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Abstract–The functional structure of data not neces-

sarily requires using complex classification techniques

such as support vector machines. In some appli-

cations extending common multivariate methods to

functional data suffices not only in regard to classifi-

cation error but also and mainly to reduce time for

training and testing and to keep software as sparse as

possible. The present analysis demonstrates this by

a classification problem in the aggregates industry.

Multivariate functional regression to identify 12 dif-

ferent rock types from reflectance spectra beats sup-

port vector machines not only in regard to classifica-

tion error but also with respect to time requirements

for training and testing.
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1 Introduction

In many real-life applications, such as geo-engineering,
signal processing, speech recognition, chemical engineer-
ing, the data observed are naturally described as dis-
cretized functions or curves rather than vectors of fea-
ture values [26]. However, applying classic techniques
of multivariate statistics directly to the functions ob-
served might cause difficulties, since functions form high-
dimensional and highly correlated data. This yields ill-
posed problems, and in particular a substantial deterio-
ration in the classification performance as well as highly
imprecise parameter estimates [10] [13]. Techniques of
functional data analysis can help to overcome these prob-
lems of multicollinearity and diminish spurious effects.

For classification problems different approaches exist to
address the functional structure of the data. First, high-
dimensional classifiers such as penalized or regularized
discriminant analysis [13] or support vector machines [15]
[3] [14] might be applied directy to the observed data.
Second, after transforming the data approprietly, com-
mon classification methods might be used [27]. Most no-
tably, approximating a function by a sum of basis func-
tions aids further analysis. A basis expansion not only
allows for representing the data as continous curves and
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though capturing the infinite dimension by using a few
basis coefficients to represent the data, but it also yields
some smoothing. Further analysis such as classification
might be based on these coefficients or on scores from
additional functional dimension reduction.

Third, common classification methods have been adapted
to the specific structure of functional data such as linear
functional discriminant analysis [13], functional logistic
regression [28] [21], functional multinomial regression [1],
functional penalized optimal scoring [2], a functional ver-
sion of knn [10], functional support vector machines [27],
or functional neural networks [30] [29] [23]. Even ensem-
ble techniques that are based on the idea of constructing
multiple function predictions from the data by means of
a “weak” base procedure and using a convex combination
of them for final aggregated prediction [6] [24] [4] [5] have
been extended to functional data [11]. Basically, adapt-
ing common methods to functional data makes use of the
theory of Hilbert spaces. Assuming that the functions
considered are from the Hilbert space L2(R), the inner
products and distances a method relys on may be re-
placed by the inner product for functions and its induced
metrics, respectively.

In many applications support vector machines are used
for classification of functional data due to their flexibil-
ity in determining nonlinear bounderies by constructing a
linear boundery in a large, transformed version of the fea-
ture space [14]. Yet, they avoid overfitting by controlling
the margin between classes and sparsely representing the
margin by the support vectors. However, disadvantes are
the choice of parameters (cost, kernel and kernel parame-
ters), training time, extensive memory requirements, and
the problem of how to cope with multi-class problems [7]
[20].

Due to the overwhelming results in classification many
researcher tend to use support vector machines by de-
fault ignoring the complexity of this method. However,
a rule of thumb such as “the more complex the method
the better the results” does not hold. Occasionally, sim-
ple methods such as multivariate functional regression
yield not only surprisingly good or even better results
than a complex technique but also require less resources,
which is particularly important for time-critical applica-
tions. Below this is shown by a classification problem that
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one of world’s major industries, the aggregates industry,
is faced with.

The question of what extent aggregates (sand, gravel,
crushed rock) resist physical and chemical loads, is of
great importance for their practical use. In general,
petrological composition influences engineering proper-
ties of rocks such as mechanical or thermal characteristics
[12] [16] [25]. Thus, a reliable method for classification of
rock types and rock variants can support an appropriate
choice of material [17] [18].

Due to the need for faster and more beneficial process and
quality control, the aggregates industry has become inter-
ested in finding automatic means for identifying suitable
rock characteristics. Such a device was developed in a
project called PETROSCOPE, which started in 2001 [8]
[9], leading to a patent pending process [32]. Today most
of the testing of aggregates is performed after production
rather than at the source of the rock or sediment extrac-
tion. With a more efficient test method, as promised
by PETROSCOPE, it is expected that testing would in-
creasingly being used for the analysis of the raw material,
as well as for the end product [17] [18].

