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Optimization of a Dynamic Supply Chain
Model with Budget Constraint

Hossein Badri?

Abstract— This paper presents a new dynamic model in strategic
and tactical planning in a multiple echelon multiple commodity
production-distribution network and a solution procedure based on
Lagrangian Relaxation (LR) approach. The proposed model
considers different time resolutions for tactical and strategic
decisions. Also expansion of supply chain in the proposed model is
restricted to cumulative net profit and investments. Commercial
general purpose optimization software can solve small instances of
problem; however, computational times with such software become
prohibitive for reasonably sized instances. For this reason, we will
adopt method to solve problem based on the Lagrangian relaxation
technique. In the proposed solution algorithm, feasibility of the
solutions is ensured with some modifications in subproblems.
Results of the computational analysis confirm efficiency of the
proposed approach.

Keywords: Strategic supply chain management, expansion planning,
Lagrangian relaxation, Subgradient method.

I. INTRODUCTION

supply chain is defined as the chain linking each entity of

the manufacturing and supply process from the raw

materials to the end user. A supply chain comprises many
systems, including various procurement, manufacturing, storage,
transportation and retail systems [1].
The term supply chain network design (SCND) is sometimes
employed as synonyms of strategic supply chain planning (see
[2,3,4,5]). In the current competitive world, a supply chain
network is supposed to be viable for a considerable time during
which many parameters can change. It may be important to
consider the possibility of making future adjustments in the
network configuration to allow gradual changes in the supply
chain structure and/or in the capacities of the facilities. In this
case, a planning horizon divided into several time periods is
typically considered and strategic decisions are to be planned for
each period. Such situation occurs, for instance, when the large
facility investments are limited by the budget available in each
period [6]. There are several models have been developed to
help managers in designing and planning of their supply chain.
Arntzen et al. [7] developed a global integrated model based on
mixed integer linear programming for production and
distribution planning with multiple products and a network of
sellers. Amiri [8] proposed a mixed integer linear model to
select the optimum numbers, locations and capacities of plants
and warehouses to open so that all customer demand is satisfied
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at minimum total costs of the distribution network in a three
echelons, single period and single product. In this paper an
efficient heuristic solution procedure for this supply chain
system problem has been provided.

Nga Thanah et.al. [9] presented a four echelon for multiple
period supply chain with dynamic demands in which they
suggest adding budget constraint to their model. The proposed
model has been solved and analyzed using a commercial solver.

In this paper a location and production-distribution planning
problem with multiple commodities during multiple periods is
considered whose main objective is to make strategic and
tactical decisions in a four echelon supply chain. The proposed
model is a mixed integer linear programming (MILP) model for
the design and expansion planning of a four echelon multiple
commodity supply chain in a long term horizon. The proposed
model considers different resolutions for strategic and tactical
decisions. Also this model makes some decisions about supplier
selection, production facility location, warehouse location,
amount of raw material to be supplied from each supplier,
amount of each product to be produced in each facility, amount
of each manufactured product to be sent to each customer zone
and expansion planning in a long term horizon.

Il. FORMULATION

There are a few papers in the literature considering facility
location and production-distribution problem in a dynamic
model [9]. Thanha et.al. [9] in their paper suggest budget
constraint to be added for the establishment of new facilities in
each period. In many firms, expansion budget is supplied by
cumulative net profit after tax and stakeholders” share reduction.
Since costs, incomes and thus net profit is an unknown
parameter before supply chain design, so mangers are not able to
determine expansion budget to use in budget constraint. The
proposed model in this paper uses cumulative net profit after tax
and stakeholders’ share reduction in budget constraint.

Some of the most important decisions in the proposed model
are as follows:

e Location and establishment time of facilities (production
plant, warehouse) during the planning horizon.

e Decision about establishing a new facility or adding
capacity to one or more established facility.

e Supplier selection and the raw material quantity to be
supplied from them.

e Products quantity to be produced in each production plant.

e Products quantity to be transported from each production
plant to each warehouse.
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e Products quantity to be transported from each warehouse to ¥ii: 1 if the capacity option o is added to 7; 0 otherwise
each customer zone. zﬁg: 1 if the supplier s is selected for the raw material p at #; 0
; - otherwis
Also some of the most important features and conditions of pU - Quantity of item p transferred from location / to
the prop_ose_d m.OdeI are ?S TOIIOWS' i . qpl Quantity of product p produced in plant i
» Objective is to maximize the supply chain net profit. hi%: Quantity of product p held in warehouse j at the beginning of ¢

e It’s not necessary to satisfy all demands; we aim to meet a
portion of market demands with respect to our capabilities
and restrictions so that the profit is maximized.

