
 
 

  
Abstract— Intrinsic qualities of the cascade correlation 

algorithm make it a popular choice for many researchers 
wishing to utilize neural networks. Problems arise when the 
outputs required are highly multimodal over the input domain. 
The mean squared error of the approximation increases 
significantly as the number of modes increases. By applying 
ensembling and early stopping, we show that this error can be 
reduced by a factor of three. We also present a new technique 
based on subdivision that we call patchworking. When used in 
combination with early stopping and ensembling the mean 
improvement in error is over 10 in some cases. 
 

Index Terms—Cascade correlation, early stopping, 
ensembling, multimodal functions, subdivision method,  
 

I. INTRODUCTION 
  Neural networks are commonly used for regression 

modelling, however a perennial problem in the specification 
is determining the topology of the network. Because hand 
crafting this structure is very time consuming, growing 
topology neural networks have gained in popularity. Cascade 
correlation [1] is a well known member of the constructive 
types, with hundreds of associated publications each year. 

Rather than requiring the designer to answer questions 
such as:- how many hidden layers, how many neurons in each 
layer, and which activation functions should be used, cascade 
correlation automatically makes these choices during its 
supervised learning process. 

The first version of cascade correlation was intended to 
work best as a classifier but, subsequently, its author made 
some minor changes that improved its performance in 
regression roles [2]. The new algorithm was named “Cascade 
II” but is referred to in this paper as “CasCor”. 

The aim of this paper is to study mechanisms that improve 
the fit of the CasCor neural network - with specific attention 
to multimodal surfaces. Test functions for global 
optimisation were being used by the current authors to create 
training surfaces, and curiosity grew as to why certain 
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functions caused exceptional mapping problems for CasCor 
neural networks. Whilst undertaking work to resolve these 
problems, the most successful method discovered was 
subdividing the input domain. To the authors’ knowledge, 
using this method to aid the successful mapping of CasCor 
neural networks has not previously been published. 

Ensemble averaging and early stopping are two techniques 
commonly used to reduce neural network generalization 
errors [3]. We found clear benefits from employing these 
techniques for the functions under consideration. Ensembling 
and early stopping address the bias/variance problem of 
neural networks. We name our subdivision method 
“patchworking” and show that it addresses a third problem of 
CasCor networks, namely their information capacity. This 
capacity is a measure of a neural network’s ability to 
represent the information content within the training set. If 
CasCor networks have a limited information capacity, 
attempting to generalize multimodal functions will result in a 
high mean squared error (MSE) upon testing. Reducing the 
information content in the training set by our subdivision 
method, we show that the MSE is much reduced. The total 
information capacity of the patchwork has grown – hence the 
much improved generalization on multimodal test functions. 

The layout of this paper is as follows: Section II describes 
the three techniques we use to improve the fit for multimodal 
functions. Section III gives details of the experimental setup, 
the results of which are shown in Section IV. Closing remarks 
are made in Section V. 

 

II. IMPROVING THE FIT OF THE CASCOR NEURAL NETWORK 
Three techniques are presented in this paper, all of which 

are designed to improve the fit of the CasCor neural network 
to given datasets thereby improving generalization. These 
three methods are 
1) Early stopping 
2) Ensemble averaging 
3) Patchworking 

A. Early stopping 
One of the disadvantages of CasCor neural networks is 

their propensity to overfit on the training data, thus losing 
generalization of the underlying function [3]. Inspecting the 
monotone decrease of the training MSE gives no indication 
of this. Typically the error during training is seen to reduce, 
almost uninterrupted, until one of the stopping criteria is met 
and the network is pronounced as “trained”. If however a 
call-back function is set, the training progress can briefly be 
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interrupted to test the (still evolving) neural network against 
the validation dataset.  

The validation dataset is wholly independent from the 
training set and it allows us to determine an early stopping 
point. The MSE graph on this validation data typically takes 
the approximate form of a hockey stick outline – initially the 
validation MSE falls as the network fits to the underlying 
function but at some point too many neurons are added, there 
is a loss of generality, and the MSE starts to increase. Early 
stopping halts the training at or around this minimum point 
thus minimizing negative impacts from overfitting. In reality 
the profile of the validation error is not smooth and some 
form of heuristic needs to be used to halt the training at an 
appropriate moment; the heuristic is described in Section 
III.C. 