Using data from the PETROSCOPE project [19], the
present investigation deals with classifying 12 different
rock types or varieties of the same type with different tex-
tural properties, different porosity, and different stages
of alteration and surface weathering by means of their
reflectance of visible and near infrared light using mul-
tivariate functional regression (compare [23]). The spec-
tra serve as predictors for multivariate responses that are
found from class membership by a dummy variable ap-
proach. Classification performance of multivariate func-
tional regression, measured as classifiction error as well
as time complexity, is compared to that of support vector
machines.

2 Multivariate Functional Regression

2.1 Functional Regression

Let be a sample consisting of a scalar response yi and a
. In a functional regression model

yi = β0 +

∫

β(t)xi(t)dt, (1)

a function β(t) and a scalar β0 ∈ R ought to be de-
termined from functional predictors xi(t), i = 1, . . . , n to
estimate the scalar yi. Calculations simplify on represent-
ing the functions involved by basis functions φk ∈ L2(R),
k = 1, . . . ,K [26, p. 43]. xi(t) and β(t) need not be
represented by the same basis functions.

Let φk(t), k = 1, . . . ,K be a basis for xi(t), i = 1, . . . , n

such that

xi(t) =

K
∑

k=1

αik φk(t) = φ
′αi

with φ = (φ1(t), . . . , φK(t))′ and αi = (αi1, . . . , αiK)′.
Let ψl(t), l = 1, . . . , L be a basis for β(t) such that

β(t) =
L
∑

l=1

γl ψl(t) = ψ
′γ

with ψ = (ψ1(t), . . . , ψL(t))
′ and γ = (γ1, . . . , γL)

′.
Thus,

∫

β(t)x(t) dt =

∫

γ′ψφ′αi dt =

= γ′

(
∫

ψφ′dt

)

αi = γ
′ Bαi ,

where B = (bij)L×K and bij =
∫

ψi(t)φj(t) dt. Thus,
regression model (1) turns to

yi = β0 +α
′

iB
′γ . (2)

This yields classic linear regression with design matrix
X = (1 AB′), where the ith row of A is α′

i and 1 is a
vector of ones to account for the intercept. The solution
of (2) is (β0,γ

′)′ = (X′X)−1X′y, where y = (y1, . . . , yn).

2.2 Data Representation

The functions xi(t), i = 1, . . . , n, are known only for a
given set of arguments, tj ∈ R, j = 1, . . . , p. These argu-
ments need not be equal for all functions. Similar to [23],
the observed values are assumed to be zij = xi(tj) + εij ,
i.e. the function values contain some noise εij with
E(εij) = 0, i = 1, . . . , n; j = 1, . . . , p. Using a basis

representation xi(t) =
K
∑

k=1

αikφk(t), the functions xi(t)

can easily be determined by least squares estimation, i.e.
the coefficients αik are found from minimizing

m
∑

j=1

(

zij −
K
∑

k=1

αikφk(tj)

)2

= (zi − Φαi)
′(zi − Φαi),

where Φ = (Φjk) is a p × K matrix with Φjk = φk(tj),
zi = (zi1, . . . , zip)

′. To avoid overfitting penalized regres-
sion might be carried out. For further reading cf [26, p.
86]. The estimated functions then are

xi(t) =

K
∑

k=1

α̂ikφk(t) = φ
′α̂i, (3)

where α̂i = (Φ′Φ)−1Φ′zi, and φ = (φ1(t), . . . , φK(t))′.

2.3 Basis

The choice of an appropriate basis is crucial. The basis
should allow approximating the functions observed arbi-
traily well [26, p. 43]. In particular, they should be able
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to mirror local behaviour of the functions and not re-
quire too many resources. Moreover, an easy handling is
highly desirable. Wavelets are well appropriate to model
local behaviour, but they are very complex and trans-
forms require much time. B-splines have convenient local
properties due to their finite support, but they are not
orthonormal like wavelets. However, they can be calcu-
lated easily and rapidly. Calculation of the basis trans-
form is also less time-consuming than that of a wavelet
transform. Derivatives and integrals of B-splines can eas-
ily be obtained due to their polynomial structure. Thus,
the spectra are represented by means of B-splines in the
present analysis.

