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Planning Inspections of Fatigued Aircraft
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reliability of industrial components being subjected to various

Abstract— Fatigue is one of the most important problems of dynamic loading situations is one of the most difficult
aircraft arising from their nature as multiple-component  engineering problems. This is because material degradation
structures,  subjected to random dynamic loads. For .,casses due to fatigue depend upon material characteristics,

guaranteeing safety, the structural life ceiling limits of the fleet component geometry. loading history and environmental
aircraft are defined from three distinct approaches: Safe-Life, P g Y ing i y Vi

Fail-Safe, and Damage Tolerance approaches. The commonconditions. The traditional analytical method of engineering
objectives to define fleet aircraft lives by the three approaches fracture mechanics (EFM) usually assumes that crack size,
are to ensure safety while at the same time reducing total stress level, material property and crack growth rate, etc. are
ownership costs. In this paper, the Damage Tolerance approach g|| deterministic values which will lead to conservative or
is considered and the focus is on the inspection scheme withVery conservative outcomes. However, according to many

decreasing intervals between inspections. The paper proposes an . tal It d field dat . I trolled
analysis methodology to determine appropriate decreasing experimental results and e ata, even In well-controlie

intervals between inspections of fatigue-sensitive aircraft laboratory conditions, crack growth results usually show a
structures (as alternative to constant intervals between considerable statistical variability (as shown in Fig. 1).
inspections often used in practice), so that risk of catastrophic
accident during flight is minimized. The suggested approach is
unique and novel in that it allows one to utilize judiciously the
results of earlier inspections of fatigued aircraft structures for
the purpose of determining the time of the next inspection and
estimating the values of several parameters involved in the
problem that can be treated as uncertain. An illustrative
example is given.

Crack size (mm)

Index Terms—Aircraft, Fatigue crack, Inspection, Planning.

I. INTRODUCTION N . 2 5 < - > A

In spite of decades of investigation, fatigue response Cycles x 10
materials is yet to be fglly understood. This is partial_ly due to Fig. 1. Constant Amplitude Loading Fatigue Test Data Curves
the complexity of loading at which two or more loading axes
fluctuate with time. Examples of structures experiencing such Fatigue is one of the most important problems of aircraft
complex loadings are automobile, aircraft, off-shoresrising from their nature as multiple-component structures,
railways and nuclear plants. Fluctuations of stress and/subjected to random dynamic loads. The analysis of fatigue
strains are difficult to avoid in many practical engineeringrack growth is one of the most important tasks in the design
situations and are very important in design against fatigad life prediction of aircraft fatigue-sensitive structures (for
failure. There is a worldwide need to rehabilitate civilnstance, wing, fuselage) and their components (for instance,
infrastructure. New materials and methods are being broaddyieron or balancing flap as part of the wing panel, stringer,
investigated to alleviate current problems and provide bettetc.). An example of in-service cracking from B727 aircraft
and more reliable future services. While most industridil] (year of manufacture 1981, flight hours not available;
failures involve fatigue, the assessment of the fatigufight cycles 39,523) is given on Fig. 2.
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Fig. 2. Example of In-service Cracking from B727 Aircraft

ISBN: 978-988-18210-8-9 WCE 2010
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the World Congress on Engineering 2010 Vol III
WCE 2010, June 30 - July 2, 2010, London, U.K.

employed to fit the data from various fatigue crack growttemains above the minimum reliability level throughout its
experiments. Among them, the Markov chain model [2], theervice life.

