
 
 

 

   
Abstract— Fatigue is one of the most important problems of 

aircraft arising from their nature as multiple-component 
structures, subjected to random dynamic loads. For 
guaranteeing safety, the structural life ceiling limits of the fleet 
aircraft are defined from three distinct approaches: Safe-Life, 
Fail-Safe, and Damage Tolerance approaches. The common 
objectives to define fleet aircraft lives by the three approaches 
are to ensure safety while at the same time reducing total 
ownership costs. In this paper, the Damage Tolerance approach 
is considered and the focus is on the inspection scheme with 
decreasing intervals between inspections. The paper proposes an 
analysis methodology to determine appropriate decreasing 
intervals between inspections of fatigue-sensitive aircraft 
structures (as alternative to constant intervals between 
inspections often used in practice), so that risk of catastrophic 
accident during flight is minimized. The suggested approach is 
unique and novel in that it allows one to utilize judiciously the 
results of earlier inspections of fatigued aircraft structures for 
the purpose of determining the time of the next inspection and 
estimating the values of several parameters involved in the 
problem that can be treated as uncertain. An illustrative 
example is given.  
 

Index Terms—Aircraft, Fatigue crack, Inspection, Planning.  
 

I. INTRODUCTION 

  In spite of decades of investigation, fatigue response of 
materials is yet to be fully understood. This is partially due to 
the complexity of loading at which two or more loading axes 
fluctuate with time. Examples of structures experiencing such 
complex loadings are automobile, aircraft, off-shores, 
railways and nuclear plants. Fluctuations of stress and/or 
strains are difficult to avoid in many practical engineering 
situations and are very important in design against fatigue 
failure. There is a worldwide need to rehabilitate civil 
infrastructure. New materials and methods are being broadly 
 investigated to alleviate current problems and provide better 
and more reliable future services. While most industrial 
failures involve fatigue, the assessment of the fatigue 
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reliability of industrial components being subjected to various 
dynamic loading situations is one of the most difficult 
engineering problems. This is because material degradation 
processes due to fatigue depend upon material characteristics, 
component geometry, loading history and environmental 
conditions. The traditional analytical method of engineering 
fracture mechanics (EFM) usually assumes that crack size, 
stress level, material property and crack growth rate, etc. are 
all deterministic values which will lead to conservative or 
very conservative outcomes. However, according to many 
experimental results and field data, even in well-controlled 
laboratory conditions, crack growth results usually show a 
considerable statistical variability (as shown in Fig. 1). 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Constant Amplitude Loading Fatigue Test Data Curves 

Fatigue is one of the most important problems of aircraft 
arising from their nature as multiple-component structures, 
subjected to random dynamic loads. The analysis of fatigue 
crack growth is one of the most important tasks in the design 
and life prediction of aircraft fatigue-sensitive structures (for 
instance, wing, fuselage) and their components (for instance, 
aileron or balancing flap as part of the wing panel, stringer, 
etc.). An example of in-service cracking from B727 aircraft 
[1] (year of manufacture 1981; flight hours not available; 
flight cycles 39,523) is given on Fig. 2. 
 

 
 

Fig. 2. Example of In-service Cracking from B727 Aircraft 
 

Several probabilistic or stochastic models have been 
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employed to fit the data from various fatigue crack growth 
experiments.  Among them, the Markov chain model [2], the 
second-order approximation model [3], and the modified 
second-order polynomial model [4]. Each of the models may 
be the most appropriate one to depict a particular set of 
fatigue growth data but not necessarily the others. All models 
can be improved to depict very accurately the growth data but, 
of course, it has to be at the cost of increasing computational 
complexity. Yang’s model [3] and the polynomial model [4] 
are considered more appropriate than the Markov chain 
model [2] by some researchers through the introduction of a 
differential equation which indicates that fatigue crack growth 
rate is a function of crack size and other parameters. The 
parameters, however, can only be determined through the 
observation and measurement of many crack growth samples. 
If fatigue crack growth samples are observed and measured, 
descriptive statistics can then be applied directly to the data to 
find the distributions of the desired random quantities. Thus, 
these models still lack prediction algorithms. Moreover, they 
are mathematically too complicated for fatigue researchers as 
well as design engineers. A large gap still needs to be bridged 
between the fatigue experimentalists and researchers who use 
probabilistic methods to study the fatigue crack growth 
problems. 

Airworthiness regulations require proof that aircraft can be 
operated safely. This implies that critical components must be 
replaced or repaired before safety is compromised. For 
guaranteeing safety, the structural life ceiling limits of the 
fleet aircraft are defined from three distinct approaches: 
Safe-Life, Fail-Safe, and Damage-Tolerant approaches. In 
this paper, the Damage Tolerance approach is considered and 
the focus is on the inspection scheme with decreasing 
intervals between inspections. 