2.4 Multivariate Functional Regression

Using a basis representation, model (2) can easily be ex-
tended to multivariate responses yi = (yi1, . . . , yiq) such
that

yis = β0s +

∫

βs(t)xi(t) dt = γs
′Bαi ,

where B and αi are defined as in section 2.1, and γs =
(γs1, . . . , γsL), s = 1, . . . , q are the coefficients of the ba-
sis representation of the regression functions βs(t), i.e.

βs(t) =
L
∑

l=1

γsl ψl(t) = ψ′γs. The coefficients are found

from

G = (β
0
,Γ′)′ = (X′X)−1X′Y , (4)

where β
0
= (β01, . . . , β0q)

′, the design matrix is defined
as in section 2.1, and Γ is an L×q matrix whose columns
are γs, s = 1, . . . , q. Y is the n×q response matrix whose
ith row is yi = (yi1, . . . , yiq),

For classification problems the response vector is ob-
tained from the vector of class labels by means of a
dummy variable approach. The ith response vector yi

consists of zeros except at position s if the ith sample
belongs to class s.

Several steps are necessary to estimate the class label c
of a new sample xN (t): First, the basis coefficients α̂s

are determined by least squares estimation from the dis-
cretized function zN = (zN1, . . . , zNp)

′ similar to (3) by
α̂N = (Φ′Φ)−1Φ′zN . Second, the predictor is found from
x = (1 α̂Nn

′B′), which yields ŷ = xG using (4). Finally,
the class label is predicted from ĉ = argmax ŷ .

3 Support Vector Machines

Support vector classification is based on finding a sep-
arating hyperplane such that the margin between two
groups is a maximum. In the two-group linear classi-
fication problem with class labels y ∈ {−1, 1}, a func-
tion f(x) = β0 + β′ x with the associated classifier
c(x) = sign[f(x)] is to be estimated from n training pairs

(xi, yi) ∈ R
p × {−1, 1} by solving

min
β0,β

1

2
||β ||2 + C

n
∑

i=1

ξi

s.t. yi(β0 + β
′ xi) ≥ 1− ξi, (i = 1, . . . , n)

where C is a cost parameter chosen by the user. The
larger the values of C, the higher the penalty to errors.

Different approaches exist to address the multiple class
problem: margin tree support vector machines [31] or a
one-against-one approach combined with majority voting
[22]. Based on the marginM(i, j) = 2||β||−1 between the
classes i and j, the classes are partitioned into two groups,
G1 and G2. The classifier is designed to separate these
two groups. Various ways exist to find the partition of the
classes. Complete linkage clustering chooses the partition
P = {G1, G2} with the largest margin M0, i.e.

maxM(i, j) ≤M0 for i, j ∈ Gk, k = 1, 2

maxM(i, j) ≥M0 for i ∈ G1, j ∈ G2

It yields more balanced trees than single linkage cluster-
ing [31, p. 640].

4 Description of the Data

For 12 different rock types and varients that are of world-
wide economic importance ten particles per class were se-
lected and irradiated with visible and near infrared light.
Depending on the sample size, 1 to 3 measurements were
carried out from different postitions. Altogether, 313
spectra were collected. The measurements were made in
reflectance mode from 338 nm to 1100 nm. In the present
analysis only the region from 385 nm to 981 nm is consid-
ered. The measurements were done with regard to control
of optical geometries to attain both reproducibility and
optimal inclusion of the variations of the rock surface.
Table 1 gives an overview of the rock types and variants,
their origin and some of their properties.

5 Results

In the present analysis the B-spline basis for the spectra
consists of 200 basis functions of order 4. The regression
functions are represented by 50 B-spline basis functions
of order 4. Order and number of the bases as well as the
cost parameter and the kernel for support vector classifi-
cation are selected by 5-fold cross-validation to minimize
classification error. Thus, support vector machines use
a linear kernel. Classification performance is assessed by
the level of classification error and by the time required
for training and testing using 5-fold cross validation and
50 runs.

