the object: 3 translations, 2 

rotations and 1 expansion/contraction. For example, the 

arrangement of four cuboids in the left-hand drawing has 9 

independent faces so a total of 12 degrees of freedom, of 

which 6 distort the object by changing the relative proportions 

of the cuboids. 

The same methods could in principle also be applied to 

objects which are not normalons but where the non-trihedral 

part of the object is normalon-like, such as those in Figure 3. 

A further 3 objects from our test set are in this category. 

However, although the methods of this section suggest a 

preferred resolution sequence, the degrees of freedom 

calculation of this section does not apply. Rather than treat 

them as a separate category, it seems best to include them with 

the objects of Section IIIE. 

    

Figure 3: %on-%ormalons 

 

D. Quasi-%ormalons 

Quasi-normalons are defined as those polyhedra in which 

all vertices lie on a graph-connected axis-aligned frame of 

edges. The objects in Figure 4 are quasi-normalons. 

   

Figure 4: Quasi-%ormalons 

 

The strategy here is (a) fix axis-aligned face normals and 

distances; (b) fix vertices; (c) derive face normal and distance 

for non-axis-aligned face(s) from the vertices which lie on 

them. 

In the right-hand drawing, this approach corresponds to 

Sugihara’s rules, as the non-axis-aligned face is triangular. 

The left-hand drawing illustrates an important point. We 

know that the four-vertex non-aligned face is planar in 

principle because all of the vertices lie on one of two parallel 

edges. Fitting a face to vertices which lie on one of two 

parallel edges is clearly a legitimate thing to do, and a 

technique which we can make use of in other categories of 

object. Even though we are breaking Sugihara’s rules by first 

calculating the coordinates of four vertices and then 

calculating the face equation of the face they lie on (because 

of roundoff error, calculating the face equations in this way 

will not necessarily result in all four vertices lying exactly on 

the face), this it is still the right thing to do, as it corresponds 

to the way we intuitively create a mental construct of the 

object when we view the drawing. 

240 objects from our test set are in this category. It is 

possible that they are overrepresented in our test set, as the 

test set includes objects created for a study of K-vertices [6]. 

However, the study was performed precisely because such 

objects are common in engineering practice and not easy to 

deal with by existing methods, so even if the proportion of 
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such objects is exaggerated, they occur frequently and it is 

important that they are processed correctly. 

Identifying quasi-normalons is in principle straightforward: 

list all axis-aligned edges and check whether or not they can 

be connected to form a single graph. This is the graph 

connectivity problem, known to be soluble in linear time. As 

before, this requires additional knowledge: which edges are 

axis-aligned. 

The strategy for processing quasi-normalons is: (a) 

calculate vectors for the three object-relative major axes, and 

apply them to all axis-aligned face normals; (b) determine the 

face distances of all axis-aligned faces (note that, as in Section 

IIIC, some faces meeting at non-trihedral vertices may be 

coplanar); (c) calculate the coordinates of vertices which meet 

three axis-aligned faces by intersecting the face planes; (d) fix 

the coordinates of any remaining vertices, while ensuring that 

they lie on the planes of any axis-aligned faces which they 

meet; (e) determine the equations of any remaining faces 

(triangular faces by fitting a plane through vertices, other 

faces by fitting a plane through two parallel edges).  

The number of degrees of freedom can be obtained by 

considering the axis-aligned edges. In cases where all 

axis-aligned edges join two axis-aligned faces, such as the 

sliced cube in the right-hand figure, the number of degrees of 

freedom is the same as that of the normalon bounding box (in 

this example, 12, of which 6 do not distort the object). 

However, where one or more of the axis-aligned edges 

bounds a non-axis-aligned face, more information is needed. 

The two such edges in the bracket in the left-hand figure 

illustrate this: the top is fully-constrained by the normalon 

bounding box, and adds no extra degrees of freedom, but the 

front edge can slide up and down without changing the 

character of the object, thus adding an extra degree of 

freedom. 