e Customers demand is dynamic and deterministic during
time periods.

e Interest rate is considered in monetary calculations.

e Each potential node has initial capacity and maximum

Objective Function:

The objective function is to maximize total net income over
the time periods computed by subtracting total cost from total
revenue. The total cost includes the fixed costs of opening
facilities, adding facility options, operating facility and variable
costs of raw material, production, inventory and transportation.

installable capacity. Equation (1) shows_ the obj_ectlve_ fqnctlon in which the net
o Facilities should operate between minimum and maximum  Present value of net '”COTeSk'S maximized.
utilization rate. Maximize F = Z % 0
e Established production plants and private warehouses A+m
cannot close. Constraints:
¢ Closing public warehouses is permitted. Z Kt e
. <D;, Vc€CVpEe 2
Notations: ]ewf e PE#r @
*(k ek, k=1,..,K): Setof strategic periods (k=D Kt ke \; _
T(teT,t=1,..,T): Setof tactical periods hy s Z o Z fojethp; VIEW VP EPpt=1 (3)
INV*: Investment in period & k(t b, ex ce¢ it e
Inck: Net income in period & Z foii Z fojethyj VIEWVp Eppt#1 (g
Fk: Cumulative net profit from the first period to period -1 ieM cec
DL¥: Cumulative net profit after tax and stakeholders’ share Z fﬁ",';i = Z By p- quf Vi € M,Vp' € p, (5)
reduction from the first period to period %-1 = vers
TR: Tax rate Kt
SH: Stakeholders’ share (in percent) i = Z foij VIEM,VD E py (6)
S(s € 8): Set of suppliers jew
M (i e M): Set of production plants Z WLy, . qz’,f;f < NU;. (MK;.xF + Z CK,y¥) viem %)
W(j € W): Set of warehouses Py 0€0
Wyp: Set of private (permanent) warehouses Z gkt : Lk z k .
WH:: Set of public (hired) warehouses Wiyi-ap; = MU (MK x0 + ) CKoyio) Vi€ M (8
0(o € 0): Set of capacity options for expansion pers 00
C(c € €): Set of customers ) o Constraint (2) states that all products transferred to costumers
#(p € ): et of products (raw material and finished product) should not be more than their demands in any period. We should
#r(py < p): SeLof raw materials note that in this model it’s not necessary to satisfy all customer
»r(ps < p): Set of finished products X Yy SN
BigM: A large number demands. Constraints (3?4) are related to equilibrium of flows at
F: Total profit warehouses. The quantity of a product stored at the end of
R}i tTOtal return after sales _ ' _ previous tactical period plus the total quantity of that product
Rsp: Available capacity of supplier s for p at each tactical period delivered to warehouse at the current tactical period should be

MK; : Initial capacity at i
NK;: Maximal installable capacity at i
MU;: Minimal utilization rate of facility i

equal to the quantity of that product transported to customer
zones plus the quantity stored at the end of the current tactical

NU;: Maximal utilization rate of facility i period. Constraint (5) ensures that plants receive enough raw
CK,: Capacity of option o materials in order to produce the required quantity of finished
D¢, Demand of customer ¢ for product p at each tactical period products. Constraint (6) states that the quantity of manufactured
By, p: Quantity of p"necessary to manufacture a unit of p products at a plant should be equal to its delivered quantity to
WLy,;: Production time of a unit p at plant i warehouses. Constraints (7-8) are related to capacity of

V,,: Capacity occupied by a unit p at warehouse j

MO ,,: Minimal allowable order of a unit p to supplier s

A;j- Number of deliveries from plant i to warehouse j in one period
PR, Selling price of a unit p to customers

production plants. These constraints prevent a plant to function
under its minimum rate of utilization and to exceed the
maximum rate of utilization of its installed capacity. The