B. Ensembling 
Tetko and Villa [3] described ensemble averaging, or a 

“committee of machines”, as acting to reduce the variance 
that is common in neural networks. Multiple neural networks 
are trained on the same dataset but, in use, the arithmetic 
mean is taken across the output responses of the ensemble 
members. The testing error of these ensembles is much lower 
than the average test errors of their constituent parts and often 
represents a two to three times reduced testing MSE over 
basic CasCor neural networks - the penalty being  the 
increase in required training time. 

Early stopping and ensemble averaging have previously 
been found to typically deliver much improved fits as shown 
in [3], in which both of these techniques are explained as 
addressing the bias/variance problem. 

C. Patchworking - a subdivision method 
A third technique for improving the fit is described by this 

paper. We introduce “patchworking”, a method of 
subdivision that addresses another problem of CasCor neural 
networks – namely capacity. This technique is particularly 
suited to highly multimodal response surfaces and its benefits 
are shown in Section IV.C, and Figs. 8 and 9.  

Determined empirically, we define “highly multimodal” as 
six or more distinct extrema over a two dimensional surface - 
the fit deteriorating significantly when the extrema exceed 
nine. Functions such as these are used in this paper to 
demonstrate CasCor’s difficulty in fitting the underlying 
function (Table I). These poor fits appear as high MSE’s on 
testing sets and are also clearly visible in surface plots. 
Neither early stopping, nor ensembling, are sufficient to 
overcome these poor fits as the source of this problem is the 
inability of the CasCor neural network to represent the 
complex features in the dataset. 

The ensembled and early-stopped plot of the Schwefel 
function, Fig. 2, does correctly map the global minimum and 
global maximum, but is clearly a poor approximation of 
Schwefel’s form (Fig. 1). The Langermann function, Fig. 3 
likewise challenges the mapping ability of the CasCor neural 
network even with ensembling and early stopping (Fig. 4). 

Some of the greatest strengths attributed to the CasCor 
type of neural network are as a result of it growing its own 
topology during training. An intrinsic feature is that at any 
point during training, no more than one new neuron will be 
having its weights optimised. Reputedly, this distinguishing 
behaviour results in rapid training times, however this is 

challenged by [4], in which the authors also conclude that 
freezing of formerly trained weights can be detrimental to 
effective learning. 

The universal function approximation abilities of the 
CasCor neural network, mathematically proven in [5], are 
only applicable if we assume that correct choices have been 
made when each and every neuron was inserted. By taking a 
system view of the training process, we argue that correct 
choices are not frequently made when mapping multimodal 
functions. 

 
Figure 1 Schwefel function, range x(i) [0,500] 

 
Figure 2 CasCor mapping of Schwefel with ensembling and early 
stopping 

 
Informally, the training process plays the role of an agent 

in the system. This agent aims to train and fix in the network 
one neuron at a time that, in isolation, reduces the MSE on the 
training set by the largest possible amount.  Several time 
steps later in the training, more neurons have been added and 
we see, with the benefit of hindsight, that incorrect choices 
have been made in the early stages of training. What were 
once apparently optimal additions to the network are 
ultimately conspiring to deflect the network from a good 
mapping of the underlying function. The training algorithm 
dictates that once neurons have been placed in the network, 
they may not be removed or re-trained (weight freezing) and 
so the problem becomes irreconcilable [4]. 

The problem has become one of decision theory – 
specifically evidential decision theory: how can a training 
process place a neuron in the network which, later in time, 
will combine with downstream neurons in only a beneficial 
way? 

A more formal description can be found in [6] where they 
consider the problems caused when training on the simple 
“double-tanh” function. The problem is seen to be sufficient 
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to preclude, or at least delay, convergence of the CasCor 
network. 

In our training experiments with datasets that contain 
highly multimodal functions (Table I), the problem becomes 
clearer when monitoring the validation MSE. As the network 
is training, the insertion of new neurons should be conferring 
a greater information capacity to the neural network, and this 
MSE should decrease. Inserting the first two or three hidden 
neurons does cause a small decrease in the validation MSE 
but, soon after, this error increases resulting in a very poor 
generalization of the underlying function. 

