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ABSTRACT -. It is well known fact that system 
parameters of the flexible structures keep on 
changing due to several reasons. Ordinary 
controllers loose their effectiveness in changed 
situations and do not guarantee the stability of the 
closed loop system. However, controllers designed 
based on robust control theory, not only maintain 
the closed loop stability of the perturbed system 
with a large variation in system parameters but 
also maintain the best performance. H  Loop 

shaping controller is designed and implemented on 
a smart flexible structure treated with pre-
compressed layer damping and ACLD treatment. It 
outperforms Linear Quadratic Gaussian and 
standard H controller both in terms of robust 

stability and robust performance. Relative merits 
and demerits of the μ – synthesis based controller 
are also discussed.  
 
 
Index Terms- Robust control, ACLD, H control, 

Loop Shaping, mu-synthesis 
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I. INTRODUCTION AND 
PROBLEM FORMULATION  

 
It is a well known fact that all flexible 
structure are subjected to change in system 
parameters with the passage of time due to 
change in operating conditions and 
environmental factors. Ordinary fixed 
controllers designed based on nominal 
parameters loose their effectiveness due to 
variation in system parameters. The modern 
robust controllers based on sophisticated H2 

and H  optimization theory are free from 

such defects as discussed in reference [1]. In 
robust control methodology one designs a 
central controller which gives robust stability 
and robust performance for a family of system 
with perturbed parameters. In this direction, 
Jee et al [2] used H  control design scheme 

based matrix fraction stability condition. A 
cantilever beam was used in the study. Kang 
et al [3] presented a robust vibration control 
for flexible SCARA type robot manipulators 
based on mu-synthesis theory.  
 
Baz [4] developed the robust controller for 
ACLD treated beam by minimizing the H2-
norm of the transfer functions. Afterwards, 
Crassidis et al [5] discussed the performance 
of  H  controllers at different operating 

frequencies and temperatures. Chang et al [6] 
presented a model reduction method and 
uncertainty modeling for the design of a low 
order  H  robust controller for suppression of 

smart panel vibrations. 
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      For ACLD based systems the difference between 
theoretical and experimental results is higher. So, 
there is a need to develop controllers which are 
robust to these parametric errors. So the natural 
choice is to look for a robust controller. Working 
in the same direction, Li et al [7] used mu-
synthesis technique for the vibration control of 
plate – like structures. Liu et al [8] designed and 
implemented H  robust controller to 

accommodate uncertainties of the ACLD 
parameters. 

 
Xie et al [9] investigated the robust vibration 
control of a thin plate covered with a controllable 
constrained layer damping. Caracciolo et al [10] 
developed robust controller based on mixed 
H2/ H  optimization. Hu et al [11] designed and 

applied robust controllers to suppress the 
vibrations of a circular plate. Stavroulakis et al 
[12] reduced the rotor system vibrations using 
magnetic bearings. Very recently, Lim et al [13] 
proposed linear matrix inequality based robust 
controller for an active mass damper. For robust 
vibration control of smart structures, H  and mu-

synthesis based controllers (MU controller) have 
been generally tried. H  Loop Shaping Design 

Procedure ( H -LSDP) is an important robust 

control methodology. In the present work H -

LSDP based robust controller has been applied 
and the results are compared with standard H , 

MU controller and Linear Quadratic Gaussian 
(LQG) controller.  

 
       II. SYSTEM DESCRIPTION  
      a.) Finite Element Modeling 
       
A FEM based model of the structural   system is 
obtained by using energy principles along with 
Hamilton method. The beam is allowed to move 
axially. When the bolts are not tightened, the 
beam will be under simply supported beam 
conditions. If the bolts are tightened to a high 
value such that slope formed at the free ends is 
zero and the beam behaves as fixed- fixed beam 
with axial movement allowed. Under the various 
loads, applied by tightening the loads, different 

boundary conditions can be developed 
artificially (fig 1). 
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Figure 1:-Schematic view of the clamped 
beam with variable boundary conditions 