PS,,;: Price of raw material p supplied by supplier s installed capacity is the sum of the initial capacity and the
Co;: Fixed cost for opening a facility at a potential location i capacity of the added options.
CA; ,: Fixed cost for adding capacity option o to facility i ke Kt
CU;: Fixed cost for operating a facility i Z Vor\ o Z 2a, ok | = M + OZ;CK" Yio Vi€Wp ©)
Cop; ,: Fixed cost for operating capacity option o at facility i vers . ' ¢
CP,,: Variable cost of production of a unit p at plant i MK;. x; + Z CKo.yf, < NK;  Vie M UWp (10)
CS,, ;- Storage cost of a unit of p at warehouse ; 0€0
CT,,,,;: Transportation cost of a unit of p from plant i to warehouse Z f < 28y Ry VSESVpEp, (11)
CDy, ;- Transportation cost of a unit of p from supplier s to plant i iem
CF, j . Transportation cost of a unit of p from warehouse j to Z fpkstl = MO, ;‘p‘ Vs €S, Vp € p, (12)
customer ¢ iEM
xf: 1 if the facility 7 is active at #; 0 otherwise
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Warehouses must not store more than their storage capacity
(9). Also the installed capacity at any plants and any warehouse
must not exceed its maximal installable capacity (10). Suppliers
deliver a raw material if and only if they are selected for this raw
material (11) and their delivery cannot exceed their available
capacity. Constraint (12) is to avoid purchasing each raw

material less than predetermined minimal amount of the
delivered quantity of each supplier.
Inck = z Z PRy e 13)
teT jeWpepscel

—Zcmwum 1)
ieMuwp

- Ao IS =¥ (15)
IEMUWpo0€0

- Z (CU xf + Z Copy, -yiﬁ)) (16)
IEMUWp 0€e0

SIPIPNC I (an
teT pEpy IEM

_ZZZ%OMZW) .
teT peEpy JEW

DI (19)
teT seS pEpy IEM

k,

DI IDIP N (20)

teT pEpy IEM JEW
k,t

DI (21)

teT peEpy JEW ceC
D D P fi 22)

teT seSpeEp, IEM

Fk = Z Inc* (23)

k=1

DL¥ = (1 —TR).(1 — SH).F* (24)
Z Cop. (xk —xl71) + Z z CAio. (¥, —vI5")

IEEMUWp IEMUWp o€ (25)

< DL¥ +INV*

Constraint (23) calculates the cumulative net income from the
first period to period 4-I. Constraint (24) calculates the
expansion budget which is the net profit after tax and
stakeholder share reduction. Constraint (25) prevents the cost of
opening facility and adding option to some opened facilities be
more than expansion budget in each period.

vk, <xF vieMuwp,voeo (26)
xfl<xf vieMuwp @n
01<yw VieMUWp,oEO (28)

Z D e < xf-Bight vjew (29)

ceCpeps

Zyi’fogl Vi € M UWp (30)

0€0

yE, <1—(xk—xF1) vieMuwp,oeo (31)

x{"‘ € {0,1} (32)

¥l € 013 (33)

zsp €{0,1} (34)

£l 20 (35)

at =0 (36)

hy; =0 @7

Constraint (26) states that an opened facility can add available
capacity options only. Constraint (27) prevents the opened
facilities from closing. Constraint (28) states that we can add
new capacity options but we cannot remove them. Constraint
(29) ensures that only opened warehouses can send product to
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customers. Equation (30) states that we cannot add more than
one capacity option to a facility in one period, and constraint
(31) prevents adding any facility option at the first period of
opening a facility. The constraint (32) requires that these
variables are binary. The constraint (33) restricts these variables
from taking non-negative values.

I1l. ALAGRANGIAN RELAXATION OF THE PROPOSED
MODEL

The proposed model is a mixed-integer programming model
which includes as a special case the classical capacitated facility
location problem which is well known to be NP-hard [10].
Lagrangian relaxation, linear programming based heuristics and
metaheuristics are among the most popular techniques [6]. Many
algorithms have been developed based on lagrangian relaxation
to solve facility location problems
[11,12,13,14,15,16,17,18,19,20]. The reader is referred to
references [21,22,23] for detailed discussion on the Lagrangian
relaxation methodology.

We consider the Lagrangian relaxation of the problem
obtained by dualizing constraints in sets (25) using multipliers
y* forall k € 4.

Problem L:
Ck

. In
Maximize F = z W—
kek

z v Z Coy. (xk — xF71) + z Chio- (Yl = ¥E5™)
kek IEMUWp

IEMUWp o0€0
— DIk — 1va)

Subject to:
(2-22), (26-37)
Problem L can be further decomposed into two subproblems
LR1 and LR2.