second-order approximation model [3], and the modified

second-order polynomial model [4]. Each of the models may

be the most appropriate one to depict a particular set Bf INSPECTIONSCHEME UNDERFATIGUE CRACK INITIATION
fatigue growth data but not necessarily the others. All modelsat first. we consider in this section the problem of
can be improved to depict very accurately the growth data buktimating the minimum time to crack initiation (warranty
of course, it has to be at the cost of increasing CompUtaﬂOE@riod or time to the first inspection) for a number of aircraft
complexity. Yang's model [3] and the polynomial model [4ktrycture components, before which no cracks (that may be
are considered more appropriate than the Markov chaiigtected) in materials occur, based on the results of previous
model [2] by some researchers through the introduction ogyranty period tests on the structure components in question.
differential equation which indicates that fatigue crack growtlj i a fleet ofk aircraft there aré&m of the same individual

rate is a function of crack size and other parameters. Thgcture components, operating independently, the length of
parameters, however, can only be determined through #@e until the first crack initially formed in any of these
observation and measurement of many crack growth samplggmponents is of basic interest, and provides a measure of
If fatigue crack growth samples are observed and measurgdsyrance concerning the operation of the components in
descriptive statistics can then be applied directly to the datad@estion. This leads to the consideration of the following
find the distributions of the desired random quantities. Thuﬁroblem. Suppose we have observatiofs ..., X, as the
these models still lack prediction algorithms. Moreover, theygits of tests conducted on the components; suppose also
are mathematically too complicated for fatigue researchers@si there aré&m components of the same kind to be put into

well as design engineers. A large gap still needs to be bridgggl,re use, with times to crack initiatiofy, ..., Y Then we
between the fatigue experimentalists and researchers who {ggt to be able to estimate, on the basiXof..., X, the
probabilistic methods to study the fatigue crack growtBhortest time to crack initiatioM,,,; among the times to

problems. _ _ _ crack initiationYy, ..., Yum. In other words, it is desirable to
Airworthiness regulations require proof that aircraft can bgystruct lower simultaneous prediction limit,, that is

operated safely. This implies that critical components must Re .caqed with probability by observations or functions of

replaced or repaired before safety is compromised. FQpserations of alk future samples, each consisting rof

guaranteeing safety, the structural life ceiling limits of the s |n this section, the problem of estimatigqy, the

fleet aircraft are defined from three distinct approachegm|iest of allk future samples ofn observations from the

Safe-Life, Fail-Safe, and Damage-Tolerant approaches. |fyeriying distribution, based on an observed sample of

this paper, the Damage Tolerance approach is considered gdeyations from the same distribution, is considered.

the focus is on the inspection scheme with decreasing

intervals between inspections. A. Assigning the Interval Time until the First Inspection

From an engineering standpoint the fatigue life of a Experiments show that the number of flight cycles (hours)

component or structure consists of two periods (this concegit which a technically detectable crack will appear in a

is shown schematically in Fig. 3): fatigue-sensitive component of aircraft structure follows the
two-parameter Weibull distribution. The probability density

ﬁj:\'/\ﬁ function for the random variablX of the two-parameter
Weibull distribution is given by

f(x|/3,5):%(%j _ exr{—(%j ] x>0, (1)

Flight cycles where &0 and £>0 are the shape and scale parameters,

respectively. The following theorem is used to assign the

interval time until the first inspection (warranty period).
Theorem 1 (Lower one-sided prediction limit for the Ith

order statistic of the Weibull distribution). Let X;< ...<X; be

trﬁ? firstr ordered past observations from a sample of size

and rom the distribution (1). Then a lower one-sided conditional

(i) crack propagation period, which starts with a(l—a') prediction limith on thelth order statisti¢; of a set of

technically detectable crack and ends when the remainiﬂbfuwre ordered observatiolg< ...<Ynis given by
cross section can no longer withstand the loads applied and

fails statically. A AN
Periodic inspections of aircraft are common practice in P{Y, 2h |z} =PrJIn 2 20lIn 3 |2
order to maintain their reliability above a desired minimum

level. The appropriate inspection intervals are determined so
that the fatigue reliability of the entire aircraft structure =P{W 2w, |2}

o Maximum allowable crack size

Crack size
(inches)

0

Fig. 3. Schematic Fatigue Crack Growth Curve
(Crack initiation period (A-B); Crack propagation period (B-C))