From an engineering standpoint the fatigue life of a 
component or structure consists of two periods (this concept 
is shown schematically in Fig. 3): 

 

 
 

Fig. 3. Schematic Fatigue Crack Growth Curve 
(Crack initiation period (A-B); Crack propagation period (B-C)) 

 
(i) crack initiation period, which starts with the first load 

cycle and ends when a technically detectable crack is present, 
and  

(ii) crack propagation period, which starts with a 
technically detectable crack and ends when the remaining 
cross section can no longer withstand the loads applied and 
fails statically. 

Periodic inspections of aircraft are common practice in 
order to maintain their reliability above a desired minimum 
level. The appropriate inspection intervals are determined so 
that the fatigue reliability of the entire aircraft structure 

remains above the minimum reliability level throughout its 
service life. 
 

II.  INSPECTION SCHEME UNDER FATIGUE CRACK INITIATION  

At first, we consider in this section the problem of 
estimating the minimum time to crack initiation (warranty 
period or time to the first inspection) for a number of aircraft 
structure components, before which no cracks (that may be 
detected) in materials occur, based on the results of previous 
warranty period tests on the structure components in question. 
If in a fleet of k aircraft there are km of the same individual 
structure components, operating independently, the length of 
time until the first crack initially formed in any of these 
components is of basic interest, and provides a measure of 
assurance concerning the operation of the components in 
question. This leads to the consideration of the following 
problem. Suppose we have observations X1, ..., Xn as the 
results of tests conducted on the components; suppose also 
that there are km components of the same kind to be put into 
future use, with times to crack initiation Y1, ..., Ykm. Then we 
want to be able to estimate, on the basis of X1, ..., Xn, the 
shortest time to crack initiation Y(1,km)  among the times to 
crack initiation Y1, ..., Ykm.  In other words, it is desirable to 
construct lower simultaneous prediction limit, Lγ, that is 
exceeded with probability γ by observations or functions of 
observations of all k future samples, each consisting of m 
units.   In this section, the problem of estimating Y(1,km), the 
smallest of all k future samples of m observations from the 
underlying distribution, based on an observed sample of n 
observations from the same distribution, is considered. 

A. Assigning the Interval Time until the First Inspection  

Experiments show that the number of flight cycles (hours) 
at which a technically detectable crack will appear in a 
fatigue-sensitive component of aircraft structure follows the 
two-parameter Weibull distribution. The probability density 
function for the random variable X of the two-parameter 
Weibull distribution is given by 
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where δ>0 and β>0 are the shape and scale parameters, 
respectively. The following theorem is used to assign the 
interval time until the first inspection (warranty period). 

Theorem 1 (Lower one-sided prediction limit for the lth 
order statistic of the Weibull distribution). Let X1< …< Xr be 
the first r ordered past observations from a sample of size n 
from the distribution (1). Then a lower one-sided conditional 
(1−α) prediction limit h on the lth order statistic Yl of a set of 
m future ordered observations Y1< …<Ym is given by 
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where β
)

 and δ
)

are the maximum likelihood estimators of β 

and δ  based on the first r ordered past observations (X1, …, 
Xr) from a sample of size n from the Weibull distribution, 
which can be found from solution of 
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(Observe that an upper one-sided conditional α prediction 
limit h on the lth order statistic Yl may be obtained from a 
lower one-sided conditional (1-α) prediction limit by 
replacing 1-α by α.) 

Proof. The proof is given by Nechval et al. [5] and so it is 
omitted here.     �  

Corollary 1.1. A lower one-sided conditional (1−α) 
prediction limit h on the minimum Y1 of a set of m future 
ordered observations Y1 ≤ … ≤ Ym is given by 
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Thus, when l = 1, (2) reduces to formula (8). 
Theorem 2 (Lower one-sided prediction limit for the lth 

order statistic of the exponential distribution). Under 
conditions of Theorem 1, if δ=1, we deal with the exponential 
distribution, the probability density function of which is given 
by 
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Then a lower one-sided conditional (1−α) prediction limit h 
on the lth order statistic Yl of a set of m future ordered 
observations Y1< …<Ym is given by 
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Proof. It follows readily from standard theory of order 
statistics that the distribution of the lth order statistic Yl from a 
set of m future ordered observations Y1 ≤ … ≤ Ym is given by 
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The factorization theorem gives  
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sufficient for β. The density of Sβ is given by 
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Since Yl, Sβ are independent, we have the joint density of Yl 
and Sβ  as 
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Making the transformation wl = yl/sβ, sβ= sβ, and integrating 
out sβ, we find the density of Wl as the beta density 
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This ends the proof.     � 
Corollary 2.1. A lower one-sided conditional (1−α) 

prediction limit h on the minimum Y1 of a set of m future 
ordered observations Y1 ≤ … ≤ Ym is given by 
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B. Example 

Consider the data of fatigue tests on a particular type of 
structural components (stringer) of aircraft IL-86. The data 
are for a complete sample of size r = n = 5, with observations 
of time to crack initiation (in number of 104 flight hours): 
X1=5, X2=6.25, X3=7.5, X4=7.9, X5=8.1.   