Figure 1 dipicts the data and classification results. Fig-
ure 1(a) shows the mean curves derived from 1 to 3 mea-
surements of 10 particles per rock type. On average, mul-
tivariate functional regression yields smaller classification

Proceedings of the World Congress on Engineering 2010 Vol III 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-18210-8-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



Table 1: Rock type of samples and their characteristics

Rock type Place name, country code Grading [mm] Porosity Number

Igneous rocks

Plutonic Rocks

Granite Ing̊a, FI 8/16 Dense 10

Gabbro Dean, GB 6/10 Dense 31

Extrusive igneous rocks (volcanics)

Rhyolite Glera, IS 8/16 Dense 10

Andesite Zagaj, SI 8/16 Dense 25

Dacite Korce, AL 8/16 Dense 36

Basalt Kloech, AT 8/16 5% 15

Sedimentary rocks

Chemical and biogenic rocks

Limestone Griza, SI 8/16 Dense 31

Dolomite Paka, SI 8/16 5% 30

Chert Mirna, SI 8/16 Dense 34

Metamorphic rocks

Amphibolite Siilinjarvi, FI 8/16 Dense 30

Gneiss Josidpol, SI 8/16 Dense 30

Serpentinite Bistrica, SI 8/16 Dense 31

error than support verctor machines applied to the basis
coefficients, which can be seen from Figure 1(b). Mean
classification errors are 0.0452 and 0.0534 for multivari-
ate functional regression and support vector classifica-
tion, respectively. According to a sign test, classification
error of multivariate functional regression is significantly
smaller than of margin tree support vector machines (p-
value 9.2477 · 10−6).

Table 2: Classification error of 50 simulation for mul-
tivariate functional regression (FMreg). Pairwise SVM
(pSVM), margin tree SVM (SVM) and multivariate Re-
gression (Mreg) are applied to the coefficients of basis
representation.

pSVM FMreg SVM Mreg
Mean 0.0873 0.0452 0.0534 0.1898
Std 0.0125 0.0063 0.0081 0.0196
Min 0.0607 0.0319 0.0319 0.1534
Max 0.1214 0.0575 0.0671 0.2492

Table 3: Average training and testing time of 50 simu-
lation for multivariate functional regression (FMreg) and
margin tree SVM (SVM) applied to the coefficients of
basis representation.

Training Testing
FMreg SVM FMreg SVM

Mean 0.0076 0.3154 0.0033 0.0907
Std 0.0100 0.0246 0.0063 0.0090
Min 0.0000 0.2726 0.0000 0.0728
Max 0.0377 0.3692 0.0260 0.1242

Table 2 summarizes statistics of classification error ob-
tained from 50 runs of 5-fold cross validation. To show

that multivariate regression need not yield low error
rates, Table 2 also gives classification error for multivari-
ate regression on the coefficients of the B-spline basis rep-
resentation of the spectra. Also, it shows that the worse
performance of margin tree support vector machines com-
pared to multivariate functional regression is not caused
by the decision tree since pairwise support vector ma-
chines yield even worse results.

The boxplots in Figures 1(c) and 1(d) indicate that mul-
tivariate functional regression is not only much faster in
training but also in testing than support vector classifi-
cation, which is particularly important for time critical
decision. Table 3 summarizes the statistics of training
and testing time. A two-sided sign test confirms that
training time (p-value 1.7764 · 10−15) and testing time
(p-value 1.7764·10−15) are significantly smaller for multi-
variate functional regression than for support vector ma-
chines. However, it has to be mentioned that pairwise
support vector machines even need significantly more
time in training (p-value 0.0066) and testing (p-value
1.7764·10−15) than margin tree support vector machines.

6 Conclusion

Functional data not automatically justify the use of com-
plex classification techniques such as support vector ma-
chines. In some applications extending common multi-
variate methods to functional data suffices not only in
regards to classification error but also and mainly to re-
duce training and testing time and keep software as sparse
as possible. This is demonstrated impressivly using data
from aggregates industry that wants for statistical classi-
fication of 12 different rock classes and variants by means
of visible and near infrared reflectance spectra. The rock
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Figure 1: Mean spectra from 385 nm to 981 nm for 12 rock types.

samples cover rock types that are of worldwide economic
importance and used for aggregates. Multivariate func-
tional regression beats support vector machines not only
in classification error but also in time requirements for
training and testing. This facilitates the development of
a simple and fast classification code.
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