(i) crack initiation period, which starts with the first load
cycle and ends when a technically detectable crack is pres
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where B and J are the maximum likelihood estimators ®f

and o based on the firstordered past observation$( ...,
X;) from a sample of siza from the Weibull distribution,
which can be found from solution of

ﬁ=[r*2ﬁ+(n—r)x§] , 3)
and
(Zr:xflmq +(n—r)xf|nxr)
5="" . . @
<[ S - | -13Inx
(Zl‘,x +(n r)x,J r;lmﬁ
Z @2 7,) ()
_ X
Z =38 n=h|,i=1..r-2, 6
A REERE ®
W = 5|r(BJ, W, = 5In(%). (7)

(Observe that an upper one-sided conditiomgrediction
limit h on thelth order statisticy; may be obtained from a
lower one-sided conditional (@ prediction limit by
replacing taby a.)

Proof. The proof is given by Nechvel al. [5] and so it is
omitted here. [J

Corollary 1.1. A lower one-sided conditional {h)
prediction limith on the minimumy; of a set ofm future
ordered observationg < ... <Y, is given by

P{Y,2h|z}= Pr{é’ln(ﬁ] > 5In(ﬁj | z}

= P{W, > w, |z}

(rTEVW“ +Z Qvdin (/) +(n-1) vo'ln(xr//i)j dv

=r
vs3in(x /8 [Z Qo (% 15) +(n-r) vJIn(x,/,B)J dv

e i=1
1-a.

J.V[_Zevb'aln % 1B,
=0

v

0

(8)
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Thus, wherl = 1, (2) reduces to formula (8).

Theorem 2 (Lower one-sided prediction limit for the Ith
order statistic of the exponential distribution). Under
conditions of Theorem 1, &1, we deal with the exponential
distribution, the probability density function of which is given

by

x| B) =~ ex;E—l] (x> 0). 9)

B B
Then a lower one-sided conditional-@) prediction limith
on thelth order statisticY, of a set ofm future ordered
observation¥< ...<Y,, is given by

Yy _h _
Pn{\(I 2h|Sﬁ=sﬂ}=Pr{S—E2g|Sﬁ—sﬂ}
=Pri\W >w,} = ;il_ -1’
! B(,m-1+1) &
X - 1 - =1- (10)
(Mm=1+1+ PL+w (m=1 +1+ )]
where
— YS

Weg (11)
Sy =Zr:Xi +(m-r)X,. (12)

i=1
Proof. It follows readily from standard theory of order

statistics that the distribution of thé order statistity; from a
set ofmfuture ordered observatios< ... < Y, is given by

_ 1
f(y, [ B)dx “Blm-1+1)
x[Fy |81 M-FX A dF (% 18),  (13)
where
F & |8 )= 1-exp(x/ B). (14)
The factorization theorem gives
Sﬁzzr:Xi+(n—r)Xr (15)

sufficient for 5. The density 083 is given by

9(s; 18) =

—"], s;20.  (16)

s
st ex;E—

r(r )ﬂf K B

SinceY,, Sz are independent, we have the joint density, of
andS; as

_ 1 1
0. 14) = B(@,m-I+1) I(r)
X[l _e—)ql/}’] I—1[e—x|l/}’]m—|+l 18:!-+1 Sﬂ'le Sp/ﬁ. (17)

Making the transformatiow, = yi/ss Sg= S, and integrating
outsg we find the density o0 as the beta density

r I=-1)
B(,m- I+1)Z[ j(_)

j=0

fw) =

WCE 2010
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1 0<w <o (18) and this shows that initial crack (which may be detected) has

[(Mm=1+1+ j)w +1] ! ’ not yet occurred. We now have to schedule the next
inspection. Lety; be the minimum time to crack initiation in
This ends the proof. [J the above components. In other words Yiebe the smallest
Corollary 2.1. A lower one-sided conditional th) gpservation from an independent second samplemof

prediction limith on the minimumy, of a set ofm future  gpservations from the distribution (1). Then the inspection

r+1 ?