Goodness-of-fit testing. It is assumed that Xi, i=1(1)5, 
follow the two-parameter Weibull distribution (1), where the 
parameters β and δ are unknown. We assess the statistical 
significance of departures from the Weibull model by 
performing empirical distribution function goodness-of-fit 
test. We use the S statistic (Kapur and Lamberson [6]). For 
censoring (or complete) datasets, the S statistic is given by 
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where [r/2] is a largest integer ≤ r/2, the values of Mi are given 
in Table 13 (Kapur and Lamberson [6]). The rejection region 
for the α level of significance is {S >Sn;α}. The percentage 
points for Sn;α were given by Kapur and Lamberson [6]. For 
this example, 
 

S =0.184 < Sn=5;α=0.05=0.86. (21) 
 

Thus, there is not evidence to rule out the Weibull model. The 
maximum likelihood estimates of the unknown parameters β 

and δ are 42603.7=β
)

 and ,9081.7=δ
)

 respectively. It 

follows from (8) that 
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and a lower 0.95 prediction limit for Y1 is h=2.5549 (×104) 
flight hours, i.e., we have obtained the interval time until the 
first inspection (or warranty period) equal to 25549 flight 
hours with confidence level γ =1−α = 0.95. 

C. Inspection Policy after Warranty Period 

Let us assume that in a fleet of m aircraft there are m of the 
same individual structure components, operating 
independently. Suppose an inspection is carried out at time τj, 

and this shows that initial crack (which may be detected) has 
not yet occurred. We now have to schedule the next 
inspection. Let Y1 be the minimum time to crack initiation in 
the above components. In other words, let Y1 be the smallest 
observation from an independent second sample of m 
observations from the distribution (1). Then the inspection 
times can be calculated (from (25) using (24)) as 
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where it is assumed that τ0=0, τ1 is the time until the first 
inspection (warranty period),

j
wτ is determined from 
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β
)

and δ
)

are the MLE’s of β and δ, respectively, and can be 

found from solution of (3) and (4), respectively.  
It will be noted that if δ=1, then it follows from Corollary 

2.1 that (23) reduces to 
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Sβ is given by (12). Since it is assumed that τ0=0, τ1 is the time 
of the first inspection (warranty period), which is found as  
 

,
11 βττ sw=   (29) 

 

where
1τw is determined from (19),  
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But again, for instance, consider the data of fatigue tests on 
a particular type of structural components of aircraft IL-86: 
X1=5, X2=6.25, X3=7.5, X4=7.9, X5=8.1 (in number of 104 
flight hours) given above, where r=n=5 and the maximum 
likelihood estimates of unknown parameters β and δ are 

42603.7=β
)

 and ,9081.7=δ
)

 respectively. Thus, using (23) 

and (24) with τ1=2.5549 (×104 flight hours) (the time of the 
first inspection), we have obtained the following inspection 
time sequence (see Table 1). 

Table 1.  Inspection Time Sequence 

j
wτ ≡ wj 

Inspection time τj 
(×104 flight hours) 

Interval τj+1−τj 
(flight hours) 

− τ0= 0 − 
w1 = −8.4378 τ1= 2.5549 25549 

w2 = −6.5181 τ2= 3.2569 7020 
w3 = −5.5145 τ3= 3.6975 4406 
w4 = −4.8509 τ4= 4.0212 3237 
w5 = −4.3623 τ5= 4.2775 2563 
w6 = −3.9793 τ6= 4.4898 2123 
w7 = −3.6666 τ7= 4.6708 1810 
w8 = −3.4038 τ8= 4.8287 1579 

M M M 

 

III.  OPTIMIZATION OF INSPECTION POLICY                

Consider the case where an optimal inspection policy has to 
be computed with linear costs. Let c1 be the cost of each of the 
inspections. If crack occurs at time t and is detected at the jth 
inspection time τj, so that τj ≥ t, let the cost due to undetected 
crack be c2(τj−t). It will be noted that under small failure 
probability one can be restricted by the first term of the Taylor 
series as a presentation of a proper loss function c2(.). Then an 
optimal inspection policy is one, which minimizes the 
expected value of the total cost 
 

 C = jc1+c2(τj−t). (33) 
 

Taking into account (25), we obtain for the Weibull case: 
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Now an optimal α has to be found such that minimizes (34). 
The optimal value of α has to be determined numerically. The 
optimalτj,  j≥1,  are found from (25) using (24). 
 