 

 
Figure 3 Langermann function, range x(i) [0,2] 

 
Figure 4 CasCor mapping of Langermann with ensembling and 

early stopping 
 

The hypothesis behind patchworking is that by subdividing 
the input domain, the number of extrema that any one neural 
network must approximate is kept below the multimodal 
threshold. Hence, CasCor networks with of a small number of 
neurons can wholly approximate the function over each 
subdivision with a lower MSE. In this way, patchworking 
overcomes the problems associated with weight freezing. 
Ensembling and early stopping can be used in conjunction 
with patchworking, and are in fact logical accompaniments. 

 
Figure 5 Patchworking subdivisions for a 2D function 

The technique is shown in Fig. 5 and is applied as follows: 
Subdivide the input domain so that no single neural network 
is required to map more than six extrema. Train further 
networks on the remaining subdivisions. This collection of 
networks we shall call a “patchwork” from visual similarity 
to that of a patchwork quilt. A relatively simple algorithm can 
be constructed to query such a patchwork, assuming that we 
have stored on file the minimum and maximum bounds of 
each network’s domain. Our patchworking algorithm is 
shown in the Appendix. 

III. EXPERIMENTAL SET UP 
The architecture of the CasCor algorithm is well known 

[1],[2],[7]. The CasCor neural networks under consideration 
are created from the open source library created by Nissen 
[8]. The library contains an implementation of the Cascade 
Correlation II algorithm based on the original Lisp code 
written by Fahlman in 1996 (unpublished).  

Here, the FANN C source code is used with default 
settings chosen for CasCor training. The target MSE for the 
training is 10ିସ  when early stopping is not used and an 
arbitrary setting of 10ିହ when early stopping is used. In use, 
the lower target will never be reached, due to early stopping

Table I Multimodal test functions 

Function Name  Range  

De Jong’s 5th 
ൌ  ൭0.002 ൅ ෍ ቀ݅ ൅ ൫ݔ௝ െ ܽଵ௜൯

଺ ൅ ൫ݔ௝ െ ܽଶ௜൯଺ቁ
ିଵ

ଶହ

௜ୀଵ

൱

ିଵ

 

where 

ቀ
ܽଵ௜
ܽଶ௜

ቁ ൌ ൬
െ32 െ 16 0 16 32 െ 32 … 0 16 32
െ32 െ 32 െ 32 െ 32 െ 32 െ 16 … 32 32 32൰ 

 

െ20 ൑ ௝ݔ  ൑ 20 
݆ ൌ 1,2 

 
(1) 

Langermann ൌ ෍ ܿ௜݁݌ݔ ቌെ
1
ߨ

෍൫ݔ௝ െ ܽ௜௝൯ଶ
ଶ

௝ୀଵ

ቍ
ହ

௜ୀଵ

cos ቌߨ ෍൫ݔ௝ െ ܽ௜௝൯ଶ
ଶ

௝ୀଵ

ቍ 

0 ൑ ௝ݔ  ൑ 2 
݆ ൌ 1,2 

 
 

(2) 

Michalewicz ൌ െ ෍ sin൫ݔ௝൯ · ቆsin ቆ
݆ · ௝ݔ

ଶ

ߨ
ቇቇ

ଶ଴ଶ

௝ୀଵ

 0 ൑ ௝ݔ  ൑  ߨ
 (3) 

Schwefel ൌ 418.9829݊ െ ෍ ቆݔ௝ sin ටหݔ௝หቇ
ଶ

௝ୀଵ

 0 ൑ ௝ݔ  ൑ 500 (4) 

Shubert ൌ ൭෍ ݅ cos൫ሺ݅ ൅ 1ሻݔଵ ൅ ݅൯
ହ

௜ୀଵ

൱ ൭෍ ݅ cos൫ሺ݅ ൅ 1ሻݔଶ ൅ ݅൯
ହ

௜ୀଵ

൱ 
െ8 ൑ ௝ݔ  ൑ െ6.2 

݆ ൌ 1,2 
(5) 

Six Hump Camel Back ൌ ቀ4 െ ଵݔ2.1
ଶ ൅ ଵݔ

ଷ
ସൗ ቁ · ଵݔ

ଶ ൅ ଶݔଵݔ ൅ ሺെ4 ൅ ଶݔ4
ଶሻ · ଶݔ

ଶ 
െ1.9 ൑ ଵݔ  ൑ 1.9 

െ1 ൑ ଶݔ  ൑ 1 (6) 
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triggering a halt to the training. The current release, 
2.1.0-Beta, does not yet provide a neural network copy utility 
or functions that correctly scale and de-scale datasets, and so 
these have been added to our implementation. 