ordered observation§ < ... < Yy is given by times can be calculated (from (25) using (24)) as
P{v,2hls, =sﬂ}=pr{g_12£|sﬁ } 1, =Bexpt, 19), 22, (29)
s
s s where it is assumed tha=0, r; is the time until the first
= PR, >w} = 1 —1-g. (19) inspection (warranty perlodM,j is determined from
@+ mw,)’

Pr{Y,>7,|Y,>7,_,,Z}
B. Example
Consider the data of fatigue tests on a particular type of —p 5| A sl 2|l 5in M > &inl Bt z
structural components (stringer) of aircraft 1L-86. The data B B B
are for a complete sample of size n = 5, with observations
of time to crack initiation (in number of 4@light hours): P >w, | 2}
S =P w W w, 7 s =
Xi1=5, X,=6.25,X5=7.5,X,=7.9,Xs=8.1. ! i Priw, > Wr,-_1| z}
Goodness-of-fit testing. It is assumed thak;, i=1(1)5, (24)
follow the two-parameter Weibull distribution (1), where th(?/vhere
parameterss and o are unknown. We assess the statistical v
W, =4 Ir{—}J,

significance of departures from the Weibull model by
performing empirical distribution function goodness-of-fit

test. We use th8 statistic (Kapur and Lamberson [6]). For - = , .
censoring (or complete) datasets, 8wtatistic is given by Aand dare the MLE's offf andd, respectively, and can be

. . found from solution of (3) and (4), respectively.
S ['n(&l/)ﬁ)J Z(m()ﬁﬂ/)ﬂ)] It will be noted that if3=1, then it follows from Corollary

_ (T]
w, =dln 41, (25)

- M. _ ,
S= ._[rr/_i]u i _ .23 M, - 0184 (20) 2.1 that (23) reduces to
IN(%../%) IN(X../ %) I, =W, S, [22, (26)
5 > W
i=1 Mi i=1 Mi

where w,  is determined from
where [/2] is a largest integesr/2, the values d¥/; are given !

in Table 13 (Kapur and Lamberson [6]). The rejection region PrY, > 7, |Y,>7,,,S; =S5}
for the a level of significance is $ >S,}. The percentage
points forS,, were given by Kapur and Lamberson [6]. For Y ‘T1.|Y 1.
this example =PR > >SS,
' S5 S|S S
S=0.184 <Si-5.4-0.050.86. (21)
i i i Priw, > w, }
Thu;, therg is pot ewder.lce to rule out the Weibull model. The P >w |W>w, } = 1 Y o—1-a, 1)
maximum likelihood estimates of the unknown paramefiers ) = Prw > w )
and J are = 742603 and J = 79081 respectively. It \here
follows from (8) that T
P{Y,>h |2} = Pr{gln(—i) > 5|n(TJ } s %
B B Szis given by (12). Since it is assumed thaD, 1, is the time
= |:>|{V\/1 >w, |z} of the first inspection (warranty period), which is found as
I, =W Sg, (29)
_ P{V\ll - 8.43782} _ 0.0000141389 095 (22) 1 198
0.0000148830 wherew, is determined from (19),
and a lower 0.95 prediction limit fof, is h=2.5549 &«10%) w, = argﬁl/(1+ mw, ) = ]_—g)’ (30)

flight hours, i.e., we have obtained the interval time until the
first inspection (or warranty period) equal to 25549 flightt follows from (27) that

hours with confidence levgt=1-a = 0.95. PrW, >w, } = 1/@+mw, ) = (- a) (31)
7| 7 .
C. Inspection Policy after Warranty Period

. . Thus, we have from (26) and (31) that
Let us assume that in a fleetrofaircraft there aren of the