 
 

   In FEM approach, the actual system (i.e. 
flexible structure ) is modeled as n-degree-
of-freedom mechanical system whose 
generalized co-ordinates are represented by 
a n x 1 vector q and  n x n  mass matrix M 
and stiffness matrix K; both matrices are 
positive definite and symmetric. The 
equation of motion is given as  

 
    M q + K q = f                                              
                                                                   (1) 
   where f is the  n x 1 vector of generalized 

co-ordinates. Since the matrix K is a 
complex matrix, eq. (1) cannot be used 
directly for controller design and simulation 
purpose using standard simulation tools. 
Although certain methods are available (like 
GHM, Biot method etc) in which K is a real 
matrix, certain other problems are 
encountered. In these approaches damping 
matrix D comes into picture to accurately 
represent the dynamics of the system.  

 
       b.) Grey Box Subspace System 

Identification 
 
 Even though matrix K is complex, it is easy 
to construct the frequency response function 
(FRF) from the input -to- output data using 
M and K matrices with the help of standard 
MATLAB toolboxes.  
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Reduced order system transfer function can be 
identified from FRF data using standard system 
identification methods. The system can be written 
in the form written as below 
 

( ) ( ) ( ) ( ) ( )t t t t t
  

     
   2

0
x Ax Bu x u
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

0 I
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 ( ) ( ) ( )t t t  T
2y Cx B 0 x                                                                                                                  

                                                                          (2b)    
 where Ω and    Λ n x n  ,  and   B 2

n x m  has 

to be estimated if inputs and outputs are 
collocated, which is there in our present work. 
Here m represents the number of inputs of the 
system. For a single input single output (SISO) 
system, with single mode consideration, the above 
model can be written as  
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                                                                           (3) 
where  ,    and    are the natural frequency, 
damping ratio and mode shape ( of the considered 
mode) of the structure at the location where 
actuator is attached respectively. 12  is obtained 

by multiplying the mass normalized mode shapes 
at the sensor and actuator location. By considering 
the various modes of interest, the model above 
can be extended to multi mode case easily. Let  

( )jG  represents the FRF of the continuous time 
system obtain from FEM data. For accurately 
identifying the system using feed through term by 
correcting the model shown in relation (3) by the 
following equation 

       

 
( ) ( ) +  u(t)

      ( )

t t

t



 T
2

y C x D

B 0 x D
                                    (4)    

 
The value of D is varied from zero to certain 
positive constant until the FRF of the identified 
model matches with the obtained from FEM 
analysis.  

    

c.) Linear Fractional Transformation 
Model of uncertain system  

 
Every single mode of a structural system is 
represented in transfer function form by 
equation 
 

12
2 2

y
=

u s +2 ωs+ω




                                                             

(5) 
where 12φ  ,   and ω  represent the product 

of mode shapes at actuator and sensor 
locations, damping ratio and natural 
frequency of the structural system. Figure (2) 
shows the graphical presentation of LFT 
based model of the structure for a single 
mode. 
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  Figure 2:- LFT representation for a single 

mode 
 
By adding different modes the model can be 
generated for multiple modes.W1 and W2 
are the weighing transfer functions used for 
controller design.  

 
III. OPTIMAL AND ROBUST  

CONTROL DESIGNS 
 
a.)  H  Controller Design 

    
The H  solution formulae use solutions of 

two algebraic Riccati equations (ARE). An 
algebraic Riccati equation 

   
TE X + XE - XWX +Q = 0                     (6) 
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   where W=WT  and  Q=QT, uniquely 

corresponds to a  Hamiltonian 

Matrix
 
 
 

T

E -W

-Q -E
. The stabilizing 

solution X, if it exists, is a symmetric 
matrix which solves the ARE and is such 
that E-W X is a stable matrix. The 
stabilizing solution is denoted as  

 

  
 
 
 