Problem LR1:

— k.t
Zim = Max Z Z (1+Ir)k PR o

kekteT iEM pEpyje

Z Z a+ [T)k 1 <COL (xf = xf) + Z CAio. (Vi3 —yf,) + CULxf

0€e0

+ Y com, y)

0€0
-2 2 2 X arie (1+1r)k | CPoaaf+ ) T ftl
kekteT peppieM JEW

—Z Z Z Z ZW(CDPSL fp51+7’5psn fp“)

kekteT seSpeEp, IEM

> >y (Coz.(xi —xT) 4 ) CAy O — yﬁ))
k € kieM 0€0
k)+ Z CALO (yk+1 _Yi},co)

k-1
- Z 5. -TR).(1- SH).Z Z <cm.(x}‘“ 2

kel k=11EM

+ CULxf + Z Copi,O'yi,o)

0€e0

—Z yk.(1—TR).(1—SH).l§Z Z Z(cppl gl +Z CTpse fp”>

kek k 1tETpEpfiEM

Z Y¥.(1=TR).(1 - SH). Z Z Z Z Z(CDp,s,i'fp’f'sf[ + PSpsn- pk,'st,i

k=1teT s €S pEpy iIEM

+ Z Yk INVE

i kek
Subject to:

(5.,8), (11-12), (34-36)
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BC: (10), (26-28), (30-33)

The problem LR1 is related to supply and production
echelons in supply chain network. Since objective function of
the main problem is maximizing the total net profit of the supply
chain and selling products is done at customer zones, here we
supposed that in problem LR1 the products are purchased
directly from production units. It’s obvious that adopting such
assumption causes no change to the nature of main model,
because the main model tries to maximize production quantity as
well. Some constraint are specific to the problem LR1, and
others listed as BC are those in which only parameters and
variables of supply and production echelons are considered.
Problem LR2:

Zire = M“"ZZZZZ(HH)“( Ry fy )

kekteT je Wpeppcel

Z Z (1+lr)k I(COL (xF*t —xF) + Z CAio. (VI = yE) + CU.xF
kekiceWp

0€e0
+ Z Copy,o 'yi,o)

0€0

ST Sl g o)

kekteT pEps jEW

DX (Coi.(xr—xf-m > a0 i)
kehieWp

0€e0

+Zy (1-TR). (1—511)22 Z Z Z(?R B!

k=1teT je WpEpsceC

Z YE.(1 = TR).(1 — SH). Z Z (CO (x — ) + Z Chio. (V5 = ¥E)

kek k=1i€EWp 0€0

+ CU; (xf + Z Copi,o -Yi‘fo)

0€0

Zv (1-TR).(1 - SH). ZZ Z Z (csp, (hk[ pr,]>

k=1t €T peps jEW

+ Z CFP.]»E'fpk,}'t,c>

cec

Subject to:

(2-4), (9), (29), (35), (37)
BC: (10), (26-28), (30-33)

The problem LR2 is related to warehouses and customer
zones in which the parameters and variables of storage,
distribution and selling can be seen. In this problem like the
problem LR1, some constraints are specific and others (BC) are
those in which only parameters and variables of warehouse and
customer echelons are considered.

Solution procedure

The success of Lagrangian relaxation approach depends heavily
on the ability to generate good Lagrangian multipliers [6].
Generally, the computation of a good set of multipliers is
difficult [24, 25]. In this paper we use the subgradient method to
drive bounds for LR. The subgradient method is an adaptation of
the gradient method in which gradients are replaced by
subgradients. The reader is referred to [26] which validates the
use of subgradient optimization schema.

To ensure feasibility of the solutions, some constraints are
added to the problem LR1 and some constraints are changed. In
order to maximize the net profit, problem LR1 has tendency to
maximize the production quantity, but it should be noted that it’s
impossible to produce products ignoring the capacity of
warehouses. Constraints (38) and (39) are added to problem
LR1. Constraint (38) limits the production quantity to the
capacity of warehouses. To ensure feasibility of the solution a
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floating variable SP(k,t) is defined to calculate the vacant
capacity of warehouses. The objective of defining this variable
will be discussed in the next section.