C e ; S )
same individual structgre c_omponen'Fs, opergtlng - :_p[ A-ay'’” _]]’ 1. (32)
independently. Suppose an inspection is carried out atzime m
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But again, for instance, consider the data of fatigue tests imrwhich g andb are constants to be evaluated from the crack
a particular type of structural components of aircraft IL-86growth observations. The independent variablean be
X1=5, X,=6.25, %=7.5, X=7.9, %=8.1 (in number of 10 interpreted as either stress cycles, flight hours, or flights
flight hours) given above, whemreen=5 and the maximum depending on the applications [7]. It is noted that the
likelihood estimates of unknown parametg®sand o are power-law form ofg(a(t))’ at the right hand side of (35) can
[ = 742603and & = 79081, respectively. Thus, using (23) Pe used to fit some fatigue crack growth data appropriately

and (24) withri=2.5549 (10 flight hours) (the time of the and is also compatible with the concept of Paris—Erdogan law.

first inspection), we have obtained the following inspectiohrhe service time for a crack to grow f“’f“ si(®) to a(t)
. (wheret > ty) can be found by performing the necessary
time sequence (see Table 1).

integration
t a(t)
Table 1. Inspection Time Sequence _ dv
dt= | — (36)
qVv
- - to a(to)
W = Inspection timer; Interval .,—5 _
no (x10* flight hours)  (flight hours) to obtain
; %= 0 . EORSECONS
W, = -8.4378 7,= 2.5549 25549 t-t, =—=2 a6-1) : (37)
w,=-6.5181 = 3.2569 7020
W3=-5.5145 7= 3.6975 4406 In this paper, we consider a stochastic version of (37),
w, = -4.8509 7= 4.0212 3237 1 1
W5 = —4.3623 1= 4.2775 2563 — =5 =(b-at-t,) +V, (38)
We=-3.9793 := 4.4898 2123 % 2
w7 = -3.6666 r=4.6708 1810 whereay=a(to), a=a(t). If V~ N(0,[(b-1)o(t-to)?), then the
W= —3.4038 Ty~ 4.8287 1579 probability that crack size(t) will exceed any given (say,
: : : maximum allowable) crack siza’ can be derived and
expressed as
I1l.  OPTIMIZATION OF INSPECTIONPOLICY Priaf) za’}
Consider the case where an optimal inspection policy hasto @ -@) ) -(-Daqt-t,)
be computed with linear costs. letbe the cost of each of the =1-¢ b-Do(t-t,)" (39

inspections. If crack occurs at tirhand is detected at tljih

inspection timeg;, so thatz > t, let the cost due to undetectedwhere®(.) is the standard normal distribution function. In this
crack becy(z-t). It will be noted that under small failure case, the conditional probability density functiora given
probability one can be restricted by the first term of the Tayldy

series as a presentation of a proper loss funci{on Then an a
optimal inspection policy is one, which minimizes the f@tlb.q.0) =W
expected value of the total cost

C = jertea(5-1). (33) exr{—l[(a‘; PP -a ™)~ (b-Datt “0)} J (40)

-b

o : . 2 (b-Do(t—t,)"
Taking into account (25), we obtain for the Weibull case:

. This model allows one to characterize the random properties
E{C|Z= % + CZ[Z rl-ala-E{T| Z}J that vary during crack growth [8-9].

= B. Inspection Policy under Parametric Certainty

c @ w, i Let us assume that all the parameters of the crack
=g G Zaex 5 [1-a) a-E{T|Z|, (34) exceedance probability (39) are known. Then the inspection
1= times can be calculated recursively from
Now an optimala has to be found such that minimizes (34). . )
The optimal value ofr has to be determined numericallyne Pria(r)) <a’| A7j.,) <a}

optimalz, j=1, are found from (25) using (24). Pr{ar) <a’}
=—— Y - =1-q, |22, (42)
Pr{ar,) <a’}
IV. INSPECTIONSSCHEME UNDER FATIGUE CRACK where
PROPAGATION Pr{a(r) <a}
A. PI’ObabI|IStI-C. M_odel of Fatigue Cr.ack Growth o @ 6D _ gy D) O-Do(7, ~7,) "
Many probabilistic models of fatigue crack growth are O-Do(r 1) . (42)
based on the deterministic crack growth equations. The most 1o