T

E -W
X = Ric

-Q -E
                                 (7) 

 
  b.) H Loop Shaping Controller Design 

 
   The H  robust stabilization against such 

perturbations and the consequently 
developed design method, the H  LSDP, 

could relax the restrictions on the number 
of right-half plane poles and produce no 
pole-zero cancellations between the 
nominal model and controller designed. 
This method does not require an iterative 
procedure to obtain an optimal solution 
and thus raises the computational 
efficiency. 

    
   c.)  μ Controller design by D-K iteration 

method 
   For robust stability and robust 

performance, it is required to find a 
stabilizing controller K such that 

   
   sup ( ) 1j


 


M(P,K)


                          (8) 

 
An iterative method was proposed to solve 
which is called the D-K iteration μ-
synthesis method and is based on solving 
the following optimization method, for a 
stabilizing controller K and a diagonal 
constant scaling matrix D.  

 
 
 
 
 
 

 
 

  V. RESULTS AND COMPARISION 
 

First of all the nominal system 
corresponding to intermediate system with 
zero pre-stress conditions are chosen. 
Systems corresponding to nearly simply 
supported and nearly fixed - fixed   
boundary conditions can be taken as the 
perturbed systems around the nominal 
system. The intermediate boundary 
conditions at which the first four natural 
frequencies are 21.9, 67.4, 129.7 and 247.1 
Hz is chosen as nominal system. Perturbed 
taken with boundary conditions as nearly 
simply supported with first four natural 
frequencies as 12.8, 52.2, 112.5 and 226.3 
Hz. The perturbed systems are modeled in 
LFT form. LQG, standard H , H LSDP and 

MU -synthesis based controllers are 
designed by using weighing functions. In the 
nominal CL system, the reduction in 
amplitude is 3.5dB, 5.3dB, 7.2dB for the 
first, second and fourth mode respectively 
(figure 3). The magnitude at the third mode 
is negligible and hence is not apparent in 
this figure. Figure (4) shows the FRF of the 
perturbed closed loop system. 
 
Nominal performance is established at all 
the frequencies, by all the controllers, as μ 
value is less than unity. However, 
performance of the perturbed CL system 
degrades as μ value reaches above unity for 
some frequencies. Nominal and robust 
performance with LSDP controller is    best 
at all the modes w.r.t. other controllers. 
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Bode diagram of the closed loop system with different controllers
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 Figure 3:- Frequency response function   
of nominal open and closed loop system 
with different controllers 

Bode plot for perturbed open and closed loop system
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Figure 4:- Frequency response function of 
perturbed open and closed loop system 
with different controllers 

 
   By considering the pole zero maps, for 

standard H , H LSDP and MU 

controllers it is obvious that the three 
controllers are stable (because all the poles 
are on the left hand plane) as well as 
stabilizing (i.e. CL system is stable).  

 

   Figure (5) shows the Plot for comparison 
of nominal and robust performance with 
H  controller.   MU controller is best in 

terms of modal amplitude reduction for 
second and fourth modes (which are 
actually dominant) as seen from this 
figure (observe amplitude reduction in 
dB for all the controllers).  

 
 
VI. CONCLUSIONS 
 

In the present work, relative merits and 
demerits    of LQG, standard H , H  

LSDP and MU-synthesis controllers 
have been discussed. System parameters 
are varied through artificial means. 
Followings are some of the important 
conclusions 
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Figure 5:- Plot for comparison of 
nominal and robust performance with 

H  controller 

 
 

1.    It was observed that LQG 
controllers should never be used for 
systems with expected large variation 
in system parameters.  
2.     Analog standard H  can be 

tried to give good stability and 
performance for systems with minor 
perturbations. However, for systems 
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with expected large variations from nominal 
model, MU controller is the best choice. Best 
CL performance is achievable with this 
controller; however at the expense of large 
control energy i.e. control energy utilization is 
worst with this control strategy. 
3.   H  Loop shaping based controller not 

only outperforms in terms of stability but also 
maintains best performance even for a 
moderate variation in system parameters with 
minimum amount of control energy utilization. 
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