Z Z gkt < Z NU;. (MK;. xf +ZCKDy}fo) +5SP(k,©)

iEM pepy iEWp 0€0

Z Cop. (xfF —xF1) + Z Z CAio.(vE, —¥E") < DLF + INVE

IEMUWp IEMUWpo€eO

Constraint (39) limits establishment of the new facilities to
investment and the cumulative net profit. There are some
warehouse variables in these constraints and the reason is the
consideration of warehouse capacities during the decision
making about the location of production plants and the
production quantities. Also constraints (10), (3-26) and (3- 30)
whose variables and parameters had been limited to supply and
production echelons, go back to the initial status. Similar to
problem LR1, some modifications are done in problem LR2 to
ensure feasibility of the solutions. These modifications are done
by adding two constraints to problem LR2.

DG = Y a

38)

(39)

(40)
iEM jew ieEM
D Con(x =)+ Y Y Chyy (v — i)
iEWp iEWpoe0O
< DL* + INV*
- cou (=t 77 1
iemMm

+Z Z Chso - (7, = 757)

IEM 0€0

Constraint (40) limits distributed quantity of products to the
quantity of production in plants. Also constraint (41) limits
establishment of warehouses to the available budget in which
fixed cost of production facilities calculated in problem LR1, has
been subtracted. It should be noted that qu xf and yF, are the

amount of the related variables in problem LR1.

Solution algorithm

The overall solution algorithm can be summarized as follows:
Step 1:
e  Set current iteration ({ter) to 1
e Set initial value of Lagrangian multipliers y* to 0, for
all k € .

Step 2: Set floating parameter SP(k,t) to O, forall ke £, t e T
and repeat steps 3 to 8 while the following conditions
are both satisfied:

1 — Iter < max Iter
2 —gap = 0.01

F _F
Where gap = —'te;;:r““"

Parameter Fi., is the objective function of the
problem at iteration Iter.

Step 3: Set k to 1 and repeat steps 4 to 6 while k < K.

Step 4: Solve problem LR1 only for index .

Step 5: Derivate the required data from the solution of problem
LR1 and feed them to Problem LR2.

Step 6: Solve problem LR2 only for index .

Step 7: Derivate the final value of variables from the solutions in

steps 4 and 6 according to Table I.

main
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TABLE |
SOURCE OF VALUES OF DECISION VARIABLES
LR1 LR2
xk VieM xk View
y{fo VieM y{fo Vie Wp
kit kt

Zs,p pij

fplfgi fp’ij'fc

Gy by

Step 8: By the use of values Qathered in step 7, calculate
objective value of the main problem as well as the
following functions, then go back to step 2.

K _ ok 2 k_ k-1
Yiter+1 = Yiter T Viter Co;. (xi X )
ieMUWp

+ z z CAi,o‘(ylifo_y{fo_l) - DL*

IEMUWp o€

- nvvk] ke
(42)
9 =A F_Filer
e Yk s»(ZLeMUWp Cop. (xf = xf™) + Yierowp Zoeco CAig - ()’i’fo - Y:’To_l) — DLk - INVk)2
(43)

Iter = Iter + 1
Step 9: Calculate the value of parameter SP(k,t) using the
following equation and repeat steps 3 to 7.

SP(k,t) = Z (Ml(jx}‘ + Z CKo.y}fD> - Z Z /N

jeEw 0€0 iEM pEpy
(44)

As mentioned before, the constraint (38) is added to problem
LR1 to ensure feasibility of the solutions. This constraint limits
the production quantities based on the maximum inventory.
Although this constraint guarantees feasibility, but it causes low
production quantity and as a result low profit for the supply
chain. According to this situation, after getting an appropriate
arrangement of facilities during steps 1 to 8, the vacant capacity
of warehouses is calculated using parameter SP(k,t), then the
solution is improved significantly during the internal loop.

V. COMPUTATIONAL RESULTS
The computational analysis presented in this section is to
evaluate performance of the proposed solution approach. The
proposed algorithm is coded in software GAMS. The
subproblems of the algorithm have been solved by the use of
CPLEX MIP solver. The algorithm was run on a Dual core 2.26
GHz processor with 2GHz of RAM. Instances of were solved
with random data and according to the results, increasing the
size of problem, total number of variables, number of discrete

variables and number of constraints increase significantly. The
results illustrated in Table Il confirm that the proposed algorithm
effectively can reduce the solution time. We observe that in
small instances because of iterative approach of the proposed
algorithm, the solution time of this algorithm is more than the
solution time of commercial software. In larger instances we
observe that the proposed algorithm has notably better
performance in solution time.