A. Sampling and infill criteria 
Orthogonal arrays (OAs) were chosen to sample our 

multimodal test functions. An OA is defined in the form 
.ܣܱ ܰ. ݇. .ݏ  ݇ ,indicating an orthogonal array with ܰ runs ݐ
factors, ݏ levels, and strength ݐ. This is an array of size ܰ by 
݇, with entries from 0 to ݏ െ 1 with the property that in any ݐ 
columns you see each of the ݏ௧ possibilities equally often [9]. 

The training set is made up from repeated runs of a 
trimmed version of ܱܣ. 25.6.5.2 [10]. With 25 evaluations 
being made each time, 20 runs of this OA are necessary to 
generate a training dataset of 500 points. The selection of the 
factors in each subsequent OA is known as the infill criteria, 
[11]: When subsequent OAs are evaluated, each of its factors 
are chosen to be those numerically furthest from all 
previously used factors. 

The use of orthogonal arrays in the current work is only an 
artifact of the downstream application of this work in 
surrogate modelling, and their inclusion is not believed to 
alter the findings of this paper. In creating training datasets, 
less complex sampling methods should be sufficient to repeat 
our results. 

B. Scaling 
The range of all inputs and outputs is normalized to the 

interval [0.1,0.9] with the scaling factors saved after 
processing. These factors are later used to scale down the 
queries and scale up the neural network responses.  

Note: All MSE errors presented in this paper are calculated 
on scaled data [0.1,0.9], thus making possible fair 
comparisons between otherwise disparate function output 
ranges. 

C. Early stopping 
For this work, we chose the size of the validation set as 

30% of the size of the training set. Code from Beachkofski 
and Grandhi [12] provides the method of distributing the 
samples in the validation set. This “improved Latin 
hypercube” sampling was chosen because: 
1) Generating validation sets of less than 1000 points is not 

computationally expensive and can be done at run time, 
2) The algorithm in [12] produces points that fill the 

hypercube uniformly, the statistical properties of which 
are desirable as described in [11], 

3) The technique is fundamentally different from that used 
to generate the training set - ensuring that most, if not all, 
of the validation data points are automatically 
independent from those in the training set. 

After the validation error is initialized to 1.0, our heuristic 
algorithm for early stopping is run each time a new hidden 
neuron is added to the network, and is given below: 
• Test the network against the validation set 
• If this new validation error is less than the old one, 

update the old validation error with this new value and 
make a copy of this “best network so far”. 

• There must be at least five hidden neurons before early 
stopping can be initiated 

• Early stopping can be applied retrospectively i.e. the best 

network may end up having only four hidden neurons 
• Early stopping is triggered on the earliest of: 

o The error on the validation set becoming less than 
5 ൈ 10ିହ (suitably low error) 

o The validation error growing to be 50% larger than 
the smallest experienced validation error (network 
is diverging) 

o More than 31 hidden neurons existing in the 
network (likelihood of a diverging network) 

• When early stopping occurs, the “best network so far” is 
recalled from memory to replace the active network. The 
training is halted and the network is saved to permanent 
storage. The saved neural network will be that which had 
the smallest validation error.  

D. Ensembling 
When preparing an ensemble we need to answer the 

question of how many neural networks to include in that 
ensemble. Others have chosen an arbitrary number [3],[13] 
for their ensembles, but we investigated the ensemble size 
with respect to its influence on reducing the MSE. 

Ensembles of CasCor neural networks were trained on the 
datasets, each test was repeated ten times for the larger 
ensembles and 30 times for ensembles smaller than ten. 

E. Patchworking 
Fig. 10 shows the algorithm used to construct the 

patchwork. It allows for a user defined number of 
subdivisions known as “depth” and can be applied to as many 
input dimensions as is practical. Note, though, that the 
number of required networks grows exponentially 
2ሺௗ௘௣௧௛ൈௗ௜௠௘௡௦௜௢௡௦ሻ and so this method may not be practical if 
the dimensions number more than nine or ten. For two 
dimensional functions, an appropriate amount of training 
data per network (or “per patch”) was found to be between 25 
and 70 samples per input dimension, hence, with four patches 
we used a training set of (size=500). 