IV.  INSPECTIONS SCHEME UNDER FATIGUE CRACK 

PROPAGATION 

A. Probabilistic Model of Fatigue Crack Growth 

Many probabilistic models of fatigue crack growth are 
based on the deterministic crack growth equations. The most 
well known equation is 
 

 btaqdttda ))((/)( =  (35) 

in which q and b are constants to be evaluated from the crack 
growth observations. The independent variable t can be 
interpreted as either stress cycles, flight hours, or flights 
depending on the applications [7]. It is noted that the 
power-law form of q(a(t))b at the right hand side of (35) can 
be used to fit some fatigue crack growth data appropriately 
and is also compatible with the concept of Paris–Erdogan law. 
The service time for a crack to grow from size a(t0) to a(t) 
(where t > t0) can be found by performing the necessary 
integration 
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In this paper, we consider a stochastic version of (37), 
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where a0 ≡ a(t0), a ≡ a(t). If V ~ N(0,[(b-1)σ(t-t0)
1/2]2), then the 

probability that crack size a(t) will exceed any given (say, 
maximum allowable) crack size a• can be derived and 
expressed as 
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where Φ(.) is the standard normal distribution function. In this 
case, the conditional probability density function of a is given 
by 
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This model allows one to characterize the random properties 
that vary during crack growth [8-9]. 

B. Inspection Policy under Parametric Certainty 

Let us assume that all the parameters of the crack 
exceedance probability (39) are known. Then the inspection 
times can be calculated recursively from 
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τ0=0, τ1 is the time of the inspection when the initial crack was 
detected. It is assumed that cracks start growing from the time 
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the aircraft entered service. For typical aircraft metallic 
materials, an initial discontinuity size (a0) found through 
quantitative fractography is approximately between 0.02 and 
0.05 mm. Choosing a typical value for initial discontinuity 
state (e.g., 0.02 mm) is more conservative than choosing an 
extreme value (e.g., 0.05 mm). This implies that if the lead 
cracks can be attributed to unusually large initiating 
discontinuities then the available life increases. 

C. Inspection Policy under Parametric Uncertainty 

Let us assume that the parameters b, q and σ  of the crack 
exceedance probability (39) are unknown. Given the data 

describing a single crack, say a sequence n
jjja 1)},{( =τ , it is 

easy to construct a log-likelihood using the density given by 
(40) and estimate the parameters b, q and σ by maximum 
likelihood. The log-likelihood is 
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Inspection shows that this differs from the standard 
least-squares equation only in the term –b∑lna, where the 
subscript i has been dropped. The likelihood estimators are 
obtained by solving the equations 
 

  dL/db =0;   dL/dq =0;   dL/dσ =0. (44) 
 

In this case the equations have no closed solution. However, it 
is easy to see that the estimators for q and σ given b are the 
usual least-squares estimators for the coefficients in (37) 
conditioned on b, 
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and on substituting these back in the log-likelihood gives a 
function of b alone, 
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Thus the technique is to search for the value of b that 
maximizes L(b) by estimating q and σ as functions of b and 
substituting in L(b). In this study a simple golden-section 
search worked very effectively. It will be noted that if we deal 
with small sample of the data describing a single crack, say a 

sequence n
jjja 1)},{( =τ , then the estimates of the unknown 

parameters b, q and σ can be obtained via the Generalized 
Likelihood Ratio Test as follows. Let us assume (without loss 
of generality) that there are available only two past samples of 
the data describing a single similar crack, say 

sequences 1
1

)1()1( )},{( n
jjja =τ and 2

1
)2()2( )},{( n

jjja =τ with the 

unknown parameters (b1,q1,σ1) and (b2,q2,σ2), respectively, 
where n1, n2 > n. Then the likelihood ratio statistic for testing 
the null hypothesis H1: (b=b1, q=q1, σ=σ1) versus the 

alternative hypothesis H2: (b=b2, q=q2, σ=σ2) is given by 
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(48) 
 

and hypothesis H1 or H2 is favoured according to whether LR 
is greater or less than 1, i.e. 
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The parametric estimates obtained after each inspection are 
treated as if they were the true values in order to obtain from 
(41) an adaptive inspection time sequence. 
 

V. CONCLUSION 

In this paper, to capture the scatter of the fatigue crack 
growth data, the stochastic model that adopted the solution of 
the crack growth equation, proposed by Paris and Erdogan, 
and randomized one by including random factors into it is 
suggested. This stochastic model allows us to obtain the crack 
exceedance probability as well as the probability of random 
time to reach a specified crack size. Once the appropriate 
stochastic model is established, it can be used for the fatigue 
reliability prediction of structures made of the tested material. 
As such the model presented here provides a fast and 
computationally efficient way to predict the fatigue lives of 
realistic structures. 
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