well known equation is . . . . -
q =0, r; is the time of the inspection when the initial crack was

da(t)/ dt = q(a(t))® (35) detected. Itis assumed that cracks start growing from the time
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the aircraft entered service. For typical aircraft metallialternative hypothesid,: (b=hb,, g=0,, 0=0) is given by
materials, an initial discontinuity sizeag] found through
guantitative fractography is approximately between 0.02 and
0.05 mm. Choosing a typical value for initial discontinuity, _ _
state (e.g., 0.02 mm) is more conservative than choosing an n 2 0 o

extreme value (e.g., 0.05 mm). This implies that if the lead Wzaﬂ fe 7,00 )I_l | f@’ . h.9,0)
cracks can be attributed to unusually large initiating = =S
discontinuities then the available life increases.

C.

Let us assume that the parameterg and o of the crack -
exceedance probability (39) are unknown. Given the data LR{> 1,then H; b=b.,q=0,0=0)

describing a single crack, say a sequd(eg, 7; )}rj‘:l, it is

n 2 N . .
Wlaﬂf &7, |b1,q1,al>|:l| |‘J @7 b,q.0)

(48)
and hypothesisl; or H; is favoured according to whether LR

Inspection Policy under Parametric Uncertainty is greater or less than 1, i.e

o (49)
< 1,then H, b=b,,q=0,,0 =3,).

easy to construct a log-likelihood using the density given by
(40) and estimate the parametérsg and o by maximum
likelihood. The log-likelihood is

The parametric estimates obtained after each inspection are
treated as if they were the true values in order to obtain from
(41) an adaptive inspection time sequence.

V. CONCLUSION

W(hqol{(a,7)}=-b) Ina -ning
=1
n [ alb _ _1-b 2 . .
1[ 8 —a —(b-1)q(7; -7,) In this paper, to capture the scatter of the fatigue crack
= . (43) : ;
244 b-Do(r, -7,)"? growth data, the stochastic model that adopted the solution of
. . ) the crack growth equation, proposed by Paris and Erdogan,
Inspection shows that this differs from the standargnhg randomized one by including random factors into it is
least-squares equation only in the terb}lna, where the syggested. This stochastic model allows us to obtain the crack
subscripti has been dropped. The likelihood estimators agxceedance probability as well as the probability of random
obtained by solving the equations time to reach a specified crack size. Once the appropriate
dL/db =0; dL/dq=0; dL/do=0. (44) stochastic model is established, it can be used for the fatigue

In this case the equations have no closed solution. Howevef§iability prediction of structures made of the tested material.

is easy to see that the estimatorsd@nd o givenb are the As such the model presented here provides a fast and
usual least-squares estimators for the coefficients in (3
conditioned orb,

T S (LR
q(b)-b—_l(nao Za IZ(T ro)j, (45) a

(2]
(3]

1 Z”: [a™ —a —a(b) (b -2)(7; - 1o)]*

a*(b) =
n(b-1)* 4 T, =T,

, (46)

and on substituting these back in the log-likelihood gives a
function ofb alone, (4]

(47)

L(b) = —bim a, —nin[g(b)]-n/2. [5]

j=1
Thus the technique is to search for the valuebathat
maximizesL(b) by estimatingy and o as functions ob and
substituting inL(b). In this study a simple golden-sectionl®!
search worked very effectively. It will be noted that if we deetln
with small sample of the data describing a single crack, say a

sequencé( a;, 7;)}}, , then the estimates of the unknown

parameterd, g and o can be obtained via the Generalized
Likelihood Ratio Test as follows. Let us assume (without lo

of generality) that there are available only two past samples of
the data describing a single similar crack, say

sequences{(a® r™)}T, and {(a® )}, with the
unknown parameterdb{,a;,01) and p,,0,,0), respectively,

whereny, n, > n. Then the likelihood ratio statistic for testing
the null hypothesisH;: (b=bs;, g=q;, o=0;) versus the

(9]
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mputationally efficient way to predict the fatigue lives of
realistic structures.
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