F. Testing the fit 
One traditional test for the quality of regression fits (such 

as presented here) is to calculate the MSE against a testing set, 
in which the samples differ from those in the training set. 
Lower is better and so we can measure the success of the 
techniques herein by how much they reduce the MSE. The 
testing set is generated from the same algorithm as used for 
the validation sets [12], however it is larger. The size is 
chosen as 1000 ൈ ݀ where ݀ is the number of inputs to the 
neural network (or dimensions). The positioning of so many 
points is computationally expensive, especially when trying 
to maintain space filling properties. For this reason only one 
template is generated for all the testing sets (size=2000 
queries). 

IV. RESULTS 

A. Early stopping 
In columns one and two of Table II, the results of early 

stopping are displayed. The mean reductions in the MSE 
range from 8% to 49% due to early stopping (ES). In all test 
cases, early stopping has reduced the common tendency of 
the CasCor neural network to overfit.  
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B. Ensembling 
To avoid losing clarity, only three of the six test functions 

are shown in Fig. 6, however, the form of the line graphs 
were similar throughout all six functions; the MSE reduced 
rapidly as the ensemble size increased from one to seven. 
Smaller reductions in the MSE occurred until ensembles 
greater than (size=25) were seen to deliver little or no benefit. 
We also used early stopping in this experiment and so the 
MSE’s in Fig. 6 reflect the combination of both techniques. 

 

 
Figure 6 Reduction in mean squared error due to ensembling 

The curves in Fig. 6 take the form: 
 

ா௡௦௘௠௕௟௘ܧܵܯ ൌ  ఈିఉ
ா௡௦ೞ೔೥೐

൅  (7)       ߚ

 
Where ߙ  is the MSE of a given neural network when 

ensembling is not used (Ensୱ୧୸ୣ ൌ 1ሻ, and ߚ is the asymptote 
to which the curve tends. Effectively, ߚ represents an MSE 
boundary that no size of ensemble can reduce. By inspection 
of (7), larger ensemble sizes will be beneficial in reducing the 
MSE when   ب ߙ β . Nevertheless, ensembling larger than 
25 delivers too little benefit to be of practical use. 

In Fig. 7 only the Michalewicz data is presented over a 

smaller range of ensemble size. On this scatter graph, the 
Michalewicz MSE’s are represented as points. The line of 
best fit is (7) when 0.0117= ߙ and 0.0060 = ߚ. Values of 
 .were found by linear regression ߚ and ߙ
 

 
Figure 7 Michalewicz scatter plot and the curve predicted by (7) 

C. Patchworking  
In Table II and Table III,ሺEnsୱ୧୸ୣ ൌ 15ሻ is used. In Table 

II, the basic CasCor results are shown alongside the benefits 
of early stopping, patchworking, ensembling + early 
stopping, and all three combined. Patchworking is applied to 
(depth=1) and so the dataset is divided into four quarters. The 
same computer program was used to generate all the neural 
networks, the only changes being flags that turn on/off the 
features shown. Results shown are formed from the 
arithmetic mean of ten trials. 

When compared to a standalone CasCor neural network, 
the effect of patchworking reduces the error an average of 3.3 
times. Employing ensembling and early stopping on these 
functions reduces the error by an average factor of 3.0. 
However, the real benefit of patchworking is that it can be 
combined with the techniques of early stopping and 
ensembling – here delivering an average of an 11.3 times 
reduction in neural network testing error (87.8% reduction). 

D. Neurons added during training 
Table III shows the average over ten repetitions of the  

Table II Benefits of ES, Ens and, patchworking 

10ଷܧܵܯ 

 
Cascade Correlation 
(CasCor) CasCor + ES CasCor with 

Patchworking 
CasCor with Ens 
+ ES 

CasCor with 
Patchworking 
+Ens + ES 

DeJongs5th 
60.5 55.2 29.4 36.1 15.6 
Reduction in error: 8.8% 51.4% 40.3% 74.2% 

Langermann 
21.3 10.8 6.43 10.1 2.30 
Reduction in error: 49.3% 69.8% 52.6% 89.2% 

Michalewicz 
14.6 11.7 7.14 6.01 2.18 
Reduction in error: 19.9% 51.1% 58.8% 85.1% 

Schwefel 
18.0 15.7 7.51 8.58 2.04 
Reduction in error: 12.8% 58.3% 52.3% 88.7% 

Shubert 
6.12 4.48 1.37 0.91 0.27 
Reduction in error: 26.8% 77.6% 85.1% 95.5% 

Six Hump 
5.13 3.46 0.87 1.65 0.29 
Reduction in error: 32.6% 83.0% 67.8% 94.3% 

Average reduction 
in error  25.0% 65.2% 59.5% 87.8% 
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number of neurons added during training. With no early 
stopping algorithm, several of the basic CasCor neural 
networks grow until they are stopped by an upper limit of the 
training (total_neurons < 35). Although a large number of 
neurons should confer a large information capacity, the high 
MSE’s in Table II show how poorly the basic CasCor 
networks map the multimodal functions.  