Thus the total number of degrees of freedom is: 3 for the 

orthogonal axis system; one (the face distance) for each 

independent axis-aligned face; plus 0, 1 or 2 for each 

axis-aligned edge which bounds a non-axis-aligned face, 

depending on how fully the edge geometry is constrained by 

the normalon geometry. For example, the bracket has 11 

degrees of freedom, of which 5 do not distort the object. 

 

E. Resolvable as Quasi-%ormalons 

In this section we consider objects which do not have a 

graph-connected quasi-normalon frame but for which the 

suggested quasi-normalon resolution sequence is the most 

appropriate. The objects in Figure 5 are resolvable as 

quasi-normalons (as were the objects in Figure 3). 

 

     

Figure 5: Resolvable as Quasi-%ormalons 

 

In the middle drawing, all of the non-normalon faces are 

triangular, so these can be placed last in the resolution 

sequence. In the left-hand drawing, all of the non-normalon 

faces are either triangular or quadrilaterals defined by two 

parallel edges, so (provided that the disconnected edge is 

included in the resolution sequence) these again can be placed 

last in the resolution sequence. In the right-hand drawing, the 

quasi-normalon frame is not graph-connected but identifying 

axis-aligned edges remains straightforward. 

Since this category of object lacks a formal definition, 

identifying which drawings fall into this category is not 

straightforward. Since the category is defined solely by the 

strategy, categorisation should proceed by determining what 

does, and what does not, cause problems for the strategy. 

Faces with axis-aligned normals are unproblematic. Faces 

bounded by any pair of (implicitly parallel) axis-aligned 

edges are unproblematic provided that those edges are 

non-collinear. Triangular faces are unproblematic. Any face 

which is none of these is problematic, and any object 

containing such a face should not be included in this category.  

The strategy for processing this category of object is the 

same as that for quasi-normalons (Section IIID). 

The total number of degrees of freedom is even more 

complex than in the previous category, as each edge subgraph 

must be considered separately, as must isolated vertices such 

as the one in the central drawing. 

Thus the total number of degrees of freedom is: 3 for the 

orthogonal axis system; one (the face distance) for each 

independent axis-aligned face; plus 0, 1, 2 or 3 for each 

axis-aligned edge which bounds a non-axis-aligned face, 

depending on how fully the edge geometry is constrained by 

the normalon geometry; plus 3 for each isolated vertex. 

35 objects from our test set are in this category. 

 

F. Pyramids 

Strictly, a pyramid is a polyhedron which comprises a 

single base face and a single vertex, the apex, which does not 

lie on the base face and is connected by an edge to every 

vertex on the base face. The left and centre objects in Figure 6 

are pyramids. Pragmatically, it is sensible to group together as 

a single category all polyhedra with only one non-triangular 

face. All pyramids fall into this category, and so does the 

quasi-pyramid on the right of Figure 6. 

 

  
Figure 6: Pyramids and Quasi-Pyramids 

 

The resolution sequence is straightforward: first fix the 

base face (normal and distance), then the vertices (in any 

order), and finally the triangular faces. 

19 objects from our test set are in this category. 

Identifying such objects is straightforward and can in 

principle be done in O(F) time: count the number of faces 

which meet more than three vertices. This requires no 

additional knowledge beyond the object topology. 

There is a simple strategy for creating geometry for such 
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objects: (a) fix the base face (normal and distances); (b) fix 

the coordinates of all of the vertices (ensuring that those 

vertices meeting the base face lie on the face plane); and (c) 

calculate the equations of each remaining triangular face by 

fitting a plane through the three vertices which lie on it. 

The base face has 3 degrees of freedom. Each vertex 

meeting the base face must lie on the face plane, so has 2 

degrees of freedom. Other vertices can be moved 

independently, so have three degrees of freedom. For 

example, the pentagonal pyramid on the left of the figure has 

16 degrees of freedom, 10 of which can be used to distort the 

object. 