Another observation is that solution time of the commercial
software increases exponentially, while the solution time of the
proposed algorithm increases linearly. Since the commercial
software is unable to find a feasible solution in problems of class
(L), good performance of the proposed algorithm in large scale
problems is proved.

1400

«++ CPLEX

Lagrangian Relazation

Fig.l. Solution time of CPLEX and LR approach

Solution quality 4

27

»
»

CPU time

Fig. 1. Comparison statistics of CPU time and solution quality

In comparison of the solution quality, %4 average of gap for
all solved instances confirms that the proposed algorithm based
on subgradient method has relatively good solution quality. In
some instances the proposed algorithm could find a better
solution than commercial software. Fig. Il shows a comparison
of the objective function values. The computational results

TABLE Il
COMPUTATIONAL RESULTS

CPLEX Lagrangian Relaxation
c CPU time (s) Gap® CPU time (s) %Gap"R

2 <

8 g Min Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max
P1 2.8 3.56 4.1 0.000092 0.059562 0.089385 10.4 10.76 112 0.01394 0.054892 0.113981
P2 138 16.52 17.7 0.027782 0.060698 0.090552 20.8 2222 23.2 -0.07127 0.008400 0.145729

S P3 338 39.76 46.2 0.021684 0.060773 0.092036 335 338 345 -0.06401 -0.015946 0.139824
P4 88.5 97.04 108.9 0.025007 0.042182 0.05998 53.6 55.24 56.6 -0.03286 0.018350 0.075909
P5 191.1 208.1 228.4 0.013016 0.02249 0.040381 74.6 76.68 78.3 -0.0384 0.092581 0.168015
P6 320.8 408.64 469.1 0.011497 0.018737 0.024562 107.7 114.52 124.9 0.030337 0.140715 0.175535

M p7 675.6 732.52 788 0.028516 0.035685 0.043214 137.7 143.38 144.5 -0.0221 -0.00457 0.046358
P8 1020.8 1220.48 1305.3 0.019478 0.022585 0.027465 184 186.28 187.7 -0.01674 0.04639 0.174135

L P9 7335 7991.6 8469 0.029745 0.0474994 0.091072 623 739.8 823 0.07704 0.09494 0.122195
P10 >3h >3h >3h NFS NFS NFS 1399 1491 1543 NA NA NA

NFS:  No feasible solution
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shows that the proposed algorithm could make the most
important strategic decisions during steps 1 to 8, but in tactical
level the decision making process has not been done
successfully, and it’s because of solving subproblems
hierarchically as well as the existence of some rational
constraints added to subproblems to ensure feasibility of the
solution. Table Il shows the solution time and gaps in two
approaches. Relations (45) and (46) are related to gaps
calculation.

_ Best Possible Solution — Final Solution

Gap® = (45)

Best Possible Solution

FC — FLR
LR _
Gap™ = —pe—

Totally 50 instances were designed and solved. Fig. 111 shows
some comparison statistics about the solution time and quality.
From this figure we observe that there are 7 instances in which
both the solution time and quality of the proposed algorithm is
worse than the solution of the commercial software. All these
instances are related to problems P1 and P2. There are 3
instances in which the proposed algorithm could reach to better
solution quality in more solution time. Also there are 27
instances in which the proposed algorithm could make
improvement in solution time but with a worse solution quality.
In 13 instances the proposed algorithm could reach to better
solution quality in less CPU time.

(46)

| mCPLEX

Lagrangian
Relaxation
123 4 5 4 7 g o

Fig.Ill. Objective function values in different instances

V1. CONCLUSION

In this paper a mixed integer linear programming model has
been developed for the design and expansion planning of a four
echelon multiple commodity supply chain in a long term
horizon. Different resolutions for strategic and tactical decisions
are considered in the proposed model. Also this model makes
some decisions about supplier selection, production facility
location, warehouse location, amount of raw material to be
supplied from each supplier, amount of each product to be
produced in each facility, amount of each manufactured product
to be sent to each customer zone and expansion planning in a
long term horizon. In the proposed model expansion of supply
chain is restricted to cumulative net profit and investments. To
evaluate performance of the proposed model some standard
examples have been designed and solved by CPLEX solver. The
results showed that the solution time of CPLEX in the real size
problems is not reasonable, so a solution method was designed
based on Lagrangian relaxation approach. In the proposed
method, feasibility of the solutions was guaranteed by making
some modifications in the subproblems. Results of the
computational analysis confirmed efficiency of the proposed
approach.
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