The CasCor + Patchworking neuron count is smaller per 
network than the basic CasCor. The total_neuron limit is not 
causing termination of the training. The subdivision of the 
domain has meant that the training algorithm now ends either 
because the multimodal functions have been mapped 
successfully to the user specified MSE, or, the depth limit 
was reached. Since four networks are employed in the 
patchworked solutions, the information capacity of the 
patchwork is raised approximately four times. The reduced 
MSE’s for the patchwork solutions in Table II are a direct 
result of this greater capacity. 

As would be expected, almost all of the CasCor with Ens + 
ES and the CasCor with Patchwork + Ens + ES results have 
lower neuron counts due to the early stopping mechanism 
halting the growth of each network. The low testing errors in 
Table II also reflect the improvements that ensembling 
delivers. The lowest errors are seen when all three techniques 
are combined; Ens, ES and patchworking each addressing the 
bias/variance, and information capacity problems of the 
CasCor neural network. 

 
Table III Average number of neurons in each subdivision 
network 

 Cas- 
Cor 

CasCor with 
Patchworking 

CasCor 
with 
Ens + 
ES 

CasCor with 
Patchworking 
+Ens + ES 

De Jong’s 
fifth 34 20.2  12.7  10.9  

Langermann 34 16.6  13.9  10.1  
Michalewicz 33.4 15.8 12.7  10.5  
Schwefel 33 16.8  14.4 10.5  
Shubert 29.9 12.4  15.0 10.5  
Six Hump 29.3 12.4  14.9 10.8

 

E. Training time 
Training times for the Schwefel function were 33s for the 

basic CasCor and 345s for the CasCor + Ens + ES; the larger 
time due to the cost of training the 15 ensemble elements. 
When patchworking alone was used, the time was 16s. With 
patchworking + Ens + ES the time was 168s. Of note is that 
patchworking has halved the training times of the comparable 
non-patchworked solutions. Despite the demand to train four 
times as many neural networks, the subdivision process has 
meant that each patch trains on a quarter of the 500 element 
training set – hence the reduced training times. The CPU was 
an Athlon 64 X2 2GHz with 512KB cache. 

F. Visualization of patchworking + Ens + ES results 
Figs. 8 and 9 show clearly the significant improvement 

achieved by patchworking when compared to Figs. 2 and 4. 

 
Figure 8 CasCor mapping of Schwefel (Patchworking + Ens + ES) 

 
Figure 9 CasCor mapping of Langermann (Patchworking + Ens + 

ES) 
 

V. CONCLUSION 
All six functions presented here challenge the mapping 

capabilities of cascade correlation neural networks. Some 
redress is provided by early stopping and ensembling 
techniques; however, our results show that cascade 
correlation neural networks have an intrinsic weakness when 
presented with multimodal functions. 

We introduced patchworking to subdivide the input 
domain and found a 3.3 times reduction in the mean squared 
error when used alone, and an 11.3 times improvement when 
used with ensembling and early stopping techniques. The 
patchworked solutions were found to have approximately 
half the training cost of non-patchworked solutions. 

Further analysis of these results is planned, which will 
establish if the ensemble finding, (7), extends to other types 
of neural network. Investigating the size of the training 
datasets, with respect to its influence on the MSE, also 
warrants further investigation. 

Variants of the CasCor neural network include one that 
only adds neurons to a single hidden layer (breadth) [2] and 
one that chooses whether to add depth or breadth to the 
network [14]. Both have mixed success against the standard 
CasCor. Lastly, Adams and Waugh [15] propose the open 
question of a two-stage training procedure. This type of 
training could keep most of CasCor’s speed benefits without 
the detrimental effects of weight freezing. 
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APPENDIX 

 
Figure 10 The Patchworking algorithm 
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