 

G. Quasi-Trihedral Objects 

We define quasi-trihedral objects as those objects in which 

no vertex meets more than three non-triangular faces. Figure 7 

shows three such objects. 

     

Figure 7: Quasi-Trihedral Objects 

 

35 objects from our test set are in this category (the count 

does not include objects in previous categories—many 

quasi-normalon objects are also in this category, but not 

counted as such because processing them as quasi-normalons 

in order to preserve axis-alignment is more “beautiful”). 

Identifying such objects is straightforward and can in 

principle be done in O(V) time: check the faces which meet 

each vertex, and ensure that no more than three of them are 

non-triangular. This requires no additional knowledge beyond 

the object topology. 

The resolution strategy is straightforward: (a) fix the 

equations (normals and distances) of the non-triangular faces 

(some care is required here in order to ensure that this 

produces a valid sequence); (b) calculate the coordinates of 

all vertices (by intersection if the vertex lies on three known 

faces, otherwise fix any remaining degrees of freedom while 

ensuring that the vertex lies on appropriate faces), and (c) 

calculate the equations of the triangular faces by fitting planes 

through the vertices which they meet. 

The number of degrees of freedom is: (a) each 

non-triangular face has 3 degrees of freedom; and (b) vertices 

have 3-N degrees of freedom, where N is the number of 

non-triangular faces meeting the vertex. For example, the 

rhombicuboctahedron on the left of the figure has 18 

non-triangular faces so 54 degrees of freedom, 48 of which 

can be used to distort the object (this makes no assumptions 

about symmetry or axis-alignment, and a more beautiful result 

with only 30 degrees of freedom could be obtained by 

processing it as dissimilar parallel sections, Section IIII). 

 

H. Similar Parallel Sections 

Some objects, such as those in Figure 8, are created from 

similar 2D geometry on parallel planes. This includes objects 

which are produced by the skinning or parallel section sweep 

operations provided by many 3D CAD applications (the 

right-hand drawing in Figure 8 is one such), and also some 

objects which cannot be produced by these operations (for 

example, the left-hand drawing of Figure 8). 

Note that, without the assumption that the three planes are 

parallel, the left-hand drawing (Sugihara’s Torus) has no 

construction sequence and the right-hand drawing must be 

processed using the general-case methods described in 

Section IIIJ. 

  
Figure 8: Similar 2D Geometry 

 

The construction sequence here is to create “ghost” faces 

for the three parallel planes. Using this as scaffolding, we can 

fix vertex coordinates and then create real faces from the 

“vertices on two parallel edges” rule used above. 

9 objects from our test set are in this category. 

Identification of these objects requires that object planes 

have been determined in advance (note that automatic 

detection of object planes from topology and inexact 

geometry is straightforward in principle but not fully 

reliable—see, for example, [7]). Identification of which 

vertices lie in which planes is then straightforward and can be 

done in O(V) time. Comparing the contents of the planes is 

the planar graph isomorphism problem, which has 

linear-time solutions (e.g. [2]). 

The resolution sequence is: (a) fix a single face normal for 

the “ghost” faces; (b) fix the face distances for the “ghost” 

faces; (c) fix the coordinates for vertices lying on one of the 

“ghost” faces; (d) fix the offset and magnitude for each other 

“ghost” face; and (e) calculate the coordinates of the 

remaining vertices. 

The number of degrees of freedom is: 2 for the ghost face 

normal, plus 1 for each ghost face distance; 2 for each vertex 

lying on the first ghost face; plus 1 for magnitude and 2 for 

offset (0 if the ghost face centres are aligned along the ghost 

face normal, which is most “beautiful”) for each remaining 

ghost face. In the case of Sugihara’s Torus, this gives a total of 

13 for the “beautiful” version or 17 for the more general 

version. 

In view of the limited number of objects in this category, 

and the fact that the method for identifying such objects is a 

subset of the method used to identify the next category, it 

might be preferable to combine the two categories. 

 

I. Dissimilar Parallel Sections 

Some objects, such as those in Figure 9, are created from 

dissimilar 2D geometry on parallel planes. Every vertex 

touches at least one edge which lies in one of several parallel 

planes and also touches at least one edge which connects it to 

a vertex which lies in a different parallel plane. 
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The construction sequence here is to create “ghost” faces 

for the multiple parallel planes. Using this as scaffolding, we 

can fix vertex coordinates and then create real faces from the 

“vertices on two parallel edges” rule used above. 

  
Figure 9: Dissimilar 2D Geometry 

 

9 objects from our test set are in this category. 

Identifying such objects is straightforward and can be done 

in O(V) time if the candidate plane orientation has been 

identified in advance: for each vertex, ensure that at least one 

of the edges is perpendicular to the plane normal. Note that 

this test is the same as the first part of the test for the objects in 

Section IIIH. 

The resolution sequence is: (a) fix a single face normal for 

the parallel faces; (b) fix the face distances for the parallel 

faces; (c) fix the coordinates of all vertices, ensuring that they 

lie on the appropriate parallel face. 

The number of degrees of freedom is: 2 for the ghost face 

normal, plus 1 for each ghost face distance; plus 2 for each 

vertex. For example, object in the left hand drawing, which 

has 16 vertices, would have 38 degrees of freedom. In 

principle, a significant further reduction in the number of 

degrees of freedom can be obtained in this case by noting that 

all of the faces on the parallel planes are co-oriented 

rectangles, but this is not an essential feature of the category. 

It is doubtful whether or not there are enough objects in this 

category to make it worth detecting. However, it is an obvious 

extension of the previous category. Since the method for 

identifying these objects is a subset of that used in Section 

IIIH, it might be preferable to combine the two categories. 

 

J. %one of the Above 

A few objects fall into none of the above categories and 

remain a problem. Of our test set of approximately a thousand 

objects, only three fall into none of the above categories. 

These are the natural line drawings shown in Figure 10. 
 

 

Figure 10: %one of the Above 

These objects have nothing obvious in common with one 

another, other than that they are the source of a dilemma. In 

theory, all three are genus-zero objects, and, as Sugihara 

points out, a valid (but suboptimal) resolution sequence can 

be found using the Hopcroft-Tarjan algorithm [1] for trivalent 

decomposition of graphs. However, in practice, implementing 

the algorithm purely to cater for such a small group of objects 

is undesirable, particularly since in each case a better solution 

is possible. 

In the case of the left-hand drawing, the object geometry 

can be created from its threefold rotational symmetry (but not 

as a hexagonal frustum topped by a pyramid, which does not 

give a realisable geometry as the pyramid top must be in the 

plane of the frustum top). The middle object has twofold 

rotational symmetry, and the right object has mirror 

symmetry. 

The practical dilemma is that, even though it leads to better 

results, implementing twofold, threefold and mirror symmetry 

categories for such small groups of objects (one each!) is also 

an ineffective use of resources. There seems to be no ideal 

answer. 

IV. CONCLUSION 

The quantitative analysis in this paper suggests that the 

resolvable representation problem is not a problem in 

practice. Most objects fall into particular categories for which 

optimal solutions are readily identified. However, for a small 

group of objects (less than 1% of polyhedral engineering 

objects) which fall into no such category, the recommended 

general solution remains suboptimal. 

In general, categorising objects is straightforward. 

However, identifying normalons (Section IIIC) and 

quasi-normalons (Section IIID) reliably requires that 

axis-aligned edges can be identified. Current methods for 

automating this are not fully reliable, and further work is 

needed. Improved methods for identifying parallel planes of 

vertices (Sections IIIH and IIII) would also be helpful. 

When an object falls into several categories, it is usually the 

case that the most “beautiful” results are obtained by choosing 

the category which gives the lowest number of degrees of 

freedom. 
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